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Antiphase dynamics and polarization effects in the Nd-doped fiber laser
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The response of an Nd-doped optical fiber laser to modulation of the pump power reveals that the po-
larization of the laser light plays an important role in the linear and nonlinear dynamics of this laser.
Experiments have been carried out under pulsed or sinusoidal modulation of the pump power as well as

in the continuous-wave regime. Most of the observed phenomena may be interpreted in the framework
of a theory of the two-mode laser in which each mode is associated with one polarization eigenstate of
the laser. Effects such as the appearance of slow modes and antiphase behavior have also been observed.
A model of a two-mode laser including spontaneous emission is theoretically and numerically analyzed.
It reproduces well most of the experimental findings.

PACS number(s): 42.55.Wd, 42.50.Lc, 42.60.Mi

I. INTRODUCTION

In addition to their interest in connection with their
application in telecommunication networks, the optical
fiber lasers (OFL's) provide a rich test bench for the study
of dynamics in nonlinear optical systems. Because of the
broad gain profile and the long cavity length, a large
number of longitudinal modes can oscillate, and these
lasers are usually strongly multimode when operated well
above threshold. Recent theories on modulated mul-
timode lasers have predicted that they should exhibit a
variety of dynamical effects such as antiphase dynamics
and winner-takes-all motion [1], and OFL's may be used
to check some predictions of these theories [2]. In a pre-
vious paper, we reported on laser dynamics monitored
through the total intensity emitted by the laser [3].
Chaos following a period-doubling cascade and general-
ized bistability between different attractors were observed
in such a laser with pump modulation. In the laser cavi-
ties with polarization-selective elements, the state of po-
1arization of the emitted radiation is fixed by these ele-
ments. This is the case of most lasers whose instabilities
have been studied up to now. On the contrary, OFL's
with butt-coupled mirrors do not include such elements,
and there is additional degrees of freedom due to polar-
ization. In particular this can give rise to dynamical
effects in which the polarization state of the laser light
changes in addition to the amplitude or the phase insta-
bilities that are usually investigated. Polarization eigen-
states, i.e., states which replicate after a round-trip in the
cavity, appear to provide the relevant basis for describing
the polarization dynamics. In our OFL, they correspond
to two orthogonal linear polarizations. In order to inves-
tigate how the degrees of freedom associated with polar-
ization may influence the laser dynamics, we have carried
out polarization-resolved experiments in which the laser
intensities along the two polarization eigendirections are
simultaneously monitored. These results are compared
with the predictions of simple theoretical models for
OFL's in order to find the relevant physical phenomena

involved in the observed dynamics.
The consideration of laser polarization is not new and

this subject has been extensively studied [4]. Since the
very first days of the He-Ne laser, it was observed that al-
ternation of orthogonal linear polarization states occurs
in multimode lasers, and Zeeman lasers are known to ex-
hibit a variety of polarization emission modes [5]. Laser
emission in anisotropic crystals is also polarization
dependent as shown, for instance, in the LiNdP40&2 laser

[6]. The situation is somehow different in optical fiber
lasers because the silica matrix in which the rare-earth
ions are embedded is isotropic as long as its small stress-
induced birefringence is neglected. In a first step this
effect is considered to be small. Although spectrally
equivalent sites in the silica are assumed to be isotropical-
ly distributed, the cross section for light amplification is
polarization dependent. An important consequence is the
phenomenon of polarization hole burning [7]. In OFL's
local fields create a Stark splitting of the energy levels.
Since the pump radiation is polarized, the Stark sublevels
experience different pumping strength. As a consequence
of different pumping and also of different emission
strengths, the unsaturated gain is different for different
polarization states of the field. Similar effects occur in
optically pumped far-infrared lasers where the isotropy of
the molecular gas is lifted by the polarized pumping field,
an effect whose influence on laser dynamics was recently
considered [8] and in dye lasers with fixed polarization
where the gain depends on the direction of polarization
[9].

This paper is organized as follows. We report in Sec.
II on the static characteristics of the OFL. More
specifically we show that considering the polarization of
the laser radiation is necessary to understand the ob-
served steady bifurcations. The transient response of the
laser following a small perturbation of the pump is de-
scribed in Sec. III and the occurrence of slow time scales
is demonstrated. The nonlinear response of the laser to a
strong sinusoidal modulation is studied in Sec. IV. A
model is proposed in Sec. V to describe both the static
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and the dynamic properties of our fiber laser. Its steady-
state solutions are discussed, and a linear stability
analysis is performed to check the adequacy of the model
in connection with the experimental study of the tran-
sients. Numerical simulations in the strong modulation
situation are required to compare the predictions of the
model with the experimental findings in the strongly non-
linear case as shown in Sec. VIII. These comparisons
have been carried out not only on the signal but on infor-
mation more specific to nonlinear dynamics such as
reconstructed attractors, Poincare sections, and bifurca-
tion diagrams. All these indicate that a model of two-
mode laser including spontaneous emission describes the
details of the OFL nonlinear dynamics.

II. POLARIZATION-RESOLVED INVESTIGATION
OF THE ew CHARACTERISTICS OF THE OFL

The experimental setup, which is schematically shown
in Fig. 1, is basically the same as in our previous study [3]
except for the detection part which includes simple sys-
tems for polarization and wavelength analysis. The ac-
tive medium of the optical fiber laser is a 5-m-long silica
fiber doped with 300 ppm Nd +. The core diameter is
5.8 pm, and the fiber is single mode at the laser operating
wavelength (A, =1.08 pm), but the two linearly polarized
modes LPO, and LP&& may propagate at the pump wave-

length. The excitation of the LP» pump mode reduces
the pumping eSciency of the laser because of the poor
spatial overlap between this mode and the lasing mode
[10]. However, the dynamics of such a transverse single-
mode laser is not expected to be qualitatively affected by
the spatial structure of the pump field [11].

