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We perform detailed calculations of harmonic conversion in a 15-Torr jet of xenon into which a 1064-
nm-wavelength 36-ps-pulse-width laser has been tightly focused, so that the peak intensity ranges from
5X10' to 5X 10" Wcm '. The single-atom emission rates are obtained by integrating the time-

dependent Schrodinger equation. We employ an improved atomic model which includes excitation and
ionization through states with both low-lying ionic cores. The propagation equations are solved using a
general and efficient finite-difference technique. Excellent agreement with experimental data is obtained.
We consider the effect of the defocusing of the pump beam by the free electrons in the saturation regime,
and find it to be small for the conditions studied here. The spatial, temporal, and spectral profiles of the
harmonic emission are presented. Significant blueshifts of the harmonics spectral line shapes are ob-
served in the saturation regime. Finally, using model polarizations, we discuss how the harmonic fields

build up in the nonlinear medium, through a series of interferences. It allows us to understand why

efficient phase matching can be achieved in a strong-field regime for the laser-atom interaction.

PACS number(s): 42.65.Ky, 32.80.Rm

I. INTRODUCTION

The theoretical description of harmonic-generation
processes in gases exposed to strong laser fields involves
two steps: (1) the calculation of the single-atom dipole
moment, obtained by solving the Schrodinger equation
for an atom in the presence of an intense electromagnetic
field, and (2) the integration of the propagation equations
for the harmonic fields created in the medium. The first
part of the problem has been thoroughly studied in the
past two years. Various methods have been used [1—10].
Kulander and co-workers [1,2], DeVries [3], and LaGat-
tuta [4] have solved numerically the time-dependent
Schrodinger equation for several atomic systems.
Potvliege and Shakeshaft [5] have performed Floquet cal-
culations for hydrogen. A number of model calculations
(e.g. , one-dimensional approximations) have also provid-
ed some insight into the physics of the problem [6—11].

In contrast, the second aspect of the problem is only
beginning to be investigated. In the traditional (perturba-
tive) treatment of harmonic-generation processes
[12—14], one separates the calculation of the atomic di-
pole moment from the evaluation of propagation effects.
Phase matching is generally accounted for by assuming
lowest-order perturbation theory to be valid or, in the
case of resonant processes, by reducing the atomic system
to a few interacting (discrete) levels [12,15,16]. In these
cases, the polarization induced by the laser field takes a
simple analytic form and the propagation equation
reduces in general to a one-dimensional integral over the

nonlinear medium (called the phase-matching integral).
However, this approach is not appropriate to the re-

cent high-order harmonic-generation experiments
[17—20] which involve intense fields ( ~ 10' W cm )

and numerous resonance effects [21,22]. In such experi-
ments, e.g., at 1064 nm with a 36-ps Nd:YAG (where
YAG represents yttrium aluminum garnet) laser, the ob-
served distribution of harmonic strengths displays a
characteristic shape, with a long plateau extending from
approximately the fifth harmonic to one of high order.
The cutoff at the end of the plateau, which can be at a
rather high frequency, depends on the laser intensity and
on the atomic system. Only the lowest-order harmonics
vary as I~, where q denotes the harmonic order and I the
laser intensity. The harmonics in the plateau exhibit a
more complex behavior than a simple power law. On
average, they vary more slowly with intensity than the

qth power predicted in the weak-field limit. Therefore,
the theoretical description of these experiments requires
the solution of the propagation equation for a general, i.e,
nonperturbative polarization field [24—26].

In a recent letter [24], we have presented calculations
of harmonic generation in xenon at 1064 nm in the 10'—
W cm range. The atomic dipole moment, which pro-
vides the source for the polarization field, was obtained
from the numerical integration of the time-dependent
Schrodinger equation for the atom. At these intensities,
the single-atom emission amplitudes at the harmonic fre-
quencies are found to depart substantially from those pre-
dicted by weak-field theories. The propagation equations
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for the macroscopic harmonic fields generated in the non-
linear medium were solved in integral form. Some of the
results have also been discussed in a recent review article
[25]. In the present work, we give a full account of these
calculations and provide detailed comparisons with ex-
perimental data. Since the earlier results presented in
Refs. [24,25], the single-atom part of the calculations has
been improved by accounting, within the single-active-
electron approximation, for the effects due to the two
spin-orbit components ( P, &z and P3/2) of the residual
ion. In the propagation calculations, we now use more
accurate parameters for the laser and interaction
geometries which have been recently measured [22]. This
allows us to make a more rigorous comparison between
calculated and experimental values. Additionally, we em-
ploy a different, and more general, method for solving the
propagation equation, based upon finite-difference tech-
niques. Thus, we can include the modification of the fun-
damental field (due to a nonlinear refractive index) and
study its influence (found to be weak) on the generation of
the harmonic fields. Moreover, we can determine the
fields everywhere, including within the medium itself.
Applying this method to model polarization fields pro-
vides us with a clearer physical interpretation of why
efBcient phase matching is achieved in strong laser fields.
In the weak-field, perturbative limit, very few photons ac-
tually get out of the medium because the polarization
field is very strongly peaked at the point of maximum
pump intensity so that the generated harmonic field first
increases to a maximum and then decreases before reach-
ing the edge of the medium. In the strong-field regime,
the polarization varies much less rapidly with intensity.
Phase-matching oscillations owing to constructive and
destructive interferences in the medium appear. Simul-
taneously, the harmonic field becomes defocused and de-
velops rings which can propagate to the boundary of the
gas. As a result, the field that exits the medium can be
much more intense than in the perturbative limit.

This article is organized as follows: In Sec. II we de-
scribe the details of our theoretical approach. Compar-
isons with experimental data are presented in Sec. III.
Finally, we discuss the difference between phase match-
ing in weak and in strong laser fields in Sec. IV.

