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Spatiotemporal dynamics of a unidirectional ring oscillator wi&h pho&orefracpive gain
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In a cavity with photorefractive gain the resonator field is fed by a pump beam through two-wave
mixing inside a photorefractive crystal. In this paper we develop a simplified model for such a system
which takes into account the transverse dependence of the pump and the resonator fields. We then
study the onset of spatiotemporal structures both analytically and numerically.

PACS number(s): 42.65.—k

I. INTRODUCTION

In this paper we shall analyze an optical system like
the one shown in Fig. I: a pump beam Ep feeds energy
to the resonator field ER through two-wave mixing in a
crystal of photorefractive material. Many experiments
[I—5] have studied the dynamics of the resonator field
in the transverse plane, i.e., in the plane orthogonal to
the propagation direction. This system has a very rich
spatiotemporal dynamics: the field can either reach a sta-
tionary state with varying degrees of spatial complexity
or it can evolve in a periodic or even chaotic way [4, 5]. A
model that takes into account only the longitudinal de-
pendence of the field has been studied in Refs. [6, 7]. In
this paper we obtain a set of equations that include the
transverse coordinates' dependence of the electric field
under suitable simplifying hypothesis: we shall assume
that the slice of photorefractive material is very thin, so
that the field structure in the transverse plane is mainly
determined by diffraction in the cavity and by the pump
width. The final equations are very similar to those of
a homogeneously broadened unidirectional ring laser [8];
however in constrast to a typical laser model, one of the
variables has a very slow dynamics, so that the model
can be conveniently reduced.

In Sec. II we obtain a set of equations for the change
of index of refraction in the photorefractive crystal; in
Sec. III we apply the mean-field limit [8] to the resonator
field; the two sets of equations are put together in Sec. IV.
In Sec. V we discuss the linear stability analysis of the
simplest stationary solutions; Sec. VI deals with numer-
ical results. The conclusions are presented in Sec. VII.

the dynamics in the transverse plane is thus diffraction
during propagation through the cavity. The advantage
of this approach is that the equation for the field inside
the medium can be simplified greatly by using the hy-
pothesis that the gain and the length of the material are
small; the equation outside the photorefractive medium
itself is just a free-space propagation equation and can
be formally integrated in the direction of the cavity axis.
The final result is an equation which does not contain
any longitudinal dependence.

The pump and resonator fields are represented by two
plane waves with slowly varying amplitudes. The pump
field amplitude Fp is spatially varying but constant in
time:

EI (x, t) = Fp(x) e' ~'" ~~'~ + c.c.,

where Kp and vp are, respectively, the pump wave vec-
tor and frequency. The resonator field amplitude FR is
time dependent:

E~(x, t) = Fp(x, t)e'( "'" "'1 + c.c.

Here K~ and ~~ are, respectively, the wave vector of a
reference resonator mode and the real frequency of oscil-
lation of the resonator field (an unknown quantity at this
stage). We shall always suppose that the resonator field
is much less intense than the pump field ~Fp~ && ~FR~
The intensity of the total optical field in the photorefrac-
tive material

Z(x, t) = Ep(x, t) + E/(x, t)

can then be written as

II. EQUATIONS FOR THE PHOTOREFRACTIVE
CRYSTAL

The aim of these first three sections is to obtain a very
simple model for the dynamics of the resonator field in
the transverse plane. To this end we shall make use of the
mean-field-limit theory, developed in Refs. [8, 9]; we re-
fer to those articles for a comprehensive description of it.
Its main tenet is that the photorefractive medium is very
short compared to the cavity length, so that the gain per
single pass is very small. The dominant force that drives

I(x, t)—:i8(x, t)[ = Ip(x)[1+ M(x, t)].

M(x, t) = P P*&i(Kpg.x—bpgt)R~

IFi I'+ [FRI'
+ c.c.,

where

Kpg = Kp —Kg) bpg = 4)p —4)g. (3)

Io(x):—~Fp~ + ~FR~ ~Fp(x)
~

can be considered ap-
proximately constant in time. M(x, t) is the modulation
due to the interference between the two beams:
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N+
( ) I(x, t)+0 (Ng —N~) —zoR. IV~,

(4)

~ne BN~ kg Tlj z „peneqN+

pV n, (V—g —E~), (5)

7' (p = -(N~+ —n, ——N~).
E'

(6)

Equation (4) is a rate equation, Eq. (5) is the continuity
equation, and Eq. (6) is Poisson's law for the internal
electric field. N~ is the total donor density, N&+ is the
density of the excited donors, while n, is that of the elec-
trons. N~ is the density of acceptor atoms, which are
supposed to be fully occupied. g is the internal elec-
tric potential generated by the electrons and the excited
donor atoms. eD is the absorption cross section of the
donor atoms, P is the thermal carrier generating rate, p~
is the recombination coeKcient of a free electron at an

N& site, and I(x, t) is the total light intensity illuminat-
ing the slice. p, is the electrons mobility, e is the absolute
value of their charge, k~ is the Boltzmann constant, T
is the absolute temperature, and e is the dielectric con-
stant of the material. Finally, E~ is an externally applied
electric field.