The laser cavity is limited by two dichroic mirrors
transparent at the pump wavelength and with reAection
coefficients R, )99.5%,R2 =95% around 1.08 p,m. The
former is coupled to the fiber with an index-matching
liquid in order to decrease the losses, and the output mir-
ror is simply butt-coupled to the fiber. The Fabry-Perot
effect resulting from the small gap between the fiber and
output mirror allows the tuning of the laser emission
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FIG. 1. Experimental arrangement for a diode pumped
monomode fiber laser. Notation used: LD, laser diode; MO mi-

croscope objectives (NG 10); QWP, quarter-wave plate (820
nm); DM, dichroic mirror {R,„at1080 nm, T,„at820 nm);
CM, coupling mirror (R )99.5% at 1080 nm, T,„at820 nm);
DF, Nd-doped fiber, OC, output coupler (95%); L, lens; HWP,
half-wave plate {1080 nm); PC, polarizing cube; F, bandpass
filter (1060—1100 nm); BS, beam splitter; M, monochromator;
PD, silicon photodiodes.

around 1.08 pm. The pump radiation, emitted at 820 nm
by a polarized single-mode laser diode (RTC Philips CQL
44), is focused into the fiber through two X 10 microscope
objectives. Between the two objectives, a quarter-wave
plate allows us to vary the pump polarization, and a tilted
dichroic mirror [maximum transmission (T „)at 820
nm, maximum reflection (R,„)at 1.08 p,m] is used to
strongly reduce the possible feedback from the OFL
power on the laser diode. The two orthogonal polariza-
tions are separated by a polarizing beam splitter, a half-
wave plate is used to select the direction of analysis. The
laser intensities are monitored by silicium photodiodes
with a bandpass filter (EA, =50 nm) to block the stray
pump laser radiation. A beam splitter is used after the
polarization selection to send a part of the laser intensity
into a monochromator for spectral analysis. The rotation
of the half-wave plate permits calibration of the two
detectors and at the same time analysis of the spectrum
on the two orthogonal polarizations.

In typical operating conditions, a pump power up to 8
mW is coupled into the fiber with an typical laser thresh-
old of 2 mW. This allows us to reach pump parameters
up to 4 (the pump parameter A is the ratio of the pump
power to the threshold pump power), but the output
power is limited to about 300 p8'. This situation has
been preferred to that in which the output power is opti-
mized because a lower threshold is favorable for laser dy-
namics experiments since a wide range of pump parame-
ters can be explored. An even wider range for 3 was ex-
plored in preliminary studies by using high reAectivity
mirrors, of course at the expense of the output power, but
this does not reveal qualitatively new phenomena. So the
reflectivity value of the output mirror selected here ap-
pears as a good compromise between the extended range
of parameters, and the optical output power was request-
ed for a good signal-to-noise ratio. When the pump
power is twice the threshold value (i.e., A =2), the laser
is strongly multimode with a wide spectrum (70 cm ')
which may be tuned around 1.08 pm by adjusting the
mirror positions because of Fabry-Perot effects in small

gaps between the mirrors and the fiber ends.
We have investigated the polarization characteristics

of the fiber laser in the case where the spectrum is cen-
tered around 1.08 pm (the differences with our previous
experiments carried out at A, =1.06 pm will be discussed
in the following sections) and more specifically their vari-
ations versus the pump power. Above a first threshold
P,h, and up to a second value P,„2,the laser radiation is
linearly polarized. In that range, the laser power linearly
increases with the pump power, and the emitted spec-
trum broadens as 2 increases (Fig. 2). However, a weak
intensity ( (5% ) is detected on the other polarization; it
may be due to defects in the detection optics. The direc-
tion of polarization of the laser emission for pump power
between Pthi and P,» can be modified by a change of
bending or twisting of the fiber. However, it appears to
be independent of the polarization state of the pump.
This indicates that the polarization eigendirections are
imposed by the birefringence of the fiber, as expected in
the case of small gain anisotropy. When the pump power
is increased above P,„z,1aser 1ight is also emitted in the
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FIG. 2. cw characteristics of the OFL. Between the first and

the second thresholds P,» and P,h2, the laser emits linearly po-
larized radiation. Above the second threshold, it emits in both
polarization directions.

polarization direction perpendicular to that observed pre-
viously. The spectral range of this emission is very nar-
row just after P,h2 and it broadens as the pump power in-
creases. Simultaneously to the appearance of this second
polarization component with intensity I2, the output
power versus pump power characteristics of the first po-
larization component Ij exhibits a sudden decrease of the
slope (Fig. 2), but these characteristics remain linear.
Above the second threshold P,&2, the pump power feeds
two competing processes, resulting in less efficiency for
the first polarization component. The value of the pump
parameter at second threshold P,„2/P,„,is typically
1-1.2 and may be adjusted by acting, e.g. , on the mirror
position or on the fiber winding. In particular, P,h2 can
be set equal to P,h&, and this situation will be exploited
later. The existence of two thresholds and the nature of
the output versus pump power characteristics strongly
suggests the existence of two competing subsystems in the
fiber laser, each of these subsystems being associated with
one of the two orthogonal linear polarizations.