II. THEQRETICAL METHOD

(lower-order) harmonic fields and the depletion of the
fundamental field. In the weak-field limit, the refractive
index n is defined by

n (z) = I+2vrJV(z)y"'(qco), (2)

where the indices a, i, or e refer to the atomic, ionic, or
electronic density or polarizability. Note that n~(r, z) =1
so that the spatial variation of the index needs to be ac-
counted for only when differences between indices are in-
volved. The notation y'"(qco, ~C, ~

) implies that, for an
atomic or ionic system exposed to a strong laser field, the
polarizability becomes dependent on the intensity of the
fundamental field ( ~bi ~

). For a free electron, it reduces
simply to —e /prgq ~, where e and m are the charge and
mass of the electron. In our calculations, we neglect the
contribution from ions to the polarizability (refractive in-
dex) and to the laser-induced polarization P~. The contri-
bution from free electrons is included and it is assumed
that the electron density remains equal to the ion density,
an approximation which is valid for short laser pulses.
Thus, the propagation problem is axisymmetric and may
be expressed in terms of (r, z) cylindrical coordinates.

First, we consider the case where the refractive index
nq depends only on the z coordinate. We introduce the
envelope functions

E =e exp i j —k (z')dz'

and

Pq=P exp i J qki(z')dz'

where y" '(qco) is the atomic dipole polarizability. The re-
fractive index n (z) is z dependent if the medium density
iV(z) changes along the z axis (propagation axis). We
consider a nonlinear medium uniform in the direction
perpendicular to the laser axis (in the absence of ioniza-
tion). In strong laser fields such that (single) ionization
becomes significant, the refractive index will include con-
tributions from the populations of ions and electrons:

n (r,z) = I+2m JV, (r,z)y,"'(qco, ~8&~ )

+ 2'Ã, (r, z)y', "(qco, I @i I')

+2m JV, (r, z )y'', "(qco),

A. Propagation equations

We give here only the essential equations needed to un-
derstand the calculations presented in Sec. III and refer
the reader interested in more details about the derivation
of these equations to the review articles [20] and [25].
We start from the propagation equation for the qth har-
monic field 8, obtained by Fourier transforming the
time-dependent propagation equation

V 6q+(nqqcolc) 8 = —4m.(qco/c) Pq .

co is the laser frequency, c the speed of light, and n the
q

refractive index of the medium. P is the polarization in-
duced by the fundamental field only; we can neglect the
influence of wave-mixing processes involving other

with k (z) =n (z)qco/c (k =qk, =qco/c ). In the paraxi-
al approximation (i.e., assuming that the wave fields
propagate close to the laser axis), the wave envelopes may
be assumed to vary slowly in the z direction (8/Bz « k ),
so that Eq. (1) becomes

BE
V2E +2ik

~ Bz

4n(qcolc) P exp —i f b, k (z')—dz', (4)

where V~ acts on the transverse coordinate and
Lakkq kq qk &

. Note that when the refractive index nq is
complex (i.e., when the medium is absorbing at frequency
qco),
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~E (r, z)~ = ~e (r, z)~ exp 2 f a~(z')dz'

where ~ is the absorption coe%cient at frequency qco

(imaginary part of k ). Introducing

E =E exp i f b, k (z')dz'

Eq. (4) becomes

kq (z) = (q cole )[1+2mJV(z)y,"I(q co)],
JV(z) being the (initial) medium density. The slowly-

varying-envelope approximation is made as before, by
separating out the wave vectors k~(z) and k, (z), involv-

ing the rapid variation of the fields, and r-dependent
corrections 5k (r, z) and 5k, (r, z), assumed to induce

slowly-varying corrections to the harmonic and funda-
mental fields. The propagation equations for the funda-
mental and incident laser fields become

BE)
V~E, +2ik, +2k ) 5k, E, =0,

Bz
(6)

Q~Eq +2lkq +2k' 5kq Eq~ B.
= —4~(qcolc) P~exp —i f b, k (z')dz' (7)

As before, defining

Eq=E exp i f b,kq(z')dz'

Eq. (7) can be written as

ViE +2ik +2k (5k +6k~)E = 4~(qcolc) P—
~ B.

A proper treatment of the inhuence of intensity-
dependent refractive indices (and, in particular, those in-

duced by the presence of free electrons) requires first the
solution of Eq. (6), which is nonlinear because 5k, (r,z)
depends on the field E, . For low frequencies, pressures
above 10 Torr, and intensities high enough to partially
ionize the medium, the refractive index will be dominated
by the free-electron contribution. Consequently, the fun-
darnental beam will become slightly defocused as it prop-
agates through the medium. This is because the refrac-
tive index due to free electrons is much smaller close to
the propagation axis than far from it; the nonlinear medi-
um acts as a diverging lens. Next, one calculates the non-

ViE +2ik +2k bk E = 4n(—qcolc) P
~ B.

In this case, ~Eq ~

We introduce r-dependent refractive indices into these
equations by defining

k~(r, z)=nz(r, z)qcolc =k (z)+5k (r,z),
with

linear polarization P and the intensity-dependent wave
vector 5k (r, z) induced by the perturbed fundamental
field E, . Then Eq. (7) or (8) can be solved.

Alternatively, we can choose to make the slowly-
varying-envelope approximation by including in the
phase term the total wave vector k~(r, z) ~e get

BE, Bk, BE,
V',E, +2ik, + 2i f dz'

B Br Br
2

Bk,+i f V',k, dz E, — f dz E, =0,
Br

BE, Bk, BE,
ViEq+2ik +2i f dz

Br Br
2

Bk,
+i f Vikdz E — f dz E

Br

4m.(q—cole ) P~exp i f b—, k~dz . (10)

Albeit written in a more complicated form, these equa-
tions are equivalent to Eqs. (6) and (7). Now the effect of
the transverse variation of the refractive index and the
change in the phase mismatch between the generated and
driving field are clearly distinguished. If one neglects the
transverse variation of the refractive index, which implies
that the fundamental field does not get defocused as it
propagates through the nonlinear medium, Eq. (10)
reduces to an equation identical to Eq. (4) (except that the
wave-vector mismatch hk now depends on the trans-
verse coordinate r) or to Eq (5), .with the additional
transformation from E to E .