The main steps that are needed to simplify these equa-
tions are as follows. (i) Neglect the thermal carrier gen-
erating rate )9. (ii) Suppose that the donors are not
depleted, n, (& ND N~ &( ND, a condition which

Note that K~R is zero only if the two beams are parallel
and have exactly the same wavelength. In this case, there
is no interaction between the pump and resonator beams;
actually there is no resonator field. In more "normal"
situations, when the pump beam makes an angle with
the cavity axis, K~~ is of the same order of magnitude
of the light wave vector. b~~ instead is usually much
smaller than the optical frequencies: we will see later
(Sec. V) that the frequency of the resonator field is pulled
very strongly toward the pump frequency so that bi R is
a detuning of the order of a kilohertz.

We use a band transport model for the photorefrac-
tive material [10—13]. The valence band of the material
is fully occupied, while the conduction band is empty. In
the band gap there is a level of donor atoms and, slighty
lower, a level of acceptor atoms. In the dark the accep-
tor atoms are fully ionized by the donor atoms, which
usually are much more numerous. Suppose that we il-
luminate in a nonuniform way the crystal: in the bright
regions the electrons are excited from the donor level to
the conduction band where they can difFuse. Eventually
they recombine with excited donors in the dark regions
of the crystal. In this way the illuminated parts acquire
a positive charge, while the dark areas are negatively
charged. An electric field forms inside the material and
changes its refractive index of the material through the
electro-optic effect.

The equations that describe such a model are [12]

is satisfied by most photorefractive materials away from
saturation. (iii) Write the light intensity as in Eq. (2):
I(x, t) = Io(x)[1+M(x, t)], where M is a function al-

ways much smaller than unity. (iv) Use as variables nD
and n„the fluctuations of the charge densities around
their equilibrium values, Np+ and np, for a plane wave of
intensity Ipw = max[ID(x)]:

N~ —Np+
nQ Np

——np + NA Ng)
nQ

ne —np sN~
nQ PW)

np N
ne—

where s = o~/hv. Since ~M~ (( 1 we can expect these
variables to be small quantities so that the equations for
the photorefractive material can be linearized.

After having applied all these points to the previous
equations, we obtain a simpler model for the photore-
fractive material:

o)n~ 1= —[M(x, t) —n, ],Bt 7F

Bn,
Bt

henri 1 f zli)V ne+nD —ne
Bt ~R (

+ «, E&
eno ) (7)

enp
(n~ —n, ),

where l~ = gek~T/(noe~) 10 m is the free electron-
diffusion length, 7.F = (p~N~) 10 —10 s is their
lifetime, and ~R = e/(pen()) = 10 —10 s is the dielec-
tric relaxation time. Note that the dielectric relaxation
time of a photorefractive crystal depends on the light in-

tensity (through no), so that different regions of the crys-
tal have different relaxation rates. As this feature would
make the problem intractable, we have supposed that the
pump beam is much more intense than the resonator field

and that it is roughly constant in the region where the
two wave mixing interaction takes place. In other words,
we have considered Io - Ipw and have simplifyed the
equations accordingly. It is important to notice that the
time scales of the physical processes considered here are
enormously different: the excitation of the electrons in
the conduction band and their recombination with a free
trap is a very fast process, its time scale being ~F. The
diffusion of the electrons is, instead, a very slow process:
photorefractive materials are insulators in the dark. We
will take advantage of this feature later on, in the final

step of building a model for the resonator field dynamics.
The driving force in Eqs. (7) is the modulation of the

light intensity M(x, t); this term has a spatial wave vec-
tor K~~ and a temporal oscillation frequency b~R. These
two quantities can be factored out from the definitions of
the photorefractive variables:

nz)(x, t) = vg)(x t)e'& "" "' + c.c.
n, (x, t) = v, (x, t)e'~ "" s "'& + c.c.,

&p(x, t) = y(x, t)e'~ "" s "& + cc.
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Note that while the spatial oscillations are "fast" (KPR
is of the same order of the pump and resonator field wave
vectors) this is not true for the temporal oscillations [cf.
the paragraph below Eqs. (3)]. The introduction of vD,
v„and &p allows us to simplify the problem even fur-
ther. The new variables change in the same way as the
resonator field amplitude I"R, i.e. , on the length scale of
the beam waist (typically 1 mm), while the Laplacian in
Eqs. (7) is active on length scales of the order of 1 pm.
Therefore the efFect of the Laplacian on the new variables
is negligible and we can write Eqs. (7) as

BVD

Bt 8 PR D'I

Bvg

Bt
BvD 1 t

lDK—PRV~ + vD —v,Bt TDR

. c+i KPR E~ve
l

ena

+i6pR(ve VD)) (8)

Bvg BVD

Bt Bt
1 2 2

( lDKPRvq +—vD —vq)
DR

+r6PR(v~ —vD).

The internal electric field EI(x, t) = —VP can be consid-
ered parallel to KPR. In fact, under the slowly-varying-
amplitude approximation, the curl equation for this field
becomes

VxEi=O~KPRxEI 0

We can write its component in the KPR direction,
EI(x, t), as the product of an amplitude SI(x, t) and a
plane wave:

EI(x t) = Zl(x, t)e'! "'" "'& + cc.
The value of Zi(x, t) can be obtained from the last of
Eqs. (8):

ena vD —vg

KgR

EI(x, t) changes the index of refraction of the material
via the electro-optic efFect [11]:

P VD &e
2 )

KZR

where KPR is the modulus of KPR. Finally we consider
here the case of no external field applied to the crystal
so that the second of Eqs. (8) can be replaced by

the direction of KPR and nb is the background refractive
index. It is through this change of the refractive index
that the resonator field is coupled to the pump beam.