with a single frequency, and it corresponds to the stan-
dard relaxation oscillation of a class-8 laser. In our OFL,
it typically occurs in the 0—20 kHz range. Hereafter, we

will refer to these oscillations as "relaxation oscillations. "
Above the second threshold A &P,h2/P, », the laser
response is made of the superposition of two damped os-
cillations with both different oscillation frequencies and
damping coefficients. The fast one corresponds to the re-
laxation oscillations described above, and the slower one
is associated with a new relaxation mode that appeared at
the second threshold. It will be called the "low frequen-
cy" since its frequency is typically 0-0.4 times the relaxa-
tion frequency. The physical variables, i.e., the total in-

tensity and the intensity in each polarization eigenstate
are differently affected by the relaxation and the low-
frequency oscillations. This is shown on Fig. 3 (A =2),
which displays the response of the laser in the two or-
thogonal polarizations corresponding to the laser eigen-
states [Figs. 3(b) and (c)], together with the total intensity
[Fig. 3(d)] and the pump modulation [Fig. 3(a)]. Note
that the relaxation oscillations are in phase in Figs. 3(b)
and 3(c). A careful examination of the corresponding sig-
nals show that their low-frequency oscillations are in op-
posite phase. As their amplitude is almost equal they
destructively interfere in the total output intensity which
displays only the high-frequency relaxation oscillations
[Fig. 3(d)]. The fact that the total intensity exhibits such
simple dynamics indicates that it should correspond to an
eigenvector of the linear stability analysis, a result that
will be checked in Sec. VI. The apparition of a slow
mode and observation of a single relaxation frequency

(a)

(c)

III. POLARIZATION-RESOLVED INVESTIGATION
OF THE TRANSIENT RESPONSE OF THE OFL

The fiber-laser response to a small pulse of pump
power provides additional information on the physics of
the fiber laser. We consider here a small step modulation
of the pump parameter in a situation where the laser
remains always above the first threshold P,h„i.e., A ) 1.
We emphasize that this is different from the other experi-
ments in which the pump power is on-off switched and
the buildup of emission is investigated [12]. The kind of
experiments carried out here can be directly compared
with the results of the linear stability analysis presented
in Sec. VI. For 1 ~ A ~ P,h2/P, h„the response to a small
perturbation of the pump is a simple damped oscillation

0 0. 5 1

TIME (ms )

FIG. 3. Transient response of the OFL after a small pertur-
bation of the pump intensity: (a) pump perturbation, (b) and (c)
the intensities I& and I2 in the two orthogonal polarization
eigenstates, and (d) the total intensity.
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when the total intensity is observed seem to be a general
property of two-mode lasers in which the two modes are
coupled via cross-saturation terms [2].

These relaxation oscillations provide us with two kinds
of quantitative data: the oscillation frequencies and the

damping coefficients. Their evolution versus pump power
gives new information about the laser system that will
give some insight on its dynamics. As mentioned in Sec.
II, the laser may oscillate in the symmetric configuration
in which the thresholds are the same for the two polariza-
tion states. This situation is interesting as it makes easier
the comparison with the predictions of the model ela-
borated for the OFL since analytical calculations are
readily available in the symmetric situation as shown in
Sec. VI. To provide information for the comparison with
theory, a series of experiments have been carried out in
the symmetric situation. The corresponding measure-
ments of the relaxation frequencies are reported on Fig.
4 together with the theoretical values from the model as
given in Sec. V.

The square of the frequency of the relaxation (low-
frequency) oscillations co„(co~f) varies linearly with the
pump power (Fig. 4), as predicted by a simple rate-
equation model of the two-level laser [13]. In the sym-
metric case studied here they both scale as (P —P,„)
since both thresholds coincide. In the more general case
of two different thresholds the low-frequency oscillation
co~, scales as (P —P,h2 )', a general property of two-mode
lasers [2]. The damping rate I „ofthe fast relaxation os-
cillations strongly increases near the first threshold A = 1

(Fig. 4). This evolution contradicts the forecast of the
simple rate-equation model mentioned above. According
to this model, there is a bifurcation at the laser threshold
A =1 which should be accompanied by the critical slow-
ing down as for any bifurcation. Therefore in such a mod-
el, I"„should tend to zero as the bifurcation at A =1 is
approached. In our case, the fact that I „doesnot tend
to zero implies that the threshold does not correspond to
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FIG. 4. Frequency and damping of the relaxation oscillations
co, and I „,and of the low-frequency oscillations co]f vs pump
power. Experiments have been performed in the symmetric
case. The solid line is the least-square fit of I „with the real
part of the eigenvalue obtained in Eq. (4). This fit leads to the
determination of a (2.8X10 ) and ~f (350 ps). The dashed
straight lines are the fit with co, lf and the asymptot of I „.
Above threshold, this latter coincides with the curve I „(2) cor-
responding to a =0.

a bifurcation. To take this into account, the model of the
OFL should include terms that destroy the bifurcation at
A =1. As a matter of fact, if spontaneous emission is in-
cluded in the equations, the total output intensity does
not present any more criticality at the threshold. Spon-
taneous emission is known to give significant contribu-
tions to the dynamics of some guided lasers like semicon-
ductor lasers [14] or OFL's [12], and we will show later
that this effect may explain the dramatic change of the
variation of the damping coefficient in the threshold re-
gion.

To summarize our conclusions from the cw and pulsed
experiments, two sets of orthogonally polarized longitudi-
nal modes appear to oscillate for different thresholds but
with some similar properties. These two sets are coupled
because they share at least partly the same population in-
version. They relax to their steady-state through damped
oscillations whose frequency is in accordance with rate-
equation models but the damping divergence near thresh-
old requires the inclusion of additional effects such as
spontaneous emission.

IV. POLARIZATION-RESOLVED INVESTIGATION
OF THE RESPONSE TO SINUSOIDAL

MODULATION

As shown in the previous section, the transient
response of the laser after a small perturbation of the
pump exhibits two components with eigenfrequencies co„
and coI F. The former corresponds to the fast-relaxation
oscillation of the total laser intensity and the latter to the
slow motion which is revealed by polarization-resolved
experiments. These frequencies usually lie in the 15-kHz
range, and modulation of the pump parameter at such
frequencies is easily achieved by varying the current in-

jected in the pump laser diode. In previous studies, the
response of OFL s to sinusoidal modulation was investi-
gated considering only the total intensity of the laser
[3,15], and in Ref. [3] the laser was operated near 1.06
pm instead of 1.08 pm in the experiments reported here.
We first give the results obtained at this wavelength and
later discuss the differences between experiments carried
out at these two wavelengths. Under high pump modula-
tion, the laser exhibits several nonlinear effects including
hysteresis and a period-doubling cascade leading to
chaos, crises, generalized bistability, etc.