In previous articles [24,25], we have presented results
obtained by neglecting the modification of the fundamen-
tal field and by calculating the far-field envelope ex-
pressed in integral form [see, e.g. , Eq. (3.16) in [25] ]. In
the present work, the propagation equations are solved
numerically over the length of the nonlinear medium by
using finite-difference techniques. As will be shown later,
this gives additional insight into the physics of the prob-
lem because it shows the variation of E (r, z) as it is gen-
erated in the nonlinear medium. It also allows us to in-

clude the defocusing of the fundamental field, though, as
will be shown later, this effect remains weak (negligible)
in the conditions studied here. The propagation equa-
tions are discretized in the (r, z) plane on a 500X300
point grid and integrated using a space-marching Crank-
Nicholson scheme. The field at the position z, is obtained
from that at the position z, , by inverting a tridiagonal
matrix with a classical recursive algorithm.

All of the above variable (fields, wave vectors, and den-
sities) should be understood to be slowly time varying be-
cause the incident laser field is a pulse. The propagation
equations are solved for a sequence of times t spanning
the pulse duration. The number of harmonic photons X
emitted at each laser pulse is then obtained by integrating
~E (r, z, t)

~
in space and time:

N = f ~E (r,z, t)~ r dr dt .
4Ag co
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This integral is independent of the position z on the prop-
agation axis, as long as z is outside the medium

In Sec. II B we discuss how the different components of
the propagation equations are determined. We first con-
sider the single-atom part of the calculations.

B. Single-atom response

In these calculations, we need to determine (1}the har-
monic components of the laser-induced dipole moment
d (t), i.e., the sources of harmonic radiation; (2} the ion-
ization rate that allows us to follow the atomic (electron-
ic) density in the medium and consequently to evaluate
the phase mismatch due to free electrons; and (3) the di-
pole polarizability at the fundamental and harmonic fre-
quencies from which we determine the phase mismatch
due to the neutral atoms.

Most of the calculations of these single-atom corn-
ponents to the macroscopic harmonic emission rates have
been carried out using our single-active-electron (SAE)
model. In this model we hold the orbitals of all but one
of the electrons in the atom fixed and allow the active
electron to respond to the laser in the mean field of the
nucleus and remaining electrons. We solve the time-
dependent Schrodinger equation for this electron in a
laser which turns on to its maximum intensity over five
optical cycles and then has a constant intensity for the
next 20-30 cycles. After the ramp, the transient excita-
tions decay by ionization over the next few cycles. The
ionization rate and photoemission rates are determined,
for the particular fixed intensity and wavelength, during
the last part of the pulse. The details of these calcula-
tions have been presented elsewhere [27] and are repeated
here only to the extent necessary to describe an improve-
ment we have made in the SAE model. Because the
harmonic-generation experiments are carried out in rare
gases, some accommodation for the existence of a second,
low-lying ionization limit in these species has been made.
In the past we had considered only ionization into the
lowest continuum. For the wavelengths and intensities
used in the experiments, ionization and, in particular, ex-
citation into the manifold of states converging to the
second ionization limit have been observed to be
significant, especially in the lighter rare-gas species.
Moreover, it is important to account for the correct or-
bital occupancy of the active electron responsible for the
emission.

The effective potentials for the electron are generated
according to the description given previously in [27,28].
The potentials are constructed from the valence orbitals
of the atom. We carry out Hartree-Slater calculations on
the ground and singly excited states of the atom, adjust-
ing the exchange-correlation parameter so that the orbit-
al energy of interest agrees with the spectroscopic value.
The valence orbital, which has a particular value of the
orbital angular momentum, I, is then used to construct an
l-dependent effective potential whose lowest eigenvalue is
the ionization energy of that state. This procedure is re-
peated for different l values to generate the complete po-
tential. We use the l =2 potential for 1~2. This method
results in quite accurate excitation energies, much better

than normally obtained in either Hartree-Fock or
Hartree-Slater calculations. However, it provides a mod-
el of the xenon atom which accounts only for the mani-
fold of singly excited states based on the lowest ionic core
P3/2 For all rare gases, a second manifold of states con-

verges to the next spin component of the ion, the P, /2

state. Therefore, we repeat the above procedure to obtain
effective potentials for this second set of excited states.
We assume that these two manifolds are very weakly cou-
pled through multiphoton excitation so that they can be
treated separately. This assumption is reasonable be-
cause once one of the electrons is excited, leaving a par-
ticular core state, transitions into states with the other
core would require a two-electron transition. Thus it is
within the spirit of the SAE approximation to neglect
such excitation pathways. The contributions to the in-
duced dipole responsible for the harmonics from these
separate calculations are added coherently.

In xenon the splitting between the ion core limits is
quite large, approximately 1.3 eV, slightly more than the
photon energies considered in this work. We find the
contributions from this second manifold are not too
significant for the range of intensities studied here. How-
ever, for shorter laser pulses and for the lighter rare
gases, the atom can experience higher laser intensities,
and the contributions from these additional excited states
will become relatively more important and even some-
times dominant.