III. THE FIELD EQUATION

=- &p (r)&'*'(V)
- 1/2

po

(p+ rn)!

xe "'«'B"&(p)

= 2(2r2/rli) L„(2rs/rli)

where gq is the square of the minimum beam waist and
L~(x) is the associated Laguerre polynomial of order p
and index rn:

—1" p+mLm( ) ( 1)p) ( 1) ~p™
~

n,

n! ip —n)

We now turn our attention to the resonator field. We
assume that the speed of light inside the photorefractive
medium is c. In the Appendix we prove that this approx-
imation is correct up to terms of the order of the ratio
between the length of the photorefractive medium and
the length of the cavity. As we suppose throughout this
article that this ratio is very small, these corrections are
negligible.

We are going to discuss the field dynamics in the frame-
work of the empty-cavity modes, the Gauss-Laguerre
modes. A complete and detailed treatment of these func-
tions is contained in Ref. [8]. Here we just sketch the
characteristics which are more relevant to our model.

For each longitudinal mode of the cavity, identified
by an integer n, there is a set of transverse modes, the
Gauss-Laguerre modes. These are stationary solutions
of Maxwell equation in the cavity in the absence of the
photorefractive medium:

B R i
Bz 2KR

where KR is the modulus of the resonator field wave vec-
tor KR and Vz& is the Laplacian along the transverse
coordinates. The Gauss-Laguerre modes are functions of
the transverse coordinates r and y and of the longitudi-
nal coordinate z. They are identified by three integers:
p & 0, the radial index (i.e., the number of zeros along the
radial direction); rn & 0, the angular index (the number
of zeros in the angular direction); and i, an index that
takes only two values 0 and 1. Their shape in the plane
z = 0 (see Fig. 1) is

Ai p ~,I (r, (p, z = 0)

1 3b,n(x, t) = nor, frEI(x, t)——
2

while

ifm =0
g~'&(rp) = ] ~ sin(m&p) if m & Oandi = 0

~ cos(m&p) if m & 0 andi = 1.

1
nbr, fr El(x)t)e' —"—'" "'~ + cc.

where r,g is the opto-electric coeKcient of the material in
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FIG. 1. Ring resonator structure. A is the total cavity
length, E~ is the resonator 6eld, and EJ is the pump.

Each mode has frequency of oscillation

27CC Cn+ —(2p+ rn+ 1)a,

where a is a parameter that depends on the cavity ge-
ometry. In the case of the cavity shown in Fig. 1, for
example [8],

, &A L,~-, (a:—2 tan
[ /+tan

Rr12 ) 0 Rrll )

where rl2 is the beam waist at z = A/2 (the plane mir-
ror in Fig. 1). Two typical mode spectra are shown in

Fig. 2. In the top part, (a), the spacing between longi-
tudinal modes is much bigger than the spacing between
transverse modes (nearly plane mirror cavity): each set of
transverse modes is near the "parent" longitudinal mode.
In the bottom part, (b), the transverse mode spacing

is nearly half of the longitudinal mode spacing (nearly
confocal cavity), and the transverse modes close to each
longitudinal mode have different longitudinal indices.

The total optical field in the photorefractive medium
is the field 8 defined in Eq. (1); its evolution is controlled
by MMcwell's equation:

1 828 2ni, hn(x, t) 82F.

c2 Bt2 c2 Bt2

As stated at the beginning of Sec. II the total optical
field is the sum of the pump field,

Ep(x, t) = Fp(x)e' '" ') + c.c.,

and the resonator field,

ER(x, t) = FR(x, t)e'( "'" "' + c.c.

By applying the slowly varying amplitude approxima-
tion to Eq. (10) and by decomposing 8 in Fp and FR we
obtain an equation for the resonator field amplitude:

oj 2icuc & 22iKR FR + — FR+ V—'~FR
Bz c Bt

= + 2 r &ZI (x, t)F&(x) + 2 FR, (ll)
c c

where the z direction coincides with the cavity axis and
V~z is the Laplacian along the transverse coordinates.
The frequency u~ = u~ 0 p that appears in this equation
is the frequency of the longitudinal mode N that lies
nearest to the pump frequency. b~R is the frequency de-

tuning between this cavity frequency and the unspecified
reference frequency uR.

6gR = (dg —(JR.

Resonant
modes

!

Resonant
modes

(a)

(b)

!

I

!

I

I
I

I II

I

I

I

Finally, KR, the modulus of the resonator field wave
vector KR, is defined by KR —= uc/c. At this stage, we

have recast the problem in a form very similar to the laser
case: we have a cavity frequency ug, an atomic frequency
(the pump frequency) up, and the resonator (laser) field
oscillates at an unspecified reference frequency ~R.

The resonator field can be decomposed along the
Gauss-Laguerre basis,

FR(r, p, z, t) = ) f(„,)(z, t)A(„,I(r, p, z), (12)
(p, m, ij

and its equation [Eq. (11)] transformed in a set of partial
differential equations for the mode amplitudes:

0 — 1 0

FIG. 2. Mode spectrum of a laser cavity. In (a) (nearly
plane mirror cavity) the transverse-mode spacing is much
smaller than the free spectral range and the transverse modes
(short lines) are near their corresponding longitudinal mode

(long lines). In (b) (nearly confocal cavity) the transverse
modes belong to different longitudinal modes. The shaded
areas indicate the modes that are relevant to the dynamics.

bCR f(z,m, i) —i n—-

where

dr dy rA&„,.&(r, p, z)

xfl(r, p, z, t)FJ (r, p, z)