In this section, we investigate the correlation between
the radiation emitted in the polarization states defined in

the preceding section when the pump power is modulated
at a frequency close to that of the fast relaxation co„.Fig-
ure 5 illustrates the evolution of the response of the laser
on the two orthogonal polarization directions, i.e., I& and

I2 versus the frequency of the pump modulation. The
modulation amplitude is kept constant, and the instan-
taneous pump power remains always above threshold.
Measurements made simultaneously in the two orthogo-
nal polarizations clearly indicate antiphase dynamics in

the two polarizations. In the case of a 2 T-periodic
response [Fig. 5(b)], the maximum output intensity in one
polarization direction corresponds to a sma11 peak in the
other one. The same phenomenon is also observed on the
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FIG. 5. Experimental evidence of antiphase response of the
OFL to pump modulation in different dynamical regimes. The
two series of curves are related to the intensity in each polariza-
tion eigenstate I, (lower traces) and I2 (upper traces). (a) T
response, (b) 2T response, (c) 4T response, (d) chaotic response.
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4T-periodic signals [Fig. 5(c)] and in the chaotic regime
[Fig. 5(d)]: the large peaks in one polarization are associ-
ated with small peaks in the other one. The antiphase
phenomenon, which is observed between the two total
output intensities in the two orthogonally polarization
states, confirms the coexistence of two coupled laser sys-
tems presenting a strong competition effect. Similar anti-
phase motions were observed in other nonlinear systems,
including lasers [1,17].

The evolution of the laser dynamics reported in the
series of recordings of Fig. 5 can be summarized in a sin-
gle bifurcation diagram (BD) using periodic sampling of
the laser output intensity synchronously with the modu-
lation [3].With this technique, a sampling unit delivers a
single valued output when the response of the system is
T-periodic, n different values when its period is nT and
scattered values for a chaotic response. BD's in the two
orthogonal polarization directions do not show any
significant difference in the dynamics of I& and I2, sup-
porting the fact that the two variables belong to the same
dynamical system and play similar roles. Because of bi-
stability between attractors, it is necessary to measure
BD's with increasing and decreasing sweeps of the con-
trol parameter. Such a generalized bistability effect is
clearly observed between 14.2 and 14.9 kHz in the case of
the two BD's reported in Fig. 6. BD's obtained with the
laser operating at 1.08 pm are different in two points
from those reported in our previous paper, which con-
cerns the dynamics of the OFL when the emission wave-
length is centered around 1.06 pm: (i) After the crisis,
the laser precipitates to a 2T-limit cycle instead of the
4T-limit cycle reported in Ref. [3). (ii) The BD s at 1.08
pm appear to be more sensitive to technical fluctuations
because of smaller regions of periodic behavior. For in-
stance, the 8T-periodic regime can hardly be seen in that
case while the 16T regime was observed on the laser
operating at 1.06 pm. The differences between the two
series of BD's may be attributed to different positions of

FIG. 6. Bifurcation diagram of the OFL operating at 1.08
pm. The control parameter is the frequency of the pump modu-
lation. The upper diagram corresponds to a decreasing sweep
and the lower diagram to an increasing sweep.

the laser operating wavelength in the gain profile. In this
paper, the laser central frequency coincides with that of
the gain line while oscillation at 1.06 pm occurs in the
wing of the fluorescence spectrum, a region where the
gain of the lasing modes depend strongly on their emis-
sion wavelength. They both present strong similarities
with that of other nonlinear systems like the monomode
CO2 laser with modulated parameters [16]. The main
difference between the OFL and the CO2 monomode laser
is that chaos appears in the OFL with a much lower
modulation amplitude than predicted by the two-level
model, while this model appears to describe efBciently the
modulated CO2 laser. In addition the OFL also exhibits
quasiperiodicity and many more periodic windows than
the CO2 laser [16].

To investigate the chaotic regimes, the reconstruction
of the attractors and Poincare sections (or projections of
these sections) have been used. Polarization-resolved ex-
periments present the advantage of providing measure-
ments of two dynamical variables, the intensities I, and
I2 in each polarization eigenstate. A projection of a
Poincare section of the attractor on a two-dimensional
plane is readily obtained by combining the sampling tech-
nique with polarization resolution. An oscilloscope fed in
the XYmode with the sampled values of the intensities I,
and I2 in the two polarization directions displays in real
time a projection of a Poincare section taken in a plane of
constant phase of the modulation. The corresponding
sections at different points of the inverse cascade C2 [18],
and in the fully chaotic regime near the 2C-C transition
and just before the boundary crisis are shown on Figs.
7(a), 7(b), and 7(c), respectively. As expected, the Poin-
care sections for the C2 regimes appear as two clusters of
dots periodically visited while they span a wide region of
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FIG. 7. Poincare sections in chaotic regimes corresponding

to di8'erent points of the inverse cascade. (a) C2; (b) and (c) fully

chaotic regimes just after the 2C-C transition and just before
the boundary crisis. The right (left) column reports the experi-
mental (numerical) results.

the plane beyond the end of the inverse cascade. These
Poincare sections have special shapes, they are given as a
fingerprint of the chaotic attractor to be compared with

the corresponding curves given by numerical simulations
in the next section.