An important effect due to the spin-orbit coupling,
however, does come into play even though the upper ion-
ic core is not specifically involved. This is because the ex-
citation dynamics is very sensitive not only to the ioniza-
tion potential or binding energy of the active electron but
also to m, the projection of the orbital angular momen-
tum along the polarization axis [28]. The valence shell p
electrons in xenon with m =0 are found to provide the
dominant contribution to the high-order harmonic emis-
sion by the atom. Since no spin-orbit terms are included
in our Hamiltonian explicitly, we solve the Schrodinger
equation in LS coupling. This means that for a linearly
polarized laser field, m is a good quantum number.
Therefore, we need to assign the weights to the valence
orbitals according to their weights in the spin-orbit-
coupled states. There are two m =0 valence electrons in
the p shell, —', associated with the P3/2 core and —', with

P, /2. Contributions from the other four p electrons
which have

~
m

~

= 1 to the harmonic-emission strengths
are found to be unimportant for the intensities considered
here. Therefore, we solve the time-dependent
Schrodinger equation for the —', electrons with m =0,
which leave the ion in the P3/2 core state, and for the 3

electrons with I =0, which leave the ion in the P, /2
core state. The emission strengths at the harmonic fre-
quencies are then obtained from the Fourier transform of
the total induced dipole calculated over the period of the
last five cycles of the pulse described above:

(12)

We obtain the ionization rate for each intensity by
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monitoring the norm of the wave function during the
constant-intensity interval. Our finite-difference calcula-
tions are performed in a finite box with absorbing boun-
daries. As flux reaches the edges of the grid, it is re-
moved. We define the rate at which this occurs to be the
ionization rate.

Finally, the last atomic quantity we need is the dipole
polarizability y,"'(qco, ~8, ~

). Here, we have preferred to
depart from the single-active-electron approximation.
Indeed, though this approximation is good for low excita-
tion frequencies and high laser intensities, it cannot de-
scribe suSciently accurately the photoabsorption cross
section over a large energy range [29]. The solution of
the three-dimensional Schrodinger equation for several
active electrons in the presence of a strong laser field
remains unfortunately beyond reach at present, and we
have simply calculated the dipole polarizability to lowest
order in the radiation field [y',"(qm)], using a many-body
perturbation-theory approach [30].

In fact, we also tried to estimate the magnitude of
intensity-dependent corrections to the zero-order atomic
polarizability at harmonic frequencies close to the ioniza-
tion threshold and its influence on the macroscopic
harmonic-emission rates. This has been done by using a
crude, modified perturbative model, including a few
discrete excited states only, whose energies have been as-
sumed to shift with the laser field as the ponderomotive
energy. We find that by the time the field strength is high
enough that y',"(qco,

~ 8, ~ ) begins to differ from its
weak-field limit, the ionization probability becomes im-
portant. Then the nonlinear refractive indices are dom-
inated by the contribution from free electrons. More-
over, the neutral-atom population (the source of the har-
monic emission) is depleted. Consequently, the emission
rates are found to be only weakly affected by these
intensity-dependent corrections. They will not be includ-
ed in the results presented below.

C. Polarization and phase mismatch

We now relate the single-atom components introduced
in Sec. II B to the macroscopic variables involved in the
propagation equations: the laser-induced nonlinear po-
larization P; the r-dependent corrections to the wave
vectors 5k &, 5k [Eqs. (6) and (7)]; and the phase
mismatch b, k [Eq. (5)]. The polarization P (r, z, t) is
defined by

P (r, z, t) =2JV, (r, z, t)dz(r, z, t)

2k(r z
X exp i q

—tan '(2z /b )—
b +4z

(13)
where 1 (r,z, t) is the component of the atomic dipole
moment oscillating at frequency qco calculated for the
field strength ~E, (r,z, t)~. The factors of 2 arises from the
different conventions used in the definition of Pq [the to-
tal polarization P( t ) is decomposed as
Q~P~e'~ '/2+c. c. ] and in the definition of d as the
Fourier transform of d(t). The phase factor in Eq. (13}
(see [25] for more details) comes from the fact that the
Schrodinger equation is solved for a real field

[~E, ~sin(cot }],whereas the equations of propagation for
focused beams involve complex amplitude wave fields.
Here, we have expressed the polarization induced by an
incident Gaussian field, not modified as it propagates in
the medium. Its envelope E, ( r, z, t) is given by

bEo k(r2
E,(r, z, t) = exp

b +2Iz b +2iz

X exp[ —2 ln(2)(t /r )z], (14)

where ~ is the pulse fu11 width at half maximum, b the
laser confocal parameter, and Eo the peak field strength.
It is of interest to separate out the phase and the ampli-
tude of E, as

E, (r, z, t)=
bE()

(b2+4z2)1/2 exp
k, r b 2k, r z

exp[ —2 ln(2)(t /r) ]exp i tan —'(2z/b )—
b +4z b +4z

(15)

The phase factor in Eq. (13) is simply q times the Gauss-
ian beam phase [Eq. (15)]. More generally, it is q times
the phase of the fundamental field in the medium. Final-
ly, the atomic density JV, (r, z, t) is defined by

JV, (r, z, t) =JV(z)exp —J p(r, z, t')dt', (16)

where p(r, z, t') is the ionization rate calculated at the
field strength ~E, (r, z, t')(, . We assume that the gas jet
density distribution is a truncated Lorentzian function
JV'(z)=JV~(z), where JVO is the initial peak density and
where p(z), the (normalized) atomic profile, is given by
p(z)=1/(1+4z /L ) for ~z~ ~L, =0 elsewhere.

The phase mismatch b, k (r, z, t) is approximated by the
sum of the atomic phase mismatch (to lowest order in the

radiation field) and the contribution from the free elec-
trons, which becomes important when the medium begins
to ionize:

bk (r,z, t}=2m(qco/c)JV, (r, z, t)[y,"'(q~) y',"(~)]—
[JV(z) JV. (r, z, r)] . (17}—

mcqco

Similarly, we have (q ~ 1)

5k (r, z, t) =2m(qco/c )[JV,(r,z, t}—JV(z}]y, '(qco}

[JV(z) JV, (r, z, r)] . —
mcqco
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III. RESULTS AND COMPARISON
WITH EXPERIMENTAL DATA

1.0

0.8—
fft

~ 0.6—

a)

0.4—
0

0.2—

The calculations have been performed for xenon at
1064 nm in the 5X10' -5X10' -W cm intensity range.
The macroscopic parameters in the calculations (focusing
conditions and atomic beam geometry) have been chosen
to mimic the experimental conditions as closely as possi-
ble. The atomic density distribution follows a Lorentzian
profile with a full width at half maximum L =0.8 mm
and a total width of 2L [22]. The peak atomic density is

15 Torr (5.3 X 10' atoms/cm ). The laser confocal pa-
rameter b has been recently measured to be =1.5 mm.
Finally, the laser pulse width is 36 psec.