(13)
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The advantage of decomposing the field along the empty-
cavity modes is that the behavior of each mode ampli-
tude during the propagation outside the photorefractive
medium is very simple. Each mode is just phaseshifted
with respect to the reference frequency uR and is atten-
uated due to losses at the mirrors. The amplitude of the

(p, m, i) mode at the right hand side of the photorefrac-
tive medium is transformed by the propagation in the
cavity so that its value at the left of the photorefractive
crystal is

1L t 5 Re i' -i6cR—(A L~)-/c
f&p,m,i)( s—» ) =

/'1 A —Lz )x f&p, l ~
Lg,—t—

2 c )
(i5)

where R is the total mirror refiectivity and b„m —= (2p+
rn)a. We now introduce these boundary conditions into
the field equation. The standard procedure for doing this
is to define a new time variable and new amplitudes:

t'=t+
/

+ —
)
~ —=A —LA. /'z li 8 8

Bz Bz' L~c Bt"

f&p, )(z, t )

A —L~ . ( z' l1= exp ln R —ib~R —ibpm

xf&„,;)(z', t').

The purpose of these definitions is to move the field dy-
namics outside the medium into the medium itself: sup-
pose that the field f&pm, l does not change inside the
medium. Then the field f&p;l changes across the slice

exactly as the field f&p m;l changes during propagation in
the cavity. This is the main reason why we must suppose
that the dynamics of the original field f&p;& inside the
medium is very simple; more general cases would produce
unworkable equations.

Since the dynamics outside the medium is taken into
account in the definition of f&p m;l, the boundary condi-
tion on these variables are extremely simple:

f&p,m, il ( sLg) t—) = f&p, m i) (sLg) t').

Their equation, however, is far from simple:

8- A 8- . A . 1
&f& mp, il + L &f&p,m, i) inR &6CR &bpm L f&p,m, i)

A-L~ . / z' l1= —icrexp»R —tbcR —ibp
~ L + —

~

dr dpr81 (r, &p, z', t)FI (r, p, z')A&„,l(r, p, z'). (19)c " i,L~ 2)

We use the boundary condition, Eq. (18), to eliminate the z derivative by expanding the amplitudes f&p, l(z', t') in
longitudinal modes:

f (zI tl) ) f (t/)ei27I'(1L —N)(z'/LA+1/2)i

Note that these modes automatically satisfy the boundary conditions (18). We have to write the factor (n N) in the-
exponential because we have already taken into account the longitudinal dependence of the reference mode (N, 0, 0)
while writing Eq. (11). Equation (19) now becomes

A 8- . ()A . 1
, f&„,p;l — ln R —ib~" ——ibp f&„„~c t' ' ' ' c L~

L A/2
= —lA

—LA/2
dz' exp ln R —tbg —ibp

~

+ —
~

. („)A—L~ . /z' 1)

x drdyrE'I* r, p, z', t Fp r, y, z' &„,.
~

r, y, z' (20)

where bR = 4J pp
—

E'ER is the frequency detuning between(n) =-

the longitunal mode n and the reference frequency uR.
We now apply the mean-field limit to this equation.

We suppose that the losses in the cavity are small so
that only the modes that are "near" the pump frequency
are excited (shaded areas in Fig. 2). As the output from
the resonator is a finite quantity, we must suppose that

I

also the gain per single pass is a very small quantity,
of the order of the losses. More formally, we take the
transmittivity of the mirrors TM = 1 —R as smallness
parameter. We require the gain [the right-hand side of
Eq. (20)] to be of the same order of magnitude as TM
The request, stated above, that only the modes whose
frequency is near the pump frequency are active, means,
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in a more formal way, that the phase shift during propa-
gation caused by the difI'erence between the active modes
frequencies and uR is a quantity of order TM. This can
be taken as a definition for the term "resonant modes"
used in Fig. 2: the resonator field is the sum of the trans-
verse modes whose frequency difference with respect to
the pump frequency (note that up ~R) is of the order
of the cavity line width:

~ (n)„,f(n, p, m, i} & [1+~+R + ia(2p+ r)i)]f(n, p, m, i}

+i 2C dr dp rf1 (r, y, t)

x Fp (r, p)A(p, ) (r, p) )
(21)

where

cTM (n, ) ~R
(n)

A
' cTM'

a cl'L~

TM TM

In the case where all the transverse modes belong to
the same longitudinal mode (a « m.) we can write the
equation for the electric field as a single partial difFeren-

tial equation rather than as a set of ordinary differential
equations for the mode amplitudes. In this case, in fact,
we can write the field as the sum over all the transverse
modes of a chosen longitudinal mode N [8]:

FR(r, t, z', t') = ) f(„m,)( ') (pm, )(r, (P)

(p,m, i)

TM « 1 (smallness parameter),
A

-~RI —, = o(TM) «1
(detuning « free spectral range),

n~fl ]Lg O(TM) && 1 (mean-field limit).

We now expand Eq. (20) to first order in TM. A con-
sequence of all these hypotheses is that we can approx-
imate the exponential with 1. Always in the spirit of
the mean field limit, we require that the pump is not de-
pleted in the medium (the gain per single pass is small),
so that neither Fp nor Zi depends on z'. Finally, we

suppose that the length of the active medium is much
larger than the Rayleigh range of the cavity so that the
Gauss-Laguerre modes do not change appreciably in it:
A(p m, }(r, P, z') AI p m, }(r, &P, 0). The final result is a
set of ordinary differential equations for the modal am-
plitudes:

to sum the entire set of Eq. (21) and obtain

BFR . . )' V ~ r')
rc— 1+ ibcR —ia

~
r}i +1 ——

~
FRBt'

+$2GF~ (r, y)EI (r, p, t') ),

where AcR = b,R
——SABRA/(cTM).