V. MODELING OF THE OFL

The strong multimode nature of the emission together
with the large number of transitions that are involved in
the laser operation and thus the great number of dynami-
cal variables and laser parameters make the theoretical
approach of the OFL's dynamics very diScult. Up to
now, most of the models have been designed in order to
understand the behavior of the OFL in the cw regime and
to optimize the performances of this kind of laser. These
models are based on the rate-equation approximation and
allow us to study in particular the importance of the spa-
tial effects (mode overlap) [10],the output saturation [19],
and the problems due to excited-state absorption [20].

A comparison of model predictions with the observed
experimental behavior of an OFL was first performed by
Hanna et al. [15]. They showed a good description of
the dependence of the relaxation frequency versus the
pump power in the framework of the monomode two-
level class-B model. More recently, Le Flohic et al. [12]
studied the transient buildup of emission in the Nd +

OFL and compared their results to a two-level multimode
class-B model including amplified spontaneous emission.

Despite the strongly multimode nature of the laser
emission, the experimental results reported in the above
sections suggest that our OFL behaves essentially as a
two-mode laser in which each mode is associated with a
polarization eigenstate. Therefore, we will not consider
the many 1ongitudinal modes but rather consider the

laser as made up of two subsets corresponding to two
clusters of longitudinal modes, one in each of the polar-
ization eigenstates.

Because of the short relaxation time of the coherences
compared to the photon lifetime and the relaxation times
of the leve1s involved in the lasing action, the atomic po-
larizations may be adiabatically eliminated, and we con-
sider rate equations as in the models of OFL's proposed
previously. All the deexcitation times except the lifetime
of the upper level of the lasing transition are extremely
short compared to the photon lifetime. Therefore, the
only populations involved in the 1aser dynamics are those
of the upper level of the laser transition and of the funda-
mental level. Moreover, the latter can be considered to
be almost constant because the available pump power
does not produce any bleaching at the pump wavelength.

To summarize, time scale and experimental reasons
lead us to set a model of the OFL in which the laser is
composed of two laser subsystems associated with the
two clusters of modes in each polarization eigenstate.
Each subsystem is described by a class-8 model with two
dynamical variables, namely its intensity and population
inversion. Let us discuss now the different terms includ-
ed in this model.

Spontaneous emission should be taken into account to
describe correctly the variation of the damping of the re-
laxation oscillations I

„

in the near-threshold region as
discussed in Sec. III. This makes sense since the photons
emitted by spontaneous emission have a significant prob-
ability to be trapped in the I.Po, mode because of the
wide numerical aperture of the fiber. Therefore, a non-
negligible part of these photons is injected in the lasing
modes and contributes to the laser dynamics. This effect
is also typical of other guided lasers like the semiconduc-
tor lasers [14].

The pumping terms may be either equal or different for
the two polarizations. To check the pumping anisotropy,
we have realized a series of experiments in which the
pump polarization is rotated. The polarization eigen-
states of the laser remain the same in accordance with
our interpretation according to which they are deter-
mined by the residual birefringence of the cavity. In op-
position the intensity sharing between the two states of
polarization changes. This polarization-selective gain
occurs because both the interactions between the polar-
ized pump and the ions, and that between the ions and
the fields along each direction of polarization depend on
the local field experienced by the ions. Therefore, the
pumping terms corresponding to the two laser subsys-
tems need to be taken differently in the model.

The losses are taken equal for the both linear polariza-
tions. The bending losses give the most important contri-
bution to the loss anisotropy since the coupling losses be-
tween the fiber and the mirrors can be considered to be
isotropic. However, such bending losses are very small in
our case. Therefore, we consider that all the anisotropies
are taken into account by the pumping asymmetry intro-
duced in the model. The two systems are coupled by two
kinds of terms, first, a cross gain effect: The intensity of
mode 1 (mode 2) is amplified by its corresponding popula-
tion inversion d, (dz) but also to a smaller amount by the
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population inversion of the other mode d2 (d, ). Second,
the stimulated emission causes a saturation of each popu-
lation by its corresponding intensity (self-saturation), but
also by the other intensity (cross-saturation). The two
cross-saturation coupling coefficients are taken equal.
The equations of such a laser can be written in the follow-
ing adimensional form:

m, =(d, +Pd —1)m, +a (d;+Pd~ ),
d,. =y[d0(r) —(1+m, +Pm, )d; ]

with i =1 or 2 and j =3—i. m; and d; are the reduced
intensities and population inversions of the two laser sys-
tems. The dots represent the derivatives with respect to a
reduced time ~= t/~„and ~, is the photon lifetime in the
cavity.

d; (r) are the pumping term of the two laser subsys-
tems. d; (r)=d; (1+r cosQr) if the pump amplitude is
sinusoidally modulated. The experimental situation cor-
responds to a fixed value of a=de/d, determining the
asymmetry of the system as discussed above. Without
loss of generality, we assume that a ~ 1.

( T /Yf ) with rf the population inversion relaxation
time. Spontaneous emission is considered through the
coefficient a, which includes the spontaneous-emission
probability and the waveguiding effect. p is the cross-
saturation coefficient describing how each laser field is
coupled with the population inversion of the other laser
system. For the sake of simplicity, the cross coupling is
considered to be the same for spontaneous and stimulated
emissions.

This phenomenological model shares many common
points with those of coupled lasers [1,2] and simple mod-
els of multimode class-B lasers [6,12,21]. We must also
note that the behavior observed experimentally is also
typical of two-mode lasers described by more complete
models of multirnode lasers including spatial hole burn-
ing [22], but we prefer here to choose a phenomenological
model containing a minimum number of dynamical vari-
ables (four) and of adjustable parameters of the laser
(a,p, y, a).