First we show the effect of the nonlinear refractive in-

dex induced by the free electrons on the propagation of
the fundamental beam. The profile of the incident field at
the far edge of the medium (at 0.8 mm from the focus) is
shown in Fig. 1(a). The solid line indicates the profile in
the weak-field limit, i.e., not modified by the interaction
with the nonlinear medium. The dot-dashed line presents
the fundamental field which has been defocused by the
nonuniform electron density created at 4.9 X 10'
W cm (our highest laser intensity). The curves, normal-
ized to have the same maximum value, correspond to the

near-field profile integrated over the pulse width. One
sees that the defocusing of the fundamental field remains
weak for the conditions studied here. It will be neglected
in most of the calculations presented below. Indeed, this
approximation allows us to solve only one propagation
equation [Eq. (5)) instead of two coupled ones [Eqs. (6)
and (8)]. It is also of interest to examine how the line

shape of the fundamental beam is modified by the interac-
tion. Figure 1(b) shows the spectral profile calculated by
Fourier transforming the pulse amplitude at the far edge
of the medium. The free electrons induce an additional
time-dependent phase factor,

54(t) = —f '
5k, (z, t)dz,

which results in a (small) blueshift (5co=54/5t ~0) of
the spectral line shape. These effects induced by the free
electrons will become much more important at higher
pressures [31,32].

Figure 2 shows the number of photons obtained in xe-
non at the different harmonic frequencies for the intensi-
ties 10', 1.3X10', 2X10', and 4X10' Wcm from
the bottom to the top. The solid circles correspond to re-
sults of calculations. The experimental data (determined
to within one order of magnitude) are shown by the open
squares [23]. The agreement between the experiment and
our ab initio calculations is excellent. The main
discrepancies are for the 7th and 9th harmonics at the
highest intensities (2 X 10' and 4X 10' W cm ).

A more detailed comparison can be made by studying
the intensity dependence of the number of photons mea-
sured and calculated for each harmonic. Figures 3-7
display the results for the 3rd to the 21st harmonics. The
experimental values [23] are indicated by the open circles,
while the results of calculations are plotted as the solid
lines. The agreement is in general very good for the in-
tensity region below the saturation intensity (about
2.5 X 10' W cm ), at which the ionization of the rnedi-
um becomes important. Above this intensity, depletion
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FIG. 1. Normalized (a) near-field and (b) spectral profiles of
the fundamental beam, propagating in vacuum (solid line) and
in a 15-Torr gas jet at 4.9X 10"W cm (dot-dashed line).

FIG. 2. Calculated (solid circles) and experimental (open
squares) number of photons as a function of the harmonic order

q at several intensities 10', 1.3X10", 2X10', and 4X10"
W cm ' from the bottom to the top.
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1
014

of the neutral medium leads to a less rapid rise in the
harmonic-conversion efficiency. Apart from the 3rd and

5th harmonics, which vary as I and I below saturation,
all the harmonics have a more complex intensity depen-

dence which cannot be described by a simple power law

(see particularly the 7th or 13th harmonics). In general,
the changes of slopes observed in the experimental data
are remarkably well reproduced by the calculation. The
agreement between theory and experiment is not as good
in the saturation regime. The behavior above saturation
seems to be strongly dependent on the harmonic order:
for some of the harmonics (e.g. , the 5th or the highest

ones), the satuation is rather smooth, whereas for others

(the 7th, the 11th, and the 15th), it is quite pronounced,
sometimes displaying oscillations. The experimental data
are generally smoother than the calculated results, with

similar (but not identical) differences from one harmonic

to the other.
In Fig. 8, we compare the number of 7th- and 13th-

harmonic photons, represented by a dashed line, to the

corresponding single-atom data, shown as a solid line.
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FIG. 8. Comparison between the single-atom response (solid
line) and the complete calculation accounting for propagation
(dashed line) for the 7th and 13th harmonics. The phase-
matching factor is indicated by the solid line at the bottom.

The latter data have been scaled so that both results can
be superposed. The inclusion of propagation effects, the
volume and temporal integrations, leads to a significant
averaging of all of the structures and resonances. We
have represented at the bottom of the figures by a solid
line the variation of the phase-matching factor defined by
the ratio of the number of photons N to the single-atom
response at the peak intensity in the focal volume. It in-
creases as the single-atom response decreases, and vice
versa. Consequently, it fills in the dips and flattens out
the peaks, leading to a smoother curve for the final result
(dashed line). Only the average behavior of the single-
atom result survives the effects of propagation. Note,
however, that this average behavior can be quite different
from the perturbative Iq, or, more generally, any I~
power law. The 13th harmonic exhibits a change of slope
around 2X10' Wcm, which can be traced back to a
deep structure in the single-atom response. Note that the
phase-matching factor is constant on average and similar
for the 7th and 13th harmonics. It is close to 10 ', as
shown on the right side of the figures. Moreover, its
average value is approximately the same for all the har-
rnonics. This means that under these conditions the
characteristic shape of the harmonic distributions (the
plateau and cutotI) is determined by the single-atom
response and not by any macroscopic effect.