IV. THE MODEL'S EQUATION

We have now built the two main blocks of our model:
the equation for the photorefractive material, Eqs. (8),
and those for the resonator field, Eqs. (21). What we still
have to do is to put together the two sets of equations,
further simplify the model by making use of the fact that
one time scale ~DR is much longer than the other two 7F
and 1/r, and finally discuss the hypotheses which are at
the base of this model.

As stated in Sec. III we suppose that the pump and
the resonator field do not change appreciably in the ma-
terial, so that we can neglect any z dependence in the
resonator and in the material equations [Eqs. (21) and

(8), respectively]. Finally, the difference between t and
t' is of the order of the slice thickness and, therefore, is
negligible:

BVD 1 FpFR
Bt /F /'+ /F /'

BvD c)vg 1
(vD —v —CDv ) + ib'pR(vD —v, ),Bt Bt

(22)

—f(n pm, }= —r, [1+iAR + ia(2P+m)]f(„„m,}
~ (n)

—CpR dr dF rFp(r, (p)(vD —v,*)

xA(, )(r, p)),

FR(r, (), t) = ) f(n, p, m, i}(t)A(p,m, i}(r,P),
fn, p, m, )

where

KaT&
CD = lDKI R

——
2 K~R

noe

is a dimensionless parameter which measures the eK-
ciency of dift'usion in the photorefractive material, while

and use the property of the Gauss-Laguerre modes eno
CPR =—2C

eKgR
7lb Mg eAo4 2

2 ATeff
2KRTMv eK~R

—V'~+1 ——
~ A(„;)= —(2p+ m)A(p, )(

r )
gl

is a dimensionless parameter which measures the cou-
pling strength between the pump and resonator fields.
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We are now ready for the final step: the time scale of
the second of Eqs. (22) is much longer than those of the
first and third equations. We can adiabatically eliminate
these latter equations and reduce the model even further.
Keeping in mind that 6PRTP (( 1 [we will show later that
6PRTDR O(1), Eq. (25)], we obtain from the first of
Eqs. (22)

I'I I'R

~FPI' + IFR~'

From the third equation we obtain

+PR

1+ ihR(") + ia(2p+ rn)

X7 (p,m, i) [FP(r, V') (~D ~e )] ~

where Pfp 'm) is the projection operator onto the

(p, rn, i) Gauss-Laguerre mode. This last equation can
be put into the second of Eqs. (22):

=f(n, p, m, i)(t) = (1 + r&PR)f(n, p, m i)(tg

1+ id R(") + ia(2p+ rn)

IFP I'FR" '"""' itFPI'+ tFRI')

where t = t/TDR, APR =— 6PRTDR, and B—:CDCPR
The coefficient B measures the efficiency of the energy
transfer between pump and resonator field and plays in
this model the same role as the pump intensity in a homo-
geneously broadened laser equation [8]. We will see later
that B is the bifurcation parameter for the resonator field
threshold. Finally, we can scale the pump intensity (but
not its shape) from this equation. We can define

Ip = max[FP(r, &p)], FP(r, y) = QIPFrp(r, &p),

FR(T, P, t) = QIPFR(T, tP, t),

f(„p,) = QIpf(

and write

V. STATIONARY STATES AND THEIR
STABILITY

Finding the stationary states of Eq. (23) is not a trivial
task. It can be made somewhat simpler if we suppose
that the equilibrium configuration of the field is a pure
Gaussian mode,

FR = fin 0 0)Ap p(p, p) = fI~ p 0} e P

obtained by making many assumption on the behavior
of the photorefractive material and of the field. First of
all, we have linearized the equations for the photorefrac-
tive material. This hypothesis is not very stringent: in
Ref. [12] it is shown that the linear approximation is good
even for modulation of the input intensity of the order
of 50Fo. The most stringent assumption that we had to
make is that the slice of photorefractive material is very
thin: as a consequence neither the pump beam nor the
resonator field changes significantly in it and absorption
in the material can be neglected. This last point is very
important. The mean-field-limit approximation can be
made only under the hypothesis that losses in the cavity
are small and that the field does not change significantly
in the photorefractive medium.

There are other two points that should be clarified: the
first is the use of the Gauss-Laguerre modes to decom-
pose the resonator field. It has been shown numerically
in Ref. [14] that the Gauss-Laguerre modes are a good
basis onto which to decompose the laser field in a res-
onator with spherical mirrors, provided that the pump
is not narrower than the beam waist. The second one
is the adiabatic elimination of the two fast equations.
In Ref. [15] it has been shown that the adiabatic elimi-
nation of fast variables in models which involve spatial
coordinates can give rise to spurious results. This is due
to the fact that different length scales may have difFer-

ent time scales. This is not the case in our model: long
wavelengths evolve with a time scale of 1/r, i.e. , they
are "fast" variables and can be eliminated. Short wave-

lengths evolve on a scale that is even faster and so pose
no problem.

dtf(„pm;)(t) = — (1+ ib,PR)f(„p;)(tg

1+ iAR + ia(2p+ m)

( ~Fr ~~FR'"'"" i[FbI'+ IF I'r
(23)

where p2 = r2/rii is the radial variable r scaled to the
beam waist. This is, of course, an approximation. The
Gaussian mode feeds energy through the projection op-
erator to all the modes (p, 0). However, if the intermode
spacing is not too small and if we are close to threshold,
the approximation holds quite well.