The asymmetric case, which is the general situation for
our OFL leads to much more complicated analytical re-
sults. In the Appendix we consider the asymmetric mod-
el in absence of spontaneous emission. In that situation
analytical results may be obtained assuming that the in-
version population lifetime is much longer than the pho-
ton lifetime (y «1). A linear stability analysis of the
steady-state solutions expanded in power series of y'
can be carried out under these approximations.

VI. MODELING THE OFL: SYMMETRIC CASE
INCLUDING SPONTANEOUS EMISSION

We will concentrate here on the case of the symmetric
laser (a= 1) in which both polarization eigenstates have
the same unsaturated gain, a situation that can easily be
reached experimentally as mentioned in Secs. II and III.
In this case, the steady-state solution of the above equa-
tions can easily be found and a linear stability analysis be
performed. The values derived from this analysis provide
information on the response of the OFL to pulse excita-

(m, —m2)p=(1+P)
2

(d, +d2)
D =(1+P)

2

(d, —d2)5=(1+P)
2

(2)

The steady-state values M„D„p„5,of M, D, p, 5 are
obtained by the resolution of (M=O, D=0,p, =0,5=0).
The only steady state that is physically acceptable (i.e.,
with M, & 0) is

M, =
—,
' [ A —1++( A —1) +4 A e],

D, =1— 1
[—( A —1+2e)

2(1—e)

p, =o, 5, =O,

++(A —1) +4A e], (3)

where e=(1+p)a and A =(1+p)d, is the pump param-
eter, i.e., the ratio of the pump parameter to its threshold
value.

Because of spontaneous emission, there is no clear
discontinuity between the lasing and nonlasing regimes.
In other words, the threshold of the laser does not corre-
spond anymore to a real bifurcation but rather to an im-
perfect bifurcation [23].

The linear stability analysis in the symmetric case
shows that the steady state is always stable. The nature
of the eigenvalues depends on the pump parameter.
Below a threshold approximately equal to A =1 if e and
y are small, the four eigenvalues are real and negative.
Above this threshold, the eigenvalues are complex and
have the same real parts

A+ = —
—,
' [1 D, +y(1+M, —)]

+i [y[D, (M, +e)+(1 D, )(1+M, )]—
—[1 D, +y(1+M, )

—
] /4] '

A,+ = —
—,
' [1 D, +y(1+M, ) ]—

+i[y[c D, (M, +e)+(1 D, )(1+M,)]—
—[1 D, +y(1+—M, ) ]2/4] 'i

where c =1—p/1+p. Far from threshold (A »1 and
y, a «1), the imaginary parts of A+ and A, + can be ap-
proximated as co„=&y(A —1) and co,f=cco„,respective-
ly.

The corresponding eigenvectors are in the plane
(p=O;5=0) for A+ and in the plane (M =0;D =0) for
A,+. Therefore the oscillations observed in the two inten-
sities m„m2 following a small perturbation will be in

tion and these predictions will be ultimately checked
against experiments.

The symmetry of the system suggests definition of the
following change of variables:

(m, +m~)
M =(1+P)

2
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phase (antiphase) for the high (low) frequency. In the
case where only the total intensity M is observed, the low
frequency is perfectly masked. Moreover, the depen-
dence of M„the observed relaxation frequency, and the
corresponding decay with A agrees with the predictions
of a two-level monomode model with spontaneous emis-
sion. This symmetry of the eigenvectors leads to a pecu-
liar phenomenon: A small perturbation of the pump
power can only excite symmetric states which keep their
symmetry during their relaxation to the equilibrium. To
reach asymmetric states, one needs a strong excitation
such as that which would bring the system in the 2T re-
gime where antiphase motion is observed. Then the an-
tisymmetric component of the state vector is excited and
therefore can be observed. This is illustrated on Fig. 8
which displays the response of the OFL to a small excita-
tion leading to a symmetric state 8(b) and to a strong ex-
citation in which the laser is temporarily sent onto the
2T-periodic cycle 8(c), where as discussed in Sec. IV
asymmetric motion is excited.

The model proposed here predicts the antiphase
phenomenon and the increase of I, when 3 approaches
the threshold in qualitative agreement with the experi-
mental observation. A value of a may be deduced from
the fit between the experimental and theoretical values of
the damping constant of the fast relaxation oscillations.

VII. MODELING THE OFL: ASYMMETRIC CASK
INCLUDING SPONTANEOUS EMISSION

As in Sec. VI for any value of d, only one physically
acceptable solution of (1) exists. Far from the two thresh-

olds, the stationary solutions are close to the stable solu-

tions of the model without spontaneous emission (as
defined in the Appendix). In our case, a is smaller than

y. Then we can write a =gy and expand the steady
states and their eigenvalues in a po~er series of y' in

I
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FIG. 8. Transient response of the laser in the symmetric case.
(a) Pump power, (b) response of the laser after a sinusoidal

modulation leading the system in a symmetric state, (c) after a
modulation leading the system to a 2T-limit cycle. The intensi-

ty is detected along one polarization eigendirection.

order to analyze the asymptotic behavior of the eigenval-
ues when the laser is far from threshold. The
spontaneous-emission term a is found to have no effect at
the first order on the values of the resonance frequencies
and it only decreases the real part of the eigenvalues. In
particular, the real part of the eigenvalues corresponding
to the case where the pump is well above the threshold
for two-mode operation is

Re(A. , 2) =Re[A. , 2(a =0)]— + + (m ' —m' ')
(0) m (0)m, m2

1

m )

1

(0)
nr +O( 4i2)
4

(6)

with Re[A,
& 2(a =0)] and m, ' ' the real parts of the four

complex conjugate eigenvalues and the steady-state
values of m; corresponding to the case (a =0) as derived
in the Appendix and

2 (0) (0)

S= (m, —m2 ) +(0) (0) 2 1 2

( I+P)'
We must remark that according to the predictions of

the model discussed here the effect of the spontaneous
emission on the steady states is too small to explain the
cur vatures of the output power versus pump power
characteristics that have been observed experimentally
near the thresholds. This could be attributed to amplified
spontaneous emission in nonlasing modes as discussed by
Le Flohic et al. [12]. In this transition region, the num-
ber of emitted modes rapidly and continuously increases
with the pump power resulting in a smooth evolution of

the laser power near the threshold. This broadening of
the emitted spectrum is very clear when the laser power
is analyzed by a monochromator and its connection to
laser nonlinear dynamics is being considered.