We have studied the saturation region of the 13th har-
monic in more detail. Indeed, in Fig. 8 the saturation
seems to also be present in the single-atom response,
without invoking any macroscopic effects such as the de-
pletion of the neutral-atom population or the influence of
the free electrons. In Fig. 9 we show results obtained by
fully including the influence of the free electrons and de-
pletion [solving Eqs. (6) and (8), solid line]; by neglecting
the defocusing of the fundamental and the induced phase
mismatch (dashed line), and finally by neglecting also the
ionization of the medium (dot-dashed line). In the condi-
tions studied here, the most important effect is due to the
depletion of the neutral-atom population, which leads to

10' I

2 3 4 5
Laser Intensity (10 W/cm )

13 2

FIG. 9. 13th harmonic as a function of intensity in the satu-
ration region calculated by using different approximations: (i)
fully including the influence of the free electrons and depletion
(solid line), (ii) neglecting the defocusing of the fundamental and
the induced phase mismatch due to free electrons (dashed line),
and (iii) neglecting also the ionization of the medium (dot-
dashed line).

a reduction of the number of photons by about one order
of magnitude at the highest laser intensity. The reason
the significant phase mismatch induced by the free elec-
trons does not have more influence on the harmonic-
emission rates is simple: The population of radiating di-
poles, whose collective emission would be affected by the
free electrons, simultaneously becomes depleted. In other
situations, e.g., when the contribution from ions to the
microscopic harmonic emission comes into play in a
significant manner, the influence of the free electrons
might be more important.

Finally, we have studied the spatial, temporal, and
spectral profiles of the harmonics to characterize further
the radiation emitted under these experimental condi-
tions. We show in Fig. 10 the profiles of the 13th har-
monic at three intensities 5X10' (perturbative limit),
2X10', and 4X10' Wcm . All the curves have been
normalized to have the same maximum value. The near-
field profile (at the far edge of the medium, i.e., at 0.8 mm
from the focus) is shown in Fig. 10(a). Figure 10(b)
displays the far-field profile (in radians) calculated at 30
cm from the focus. It can be obtained from the field in
the near zone through a Hankel transformation [33]:

E (r, z) k rr'
E (r', z')= ik f, —JoZ' —Z

' Z' —Z

ik (r +r' )
X exp 2(z' —z )

r dr . (19)

where J0 is the zero-order Bessel function. Both spatial
profiles have been time integrated over the pulse width.
Finally, Figs. 10(c) and 10(d) show, respectively, the tem-
poral profile and spectral line shape of the 13th harmonic
outside the medium. The harmonics are defocused com-
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pared to that expected in the weak-field limit. They ex-
hibit some structures (rings), which will be discussed in
Sec. IV. Note that using a weaker focusing geometry
leads to smoother (more coherent) spatial profiles. In the
same way, the temporal profiles are not always regular,
displaying structures which are due in part to resonance
effects in the single-atom response. Ionization leads to an
asymmetry in the profiles, as seen in particular in the re-
sult at 4X10' Wcm [34]. The depletion and therefore
the asymmetry is more significant for higher intensities.
Finally, the spectral line shapes exhibit a significant shift
to higher frequencies at intensities high enough to begin
to ionize the medium [35]. This blueshift is induced by
the fundamental blueshift and is roughly equal to q times
that of the fundamental. At high intensities, the 13th-
harmonic line shape broadens and shifts compared to the
perturbative limit. However, it remains quite narrow,
with a hA, /k less than 10 . A discussion of the spatial
and temporal coherence of the high harmonics generated
from a more powerful, less tightly focused laser with
shorter pulse duration (these characteristics are more
highly optimized for harmonic emission in the extreme

ultraviolet range) will be presented in a forthcoming arti-
cle.

IV. DISCUSSION

In this section we discuss in detail how harmonic fields
are generated in a nonlinear medium of finite length (L).
Our analysis is based on three-dimensional pictures show-
ing the amplitudes of either the polarization field
~Pq(r, z)~ or the harmonic field ~E~(r, z)~, produced in the
nonlinear medium at the maximum of the laser pulse
(r =0). For the sake of a clearer presentation, we use in
this section a uniform nonlinear medium rather than the
Lorentzian distribution employed previously. The length
of the medium is chosen to be the same as that in Sec. III.
Examples of results obtained with a nonconstant density
distribution have been shown in [36]. Indeed, the use of a
Lorentzian medium dampens the harmonic field at its
edges, making the illustration of interference effects we
wish to emphasize less clear. Finally, we use a constant
phase mismatch hk, usually set to zero, in the cases
studied below.
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FIG. 10. Normalized 13th-harmonic profiles for several intensities: 5 X 10"W cm 2 (perturbative limit, dot-dashed line), 2X 10"
W cm (solid line), and 4X 10' W cm (dashed line). (a) Near field; (b) far field; (c) temporal; (d) spectra



46 CALCULATIONS OF HIGH-ORDER HARMONIC-GENERATION. . . 2787

A. %eak-field limit

First we will discuss examples of perturbative harmon-
ic generation for the 3rd, 7th, and 13th harmonics with
phase mismatch of zero (Fig. 11). In the perturbative
limit, the polarization field for the qth harmonic can be
written as

P (r, z)=JUn)(' 'E[(r,z)/2«

where y' ' denotes the qth-order nonlinear susceptibility.
The incident field E, (r, z), assumed to be a Gaussian
beam, is written as E, (r, z) =EOGP (r, z), where Ge {r,z) is
the envelope function

(1+2iz /b ) 'exp[ k,—r'/(b+2iz) ] .

The solution of the propagation equation is given by

I

E (r', z )=g Gq"(r', z ) exp[ —&bk z i(—q —1)tan '(2z/b)](l+4z Ib )" ' dz,
q b q

where

g = iqrk —y'«'2 «E( .