Putting this function into Eq. (23) we obtain an im-
plicit relation between the stationary mode intensity f(p)
and the model's parameters

These equations, one for each active Gauss-Laguerre
mode, are the final result of this section. They are rela-
tively simple: the integral can be evaluated numerically
in a very efBcient manner and there are plenty of reliable
algorithms for integrating large systems of ordinary dif-
ferential equations. On the other hand, they have been

1+ (2 ("))
B 0

+PR = (n)

1+ —
~f(0)~

(24)

(25)
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where x = 2p . We have supposed that the pump has a
Gaussian shape, Ty ——e ~ ~~, with spot size m. Note
that Eq. (25) is analogous to the typical mode-pulling
equation of laser physics. The equation for the amplitude
can be solved analytically if we assume that the intensity
of the Gaussian mode is very small,

~ f(p) ~

(( x/2. This
limit is coherent with the hypothesis that the stationary
solution is a pure Gaussian mode; as stated at the be-
ginning of this section, if the intensity of the resonator
field is very high it is unreasonable to suppose that only
the Gaussian mode is excited. If we Taylor expand the
denominator we can evaluate the integral and obtain

As expected, the threshold value of B is higher the
larger the detuning: the Gaussian mode is active only if
B ) [1 + (AR(") ) ]. Furthermore, its intensity depends on
the overlap between the pump and the Gaussian mode:
it is higher for broader pumps.

We now investigate the stability of this solution. We
can write the resonator field as the sum of this stationary
solution plus a small perturbation:

I"R = Ep + ) bf(„,)A(„
$y, m, i)

~ (
2 ( tv ( B (26)

where Fp = f(p)A(p p). We have dropped the index of the
longitudinal mode for ease of notation. Equation (23),
linearized around the stationary solution Pp, becomes

B6f(„—,) = — (1 + i ZPR)bf(r, ,) —
( )dt 1 + i[BR + a(2p + m)]

We restrict our attention to the first three modes: the
Gaussian (0,0) and the two (doughnut) modes (0, 1,0)
and (0, 1, 1). For symmetry reasons the Gaussian is not
coupled to the two doughnut modes and its equation is
irrelevant to the study of the stability of the stationary
solution. The other four equations (for each mode there
is an equation for the amplitude and its complex conju-
gate) split in two identical blocks, as each mode is cou-
pled only to its complex conjugate. The equation for the
perturbation along the (0, 1,0) mode, 6f(o, q, o) = bf'q is

where

2 2C2 = —If(o) I

xe—z(2—1/u)2)

dx

i
1 + -[f i"-*"-" )

i

xe
dx 2)

(

1 + —if /'e-*('-'~~ )
/

d
bfi = — (—1 + i&PR)bfi

d4

B
( ) (Cibfi —C26f; )

1 + i(di(R ) + a)

Note that we have considered f(p) to be real. However,
this assumption is not strictly needed, it just simpli6es
the notation.

The perturbation can be written as

6f* = — (1——i APR)bf;1

(27)
~ bf, (t) ')

B
(„) (Cybfi —C26fg) Putting this expression into Eqs. (27) we obtain a system

of algebraic equations with eigenvalues

D] 1 + D2[1 + (&R + a) ]
—[&QR + D&(&R + a)]
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asymptotic state. Therefore we have written a computer
program that integrates Eqs. (23) and we have run many
simulations with different parameter values and initial
conditions.

In all our simulations we have supposed that the pump
has a Gaussian shape, F~(p) = exp( p—/i' ), and that
the cavity has nearly plane mirrors so that the transverse
modes all belong to a single longitudinal mode [Fig.

'

2(a)].
In order to write a more efficient numerical code we have
preferred to use complex Gauss-Laguerre modes. The
difference with those defined in Sec. III is that m can
be positive or negative so that there is no need for the
fourth index i. The B~(p) functions are defined as

FIG. 3. Stability region for the Gaussian mode: the gaus-
sian solution is stable in the region marked S and unstable in
that marked U. For parameter values in the region below the
lower parabola the Gaussian solution is below threshold. The
dots show the boundary of instability obtained from numer-

ical simulations. a has value 0.2 (top) or 0.8 (bottom). The

pump width is m = 5.0 and D~~ ———Dz in both cases.(n) ~

where

The stationary Gaussian solution is stable if the eigenval-
ues of this equations have negative real parts. For small
field intensities, we can use Eq. (26), and obtain

The most striking aspect of this relation is that the sta-
bility is independent of the pump parameter B. This
characteristic continues to be valid also for larger values
of the resonator field intensity (see Fig. 3). In the case of
larger transverse-mode spacing [Fig. 3(a)] the Gaussian
solution is stable over a wide region; if the modes are
closer one to the other [Fig. 3(b)) the region of stability
shrinks.

We have tested these results by integrating Eq. (23) on
the boundary of instability (see Sec. VI for a description
of the numerical method used). The numerical bound-
ary is shifted to the left with respect to the theoretical
one [large circles in Fig. 3(b)]. This effect is probably
due to the fact that the stationary solution is not a pure
Gaussian one. As an example, the intensity of the (1,0j
mode is 5% of the intensity of the Gaussian mode for the
parameter values of the top circle in Fig. 3(b).