The parameters of the model corresponding to the ex-
perimental situation have been determined from the re-
sults obtained in the linear regimes. Above the second
threshold, the two resonance frequencies ~, and coLF and

their associated decays have been measured for different

pump powers. The variations of the eigenvalues of the
model versus the pump power have been fitted with the
experimental results in order to evaluate the parameters
a, P, and y. Typical orders of magnitude are a=0.85 —1,
/3=0. 42 —0.45, y=rf/r, depends on the cavity losses

and therefore varies in a wide range, in the experimental
situation of Sec. IV it is equal to 0.67X10 . These fits
lead also to estimation of the upper level relaxation time
7f We have obtained lifetimes of 350 to 420 ps close to
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the actual value (460 ps in Ref. [24]). Therefore we can
consider that the model introduced here is able to de-
scribe precisely the linear dynamics of the OFL. The
case of strong modulation cannot be treated analytically,
and we have proceeded to numerical simulations to inves-
tigate to what extent the model is able to describe the
OFL in such conditions.

VIII. NUMERICAL SIMULATIONS
IN THE NONLINEAR REGIME

The numerical integration of the model equations has
been carried out for different values of the parameters.
We have found a good agreement between the model and
the experiment if we choose parameters close to the
values determined from the fits of the quantities obtained
in the linear regime. For all the results presented in this
section, we have taken A =2.8, r =0.16, a =0.86,
p=0.43, and a =1.8X10 while the values determined
from the pump diode intensity would give A =2.6,
r =0. 16 and values of a, P, and a are 0.86, 0.43 and
2.8X10, respectively. The value of y is 0.67X10 as
discussed above.

The calculated variations of the intensities display the
same spiking behavior and antiphase phenomena (Fig. 9)
as the experimental signals, and chaos occurs with modu-
lation amplitudes comparable with the experimental
values. The bifurcation diagrams obtained with a sweep
of the modulation frequency show the same shape as the
experimental diagrams as illustrated on Fig. 10. In par-
ticular, the transition to chaos occurs after a period-
doubling sequence at the high frequencies and disappears
at the low frequency through a boundary crisis in which
the chaotic attractor is replaced by a 2T-limit cycle. The
characterization of the chaotic attractors by the use of
Poincare sections has been carried out for different re-
gimes of the inverse cascade. The comparison of the
Poincare sections obtained experimentally with those
given by numerical simulations shows that even the de-
tailed structure of the reconstructed attractors (Fig. 7) is
the same.

The value of A and a have been adjusted to values
slightly different from those calculated from the experi-

(c)

~ (b)

V3

TIME (0.25 m s/div)
FIG. 9. Results of the numerical simulations corresponding

to Fig. 5.

LLI

D

Q
LLI

CL

V)
I

16 18
I

19

mental parameters. They were chosen because they lead
to the best agreement between numerical simulations and
experimental results. These small discrepancies reveal
the limits of the model due to the strong simplifications
introduced. In particular, the effects of the multimode
nature of the field have been neglected. Moreover, the
population inversion has simply been shared into two
subsets although the interaction of two polarized modes
implies rather complicated effects of cross saturation via
spatial hole burning and polarization hole burning.

However, the smallness of the discrepancies between
the results of the model and the experiments is somewhat
surprising because of the apparent complexity of this
strongly multimode laser. This result shows that only a
few physical properties of the OFL are important in
governing its dynamics. The reason for which each clus-
ter acts as one mode is not yet well understood and
deserves further investigation. This collective behavior
may be due to the difference between the interaction of
longitudinal modes of the same polarization and the in-
teraction of two modes of different polarizations. A pos-
sible relevant difference is the difference of cross-
saturation parameters. Indeed, the cross saturation be-
tween two longitudinal modes of the same polarization
arises from spatial (and spectral) hole burning, whereas
the cross saturation between two modes of different po-
larizations involves, in addition, polarization hole burn-
ing. Higher-order nonlinear interactions may also be in-
volved in the collective behavior. Further experiments
and models are needed in order to show up the physical
origin of this "clustering" behavior. In particular,
wavelength-resolved experiments are needed to know if
all the modes of each cluster are actually locked together,
or if some internal dynamics exists but is masked when
the total intensity of each polarization is observed.

IX. CONCLUSION

The OFL under pump modulation displays an interest-
ing variety of dynamical behavior. However the only ob-

FREQUENCY (kHz)
FIG. 10. Calculated bifurcation diagrams corresponding to

the experimental results of Fig. 6 with 1/(7 7f ) =8.75 X 10 s
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servation of the total intensity emitted by the laser re-
stricted the available insight. For instance, the antiphase
motion of orthogonal polarization components was
masked and the amplitude of some other effects was
severely limited. Resolving the polarization state of the
emitted radiation enlarged the point of view, it also al-
lowed the easy simultaneous observation of two dynami-
cal variables. Access to two dynamical variables also
makes easier the reconstruction of the attractor and pro-
vides more significant Poincare sections and return maps.