The harmonic profile remains Gaussian inside and out-
side the medium. How the field is created and destroyed
in the medium is governed by the phase-matching in-
tegral at the right side of Eq. (20). The integrand consists
of an oscillatory function

exp[ id, k—z i(q——1)tan '(2z/b)]

(with one contribution from dispersion and another from
focusing) and an amplitude factor (1+4z Ib )" «'~ ow-
ing to focusing. One expects the harmonic field to be
generated in the nonlinear medium through a series of in-
terferences with a period inversely proportional to

hk, ff=Ak +2(q —1)/b

(at least close to the focus, the period decreases as z in-
creases because of the arctangent term). The expected
number of fringes should correspond to the ratio
L/2L„h, where the coherence length L,» is qr/b, k,ff.
Note that I.„hbecomes progressively shorter for the
higher harmonics. However, the number of fringes also
depends on how rapidly the amplitude factor
(1+4z /b )" «'~ varies throughout the medium. If the
amplitude has died away (from the focus) over a length
I., ~I./2, it is the ratio between this length and I.„h
that matters for the generation of the harmonic field. In
Fig. 11, for Ak =0, in the weak-field limit, we see that
the number of oscillations in the harmonic field is 1; this
is true for all the harmonics. The field first grows,
reaches a maximum value, and then decreases. In this
perturbative limit, L, =L, (»(L/2, so there is almost
perfect matching between the length over which the am-
plitude is nonnegligible and the coherence length of the
process. Consequently, only one oscillation can develop.
This leads to almost perfect annihilation of the harmonic
field when L/2~I, , as is the case in our example for
the harmonics higher than the 5th. This cancellation be-
comes more efticient as the process order increases, so
that the harmonic generation eSciency decreases. %e
also note in Figs. 11(b), 11(e), 11(c), and 11(f), that the
field follows almost exactly the variation of the polariza-
tion. Indeed, for the high harmonics, the lower limit of
the integral in Eq. (20) can be approximated by —ae

(infinite medium) so that

E (r,z) (1+2iz/b)q 'exp[ kr —I(b+2iz)] .

The only dift'erence between this and the expression for
Pq(r, z) is the exponent of the first term (1+2iz lb ) being
equal to q

—1 instead of q. This explains why E and Pq
are extremely similar for high orders q.

B. Strong-field regime

In the more general situation, the same discussion
about the different lengths (L, L,», and L, &) in the
problem applies. In Sec. IV A these lengths have been in-
troduced quite naturally from the expression for the
phase-inatching integral [Eq. (20)]. In fact, L„hmust be
interpreted as the length over which the polarization
(driving field) and the free Gaussian harmonic field prop-
agating in the medium with the same confocal parameter
as the incident beam get out of phase by a factor of qr [see
Eqs. (13) and (15)]. It is a purely geometric factor, in-

(a)

FIG. 11. Ciraphical representation of (Pq(r, z} (left side) and
~E«(r, z}~ (right side) in the nonlinear medium. The light propa-
gates along the horizontal axis (z) from the left to the right. The
graphs have been symmetrized around the z axis. The polariza-
tion is assumed to be perturbative. From the top to the bottom,
the 3rd, 7th, and 13th harxnonies have been represented.
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dependent of how the dipole moment d varies with the
laser intensity, whether it is perturbative or not. In con-
trast, L, , which represents half the length over which
the polarization is nonnegligible, strongly depends on the
interaction regime, since the variation of d with intensi-
ty (and henceforth with z) will be quite different in weak-
and in strong-field situations.

To illustrate the essence of the propagation effects in
the strong-field regime, we consider a simple model: The
polarization is assumed to follow a simple ~E, ~~ power
law, with an effective order of nonlinearity p & q. Figures
12(a)—12(c) present the 7th, 13th, and 21st harmonics
generated in a medium whose polarization varies as the
fifth power of the incident field. This is a good approxi-
mation to the intensity variation of the plateau harmon-
ics in the calculations discussed here. The amplitude of
the polarization varies more slowly in the nonlinear
medium than in the perturbative case so that
L

p
&)L h Therefore, interferences due to phase-

matching effects can develop. Two, three-and-a-half, and
five-and-a-half oscillations appear in the propagation of,
respectively, the 7th, the 13th, and the 21st harmonics.
The end of the medium does not necessarily correspond
with a minimum in the interference pattern; the harmon-
ic field intensity that leaves the medium is much larger in
this case than in the weak-field limit. In addition to the
oscillations on the propagation axis, the harmonic
profiles do not remain Gaussian throughout the medium.
They develop rings. Figures 12(a)—12(c) exhibit a rather
nice, regular wave pattern. Even when the far edge of the

medium happens to be at a minimum on axis, the intensi-
ty of the field does not drop to zero, thanks to this de-
focusing effect (the maximum of the profiles being then
off axis).

In order to emphasize further the importance of the
amplitude variation in high-order harmonic generation in
a nonlinear medium, we show in Figs. 12(d) and 12(e) the
13th harmonic generated from a polarization varying as
the second and eighth power of the incident field. Figure
12(fl displays the 13th harmonic generated from the same
polarization as in Fig. 12(b), but with a positive phase
mismatch b, k (equal to 20 cm '). By comparing Figs.
12(b), 12(d), and 12(e), one sees how the wave pattern de-
velops depending on the effective order of nonlinearity p.
For a very low p, the oscillations are quite pronounced
and the profile is strongly deformed compared to its per-
turbative limit, showing many rings. This is because the
amplitude of the polarization extends much farther away
from the propagation axis. In contrast, the rings have al-
most disappeared in Fig. 12(e), though the oscillations on
axis remain quite apparent. The variation of the harmon-
ic intensity with the z coordinate is shown in Fig. 13 for
several orders of nonlinearity varying from 2 to 13. The
vertical scale actually denotes the phase-matching factor,
defined as the ratio of the number of photons to the
single-atom response. The curve obtained with p =2 has
been divided by a factor of 10 in order to be approximate-
ly of the same magnitude as the other results. The period
of the oscillations is independent of how the polarization
varies. However, the efficiency of the process (the phase-
matching factor) depends dramatically on the intensity
dependence of the polarization amplitude, particularly
for very low effective orders of nonlinearity. The less
rapidly the polarization varies throughout the medium,
the more efficient the generation of the harmonic field. In
contrast, a change in the effective phase mismatch only
weakly influences the process efficiency. Of course, it can
affect the coherence length and the period of the oscilla-
tions [compare Figs. 12(b) and 12(f)j.