VI. NUMERICAL ANALYSIS

The analytical results obtained in the preceding sec-
tion are a map to the model dynamics. Unfortunately it
is very difficult to obtain analytical information on the
existence, stability, and general properties of any other

B ((p) = e'1

/27r

We have integrated 55 modes from q—:(2p+ ~m~) = 0 to
q = 9; modes with the same q have the same frequency of
oscillation, see Eq. (9), and we say that they belong to the
same family. All modes have losses 1 except the modes
with p = 4 (the highest value of the radial index such that
q & 9): in order to simulate the effect of an aperture these
modes have losses 10, i.e. , the linear term in Eq. (23) is
(10+ imp~) instead of the customary (1 + ibpg). We
must stress that this is a very rough approximation of
an aperture (for a more refined method see Ref. [16]).
However, choosing different losses for different modes is
not a relevant feature for these simulations: the families
of modes which are excited are selected by the detuning
and by the strength of the coupling between the pump
and resonator field. We have always checked in our sim-
ulations that no mode with q & 8 is excited. In this way
we are sure that the dynamics observed is not influenced
by the arbitrary truncation of the number of modes. Fi-
nally, the initial amplitudes of the Gauss-Laguerre modes
were always chosen randomly.

The integration routine is split in two parts. The first
step evaluates the projection integral. The choice of com-
plex modes has allowed us to use a fast Fourier transform
routine to integrate over the angular variable. The dif-
ferent Fourier components correspond to difFerent values
of index m. The integration over the radius is evaluated,
instead, with a Gauss algorithm of order 15, a procedure
that gives the exact value of the integral if the integrand
is a polynomial of order less than 30. Once the projec-
tion integral has been evaluated the remaining system
of ordinary differential equations has been integrated via
a variable-step variable-order algorithm. The final pro-
gram is very fast: the integration of 55 Gauss-Laguerre
modes for two hundred units of time takes roughly 10 min
on a Sun SparcStation 1. We have checked the correct-
ness of our simulations by comparing some results with
simulations performed with either different accuracy in
the temporal integration algorithm or different order in
the Gauss integration method.

The control parameters are the transverse mode spac-
ing a, the pump-field detuning L~R, and the energy
transfer coeKcient B. The values of B must be slightly
larger than one for the linearization hypothesis to be cor-
rect; higher values give a resonator field intensity that is
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(a) (c)

(b)
FIG. 6. Chaotic evolution of the resonator field. Gray

scale images of the intensity of the resonator field, white codes
high intensity, black low intensity. The time interval between
successive images is 5. Time increases from left to right. B =
1.8, a = 0.15, tu = 5.0, D~~ ——0.6.

FIG. 4. Transverse-mode images: in these simulations a
is sufficiently large so that the pump is in resonance with

only one family of transverse modes at a time. Gray scale,
images of the intensity of the resonator field; white codes, high
intensity; black, low intensity. B = 1.4, a = 1.0, u = 5.0. (a)
b, pa = 0.0, (b) Ai R = 1.0, (c)—(e) b pR = 2.0.

far too high with respect to the pump beam. The typical
value that we have used is B = 1.1, even though we have
run some simulation with higher values of this parameter
to check if anything peculiar or interesting would happen.
Finally, we have chosen as reference frequency for our
simulation the mode pulled frequency of the resonator

field, i.e. , we have chose u~ such that Ap~ = —6& .(")

The most important feature that we have found is that
the dynamics is very similar to that of an homogeneously
broadened laser [17—19]. We have observed simple pat-
terns, formed by a single Gauss-Laguerre mode; more
complicated stationary patterns, analogous to the phase
singularities crystals of Ref. [17]; and periodic patterns
of rotating vortices, such as those observed in Refs. [18,
19]. There is, however, a difference of great importance:
the time scale. The time scale of the dynamics in the
transverse plane of a laser field is of the order of the light
frequency; the time scale of the resonator field in this
model is the dielectric relaxation time of the crystal rrip.
As photorefractive materials are insulators, r~R is of the
order of the second. In very informal terms we could say
that the crystal acts as a "time expander. " Here lies per-
haps the greatest advantage of the resonator model that
we have described in this paper: it is a very convenient
tool to study simple vortex patterns.

As in the laser case the final state depends on the initial

condition [18, 1'9]: for the same parameter values it is
possible to obtain different final states by just starting
from different initial conditions. Again as in the laser
case, the dynamics is strongly dependent on the number
of active modes: for small values of B and big values of
the transverse mode spacing a, the pump is resonant with
just one family of transverse mode at a time (see Fig. 4).
By changing the value of the detuning we can obtain
a Gaussian [(p, m) = (0, 0)] mode, a vortex of charge
+1 [the (p, m) = (0, +1} modes], the (p, m) = (1,0),
(p, m) = (0, k2) modes, or some combination of these.
The pattern at bottom right [Fig. 4(e)] is analogous to the
phase singularity crystals of Ref. [17]. In this case there
are four vortices, two of charge +1 and two of charge-
1, whose positions correspond to the dark spots of the
intensity image and are fixed in space.

If the transverse mode spacing is decreased, then more
families of modes are resonant with the pump beam and
the pattern becomes more complicated: some of the fi-
nal states of the system are limit cycles. In Fig. 5 we
show the light intensity pattern for one such final state:
the rotating pattern is the superposition of four differ-
ent Gauss-Laguerre modes, oscillating at two different
frequencies. The beat between them causes the rotation.