The measurement of the damping constants of the re-
laxation oscillations indicates that contrary to what
occurs in most other lasers studied up to now, spontane-
ous emission significantly contributes to the OFL dynam-
ics. A model for this kind of laser taking both spontane-
ous emission and polarization effects into account has
been introduced. It reproduces well most of the experi-
mental findings with semiempirical parameters deduced
from independent experiments. In particular the agree-
ment between the reconstructed attractors and their nu-
merical counterparts is excellent. It should be stressed
that this was obtained in spite of the drastic approxima-
tions which have been introduced in this model. For in-
stance, the restriction of a multimode laser to a two-mode
system leads to some discrepancies when a quantitative
prediction is aimed, but this can be corrected by includ-
ing suitably corrected parameters. The quality of the
agreement on, e.g., the details of the structure of the
chaotic attractors indicates that the proposed model
catches the key ingredients of the OFL dynamics.
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APPENDIX: INVESTIGATION OF THE MODEL
WITHOUT SPONTANEOUS EMISSION

The steady-state values m ' and d ' of m; and d, cor-

responding to the case without spontaneous emission (i.e.,

a =0) are derived from the resolution of (1) with m, =0,
d, =0. Three kinds of solutions are obtained.

(1) The trivial solution m;~ '=0, d, ' '= d; .

(2) The single-mode solutions

m( ) = [P(d +d )
—(1+P)1

1 2P
1 2

+([P(d', +d', )
—(1—P)]'

+4P( d, +Pd, —1))
' '],

and the solution obtained by a permutation of the indices
1 and 2.

The solution corresponding to m2 '=0 is acceptable
only when m', ' &0, this occurs when the laser is above
the first threshold: d

&
) 1/1+ ap. The solution m p' =0

is acceptable when d z ) 1/1+ap.
The variation of m

&
with the pump parameter is not

rigorously linear, but with the typical experimental
values of the parameters, between the two thresholds, the
laser intensity in mode 1 may be approximated as

(3) The two-mode solution

m') = [(1+P)(d, —Pd~ }—(1 —P)],1

m2 = [(1+/3)(d2 —pd, )
—(1 —p)],1 (A3)

A) 2= —y, A)= —[1—(do)+pd 0)],

~,= —[1—(d', +Pd', }] .
(A4)

The trivial solution is therefore stable only if the laser is
below the first threshold (d

&
( 1/1+ aP).

(2) Single-mode solution: In the case a(1, the solu-
tion corresponding to m'& ' =0 and m 2

' )0 is always un-
stable. For the other solution (m2 ' =0;m, &0), the first
eigenvalue is

d(0) 1

1+P

This solution is acceptable only if m 2
' )0. This occurs

only when a )p and the laser is above the second thresh-
old d, ) ( 1 —p) /( 1+p)(a —p).

The linear stability analysis for each steady state leads
to the study of the eigenvalues of a 4X4 matrix. The sta-
bility of the solutions is determined using the Routh-
Hurwitz criterion applied to the characteristic equation
of each matrix. The determination of the eigenvalues in
the case of the monomode and two-mode solutions leads
to the resolution of third- and fourth-order equations re-
spectively. Fortunately in our OFL y amounts to be
about 10 . This allows expansion of these roots in a
power series of y' which will be limited to the second
order. This approximation is justified when the laser is
well above threshold. The results of the linear stability
analysis are as follows.

(1) Trivial solution: The eigenvalues are

mq =0,(0)—
X, =d',"+Pd~,"—1 . (A5)

d',d(0)—
1+m'," '

d',d(o)—
1+Pm',"

It is negative only if

do (1—P)
(1+P)(a—/3)

i.e., when the laser is below the second threshold. The
other eigenvalues are solutions of
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d', d', d', d', d(0) d (0)

~'+y ' + ' ~2+ y' ' ' +ym"'(d"'+P'd'") X+y'm(" ' d'+P' ' d' =0.
d(0) d(0) d(0)d(0) d(0) d(0)

1 2 1 2 2 2

(A6)

All these solutions have a negative real part only when the laser is above the first threshold. They can be expanded in

power series of y'

d(0) d (0)
1 p 2 pd2+ d1

(A7)

and

A.3+= I +i e
with

(AS)

r= — — +o[(y ) ].d', +P'd',
1/2 4

d(0) +p2d(0)

and co=&A —1+0[(y' ) ]. This linear dependence of 03 coincides with the predictions of the model of the two-level
monomode class-B laser [13]and is observed experimentally. However, the value of I derived here does not agree with
the experimental observations because between the two thresholds, it is strongly modified by spontaneous emission.

(2) Two-mode solution: The eigenvalues of the system are the solutions of

g4+y( 1+p)(do+do )g3+ y2dod0( 1+p2)+ y
( 1+p2)(m (0) + m

(0)
) g2

1 2 1 2 1+P 1 2

+y [m() )(d +P d, )+m(2 '(d, +P dz)]A+y m( 'm' '(1 —P )=0 . (A9)

All the solutions have a negative real part only when the laser is above the second threshold. These eigenvalues can be
written

(A10)

with

(1+P)(d) —d2)I, 2= —
—,'(1+P) d, +d2+ y+o(yl/2)4]

16P'm', "m',"
m) —m2 )+

(1+P)'

and

(p) (p) 1/2 1/2

ro) 2= — (m, +m2 )+ (m, m2 ) +—1 +P (0) (0) + (0) (0) 2

2 1+ (1+P)
&y+o [(y'")']

I, 2 depends on spontaneous emission at the first order in

a, therefore the expressions of I 1 2 correspond only to the
asymptotic behavior of the damping coefficients in the
limit A )&1. However because spontaneous emission
does not modify co, 2 at the first order, the values of the
frequencies determined here agree well with the experi-
rnental findings. In the case of a small asymmetry, narne-

ly when a=0.85 —1 as it is the case in our experiments
and when the laser is sufficiently above the second thresh-
old, the high and low frequencies co, and co& depend al-
most linearly on the pump parameter and follow the scal-
ing laws derived in Refs. [2,25]. They correspond to the
experimentally measured quantities co, and coL„.
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