The strength of the harmonic field depends on the
length over which it can be built up coherently, L„h,

0.08—

-—0.06
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H13
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FIG. 12. Graphical representation of ~Eq(r, z)~ in the non-
linear medium. (a), (b), and (c) show the 7th, 13th, and 21st har-
monics calculated by assuming that the polarization varies as
the fifth power of the radiation field. (d) and (e) show the 13th
harmonic calculated by assuming that the polarization varies as
the second and eighth powers of the radiation field. (f) shows
the 13th harmonic calculated by assuming that the polarization
varies as the fifth power of the radiation field, with a positive
phase mismatch equal to 20 crn
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FIG. 13. Phase-matching factor as a function of z for the
13th harmonic. The polarization is assumed to be perturbative
(solid line), to follow a second, fifth, or eighth power law.
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which is proportional to the laser confocal parameter b
when the phase mismatch hkq is much smaller than that
induced by focusing. Consequently, the intensity of the
harmonic field leaving the medium should be approxi-
mately proportional to b . Since the focal section of the
harmonic beam depends on b, this yields a b scaling for
the integrated intensity, which has been observed in a
series of experiments performed in different focusing con-
ditions [23]. This scaling should be approximately true as
long as L„h~L/2 and L„h&L, . In the case of a

weakly focused geometry where L„h L/2, the harmon-
ic field does not depend on b, and the integrated intensity
(the number of harmonic photons) will vary linearly with
the confocal parameter b.

We have tried to understand better the regular wave
pattern shown in Fig. 12 by examining the solution of the
propagation equation for such model polarization fields
(varying as the pth power of the incident field). This solu-
tion has been derived in [20] and [25] and can be written
as

I

E, (r', z')=g J Gp, ~(r', z' —Z(z))exp[ ibk—~z iq —tan '(2z/b)+i tan '(2z/b')]

X(1+4z'ib') '(1+4z'/b')' 'dz
~ (21)

where g is a constant, b'=pb/q,

B(z)=b'(b +4z )/(b' +4z ),
and

Z(z) =z(t ' b')/(t '—+4z') .

Gg~, ~(r', z' —Z(z)) is the Gaussian function centered at
z'=Z(z) with a confocal parameter equal to B(z). The
field that is generated throughout the medium can be in-
terpreted as a sum of Gaussian beams of varying confocal
parameters and best-focus positions, which can be either
more focused or less focused than in the weak-Geld limit
[B(z) lies between b' and b"=qb/p]. Their amplitudes
can interfere destructively or constructively depending on
the phase term in Eq. (21). This leads to the production
of rings in the near- and far-field regions.

On axis (r'=0), the integrand in Eq. (21) behaves in a
fashion similar to that in Eq. (20), apart from the ampli-
tude term, which varies less rapidly than in the weak-field
limit (p (q). Off axis (r'%0), the Gaussian envelope
whose parameters depend on z introduces an additional
r'-dependent phase term, equal to

2k r' (z' —Z(z))/[B(z) +4(z' —Z(z)) ] .

It decreases as z increases, decreasing more rapidly for
large r'. Therefore, the coherence length becomes longer
away from the beam axis (the period of the spatial oscilla-
tions decreases away from axis). This explains the forma-
tion of diverging waves as the harmonic field is generated
[see Fig. 12(d) in particular] and the defocusing of the
harmonic profile.

The previous discussion of the simple model polariza-
tion fields is quite general and applies to more complex
situations. The key result is that phase matching of the
high harmonics depends dramatically on the variation of
the amplitude of the polarization field in the medium,
and surprisingly weakly on the variation of its phase rela-
tive to the fundamental, at least in the conditions studied
in the present work. In strong laser fields, the atomic
response is nonperturbative and the variation of the

harmonic-emission rate with intensity is on average much
less rapid than in the weak-field limit. Consequently, the
harmonic field gets defocused and phase-matching oscil-
lations can develop over a longer length, so that a
significant harmonic intensity gets out of the medium. In
contrast, in a weak-field limit, and a tightly focused
geometry, the harmonic field created in the first half of
the medium gets almost completely canceled out by des-
tructive interference effects in the second half of the
medium. One may argue that the conclusions of this sec-
tion apply only to a tightly focused geometry and wi11 be
irrelevant if the laser beam is very weakly focused in the
nonlinear medium. This is true for the lower harmonic
orders. However, because the coherence length induced
by focusing is inversely proportional to the process order
q, it wi11 rapidly become smaller than the length of the
medium. This means that for very-high-order harmonic-
generation processes, the geometry will always become of
the tight-focus type.

In this article, we have presented complete ab initio
calculations of harmonic-generation processes in strong
laser fields. They involve the solution of the Schrodinger
equation for the outer shell of a rare-gas atom (xenon)
and subsequently the integration of the propagation equa-
tions for the fundamental and harmonic fields in the par-
axial and slowly-varying-envelope approximations. This
approach is quite general and allows us to take into ac-
count a number of physical effects expected to influence
the macroscopic response of a medium exposed to an in-
tense laser field: the nonperturbative response of the
atom, the effect of focusing, the linear dispersion and ab-
sorption of the atomic medium at the harmonic frequen-
cies, the depletion of the medium owing to ionization,
and the influence of the free electrons on the propagation
of the fundamental field and on the phase matching of the
high harmonics. It does not include, however, wave-
mixing processes, nor does it account for rapidly varying
phenomena that might become important for very short
laser pulses.

The numerical results agree well with experimental
data obtained in xenon using a 36-ps-pulse-width 1064-
nm-wavelength Nd: YAG laser. We think this approach
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might be reliably used for describing other experimental
situations (e.g., generation of harmonics of more powerful
laser beams focused in diiferent atomic media) and also
for making predictions about the specifications that such
an extreme ultraviolet source might achieve. Finally, a
detailed analysis of how the harmonic fields build up in

the medium has provided us with a better understanding
of why high harmonics created in a strong-field regime
can be efficiently phase matched.
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