To conclude this section we include as a "curiosity" the
images of a chaotic pattern, Fig. 6. The value of the res-
onator field in this simulation is greater than the pump
field, a clear indication that the model hypothesis have
failed. In this simulation roughly twenty modes are ac-
tive and the interplay between their different oscillation
frequencies produces a chaotic dynamics. Our feeling is
that even though the model that we have analyzed is not
capable of giving a correct description of the dynamics for
these parameter values, it shows that the chaotic dynam-
ics observed, e.g. , in the experiment of Ref. [4], can be
explained by the interplay of a limited number of modes.

VII. CONCLUSION

FIG. 5. Limit cycle of the resonator field. Gray scale,
images of the intensity of the resonator field; white codes,
high intensity; black, low intensity. The time interval between
two successive images is 20. Time increases form left to right.
I3 = 1.1, a = 0.1, m = 5.0, A~~ = 0.2.

The model described in this article is an attempt to
obtain a simple set of equations for the dynamics of the
resonator field. This aim has been achieved: the final
equations are relatively simple and can be integrated nu-
merically without much effort. The dynamical evolution
that can be observed in the numerical simulations is remi-
niscent of laser dynamics, with its vortex patterns, phase
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singularity crystals, and turbulent states. At variance
with ordinary lasers, the dynamics time scale is very slow:
it is the dielectric relaxation time of the crystal, a quan-
tity than can easily be of the order of 1 s. This makes
detection and measurement of these patterns a relatively
easy task in an experiment [4, 5].

On the other hand, there are many aspects of the
model that we have not considered: the effect of an ap-
plied voltage on the photorefractive crystal, large angles
between pump beam and resonator axis, and the higher-
order gratings inside the crystal itself. We have neglected
all changes in the pump and resonator field inside the
crystal. All these effects may be relevant for a given
experimental configuration and ought to be taken into
account. They could, for example, give rise to a nonaxi-
ally symmetric gain which would favor some field config-
urations while increasing the losses of other modes. The
mean-field approximation is probably not able to describe
these effects, but we feel this is an area worth exploring.
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BFR
ojz

2
(M)+ FR

2K~

in the medium (KR ——id, /v) and the equation

2iKR FR+ — FR+ —7~FR(M) 8 284/C 8
c)z v2 Ot

in the rest of the cavity (remember that KR =—u, /c).
This problem involves very lengthy and tedious algebra:
the final result is that the "new" Gauss-Laguerre modes
are the same as those described in Sec. III, in the limit
LA/A ~ 0 (A is the total cavity length). This can be
most easily seen by the following argument: propagation
in a medium of length LA and refractive index nq g 1
is equivalent to free-space propagation over a distance
L,ir = ni,LA. Thus the "new" Gauss-Laguerre modes are
the empty cavity modes of a system like the one in Fig. 1,
but with an intermirror distance L+ IA(nb —1).

The second step involves the field equation. The
Maxwell equation for the resonator field in the active
medium (11) is

APPENDIX: EFFECT OF THE REFRACTIVE
INDEX ON THE MEAN-FIELD LIMIT

In the derivation of the field equations (Sec. III) we
have supposed that the refractive index of the active
medium is one. This hypothesis is hardly realistic for
photorefractive materials, as their indices of refraction
are typically between two and three. In this appendix,
we show that this approximation, however, is very good,
again provided that the length of the active medium is
much smaller than the cavity length.

We shall indicate the speed of light in the active
medium with the symbol V. Moreover, throughout this
appendix we shall continuously reference the correspond-
ing paragraphs in Sec. III, in order to show where the
main differences between the two approaches are.

The first step is to define Gauss-Laguerre modes for a
cavity in which a region from z = LA/2 to LA/2 —has
index of refraction ng, while the rest of the cavity has
index one. This means that we must solve the equation

r,gfl (x, t)Fp(x) + FR.

We can expand this equation onto the set of the "new"
Gauss-Laguerre modes, Eq. (12), and write the equation
for the mode amplitudes [Eq. (13)]:

8- 18-
f(p, m, ij +

~ f(p, m, ij

~CRf(p, ,j'dr dy rA(„,j (r, y, z)

x ZI (r, p, z, t)Fp(r, &p, z)

where n is defined as in Eq. (14). As the field equation in
the cavity has not changed, the boundary conditions for
the mode amplitudes are still given by Eq. (15). Follow-
ing the procedure described in Sec. III, we then proceed
to introduce the new variables z' and t' [Eq. (16)] and the
new field f(„;j[Eq. (17)]. The boundary conditions for
the new amplitudes are those specified in Eq. (18), while
the field equation, Eq. (19), is slightly different:

8 - (A —IA 1 8 - . (A —LA LA . 1
qf(p, m, ij +

l L + ~ q f{p,m, ij ln& i~cR
l

+ &~pm L f(p,m, ijc)z' ' ' ( LAc v c)t' ' ' ( c v LA

A —IA z' 1)
in exp l—n A —i ScR —ibp + —

l
dr d&p rtl (r, p, z', t)Fp(r, rp, z')A(„,j (r, p, z').

The difference between this equation and the equation obtained by supposing that the refractive index of the material
is ni, = 1, Eq. (19), is the coefficient of the time derivative and of the detuning
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A —I~ 1+-
L~c v

instead of

A

Ipc

Such a difference can be made as small as we like by considering a suKciently short photorefractive medium.

' Also at Department of Physics, Heriot-Watt University,
Edinburgh, Scotland.
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