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We demonstrate an analogy between a two-photon process driven by a chirped pulse and Fresnel
diffraction from a slit: in both situations interference between different “paths” leading to the same

“final state” determines the resulting ‘“diffraction pattern.

’

On the basis of this analogy, a spectral

Fresnel zone plate was designed for “focusing of spectral energy”: at the two-photon level the spectral
energy can be concentrated in an effective bandwidth that is much smaller than the bandwidth of the
original excitation pulse. To show this effect, two experiments were performed with femtosecond laser
pulses with a well-controlled power spectrum and chirp: frequency doubling in a nonlinear crystal and

two-photon excitation of Rydberg states in rubidium.

PACS number(s): 42.65.—k, 42.79.Ci, 32.80.Rm

I. INTRODUCTION

In this paper we discuss an effect that could be called
“spectral focusing in a multiphoton process.” By this we
mean that at a multiphoton level, the spectral energy can
be concentrated in an effective bandwidth which is much
smaller than the bandwidth of the original excitation
pulse. This is schematically depicted in Fig. 1 for the
case of a two-photon process driven by a pulse with cen-
tral (angular) frequency @, and bandwidth Aw. The ex-
pected “‘effective bandwidth” at the two-photon level,
which slightly depends on the exact pulse shape, is ap-
proximately equal to Aw. We may now speak of spectral
focusing at the two-photon level, if we can reach the situ-
ation in which the major part of the energy is concentrat-
ed in a bandwidth centered around 2w, which is much
smaller than Aw.

In our realization of this situation, the nonlinearity of a
multiphoton process [1] plays a crucial role. In a one-
photon process, a level at a certain energy above the ini-
tial state can only be excited by a photon of exactly that
energy, irrespective of the bandwidth of the applied field.
For a multiphoton process, however, this is no longer
true. Due to the nonzero bandwidth of the excitation
pulse, different combinations of photon energies add up
to the same final energy, so that the final multiphoton ex-
citation probability is determined by interference of the
different excitation paths. Obviously, this interference is
not necessarily constructive. The phase relations between
the frequency components of the pulse, often called the
“chirp” of the pulse, determine whether it is constructive
or destructive. This is similar to the situation in which
two light fields with different frequencies are applied to a
system. If both fields can drive a certain transition, but
with a different number of photons, then the total transi-
tion probability depends on the relative phase between
the two fields (see, e.g., [2,3]).

In addition to the chirp, the power spectrum of the ex-
citation pulse is important, since it determines the rela-
tive occurrence of the various frequencies, and hence the
relative weight of the various excitation paths. This im-
plies that the excitation probabilities at a multiphoton
level critically depend on the amplitudes (power spec-
trum) and phases (chirp) of the frequency components of
the pulse. An example of this subtle dependence was
presented in Ref. [4], where the effect of a frequency
chirp on the center of gravity of two-photon absorption
peaks was considered.

For a two-photon process, the interference between the
different excitation paths greatly resembles the interfer-
ence between light paths after diffraction from a slit, re-
sulting in a Frensel-diffracted pattern. This analogy will
be discussed in greater detail in Sec. II. Thereafter, in
Sec. III, several experimental results will be presented
which illustrate this analogy. The experiments, frequen-
cy doubling in a nonlinear crystal and two-photon excita-
tion of Rydberg states in rubidium, were performed with
femtosecond laser pulses with well-defined power spec-
trum and chirp. Finally, in Sec. IV, it will be seen that
this analogy can be used fruitfully; translating the ideas
related to the well-known Fresnel zone plate to the situa-

20y —p— p— )

W —f— IA(»
0 ——
FIG. 1. The basic situation that could be termed spectral
focusing, shown for a two-photon process. The effective band-

width at the two-photon level is much smaller than the band-
width Aw of the excitation pulse.
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tion of the two-photon process shows us how to choose
the power spectrum and chirp to create pulses which
indeed achieve spectral focusing at the two-photon level.
Several experimental demonstrations of this effect will be
given.

II. ANALOGY BETWEEN A TWO-PHOTON PROCESS
AND FRESNEL DIFFRACTION

In this section we will discuss an analogy between a
two-photon process driven by a chirped pulse and Fresnel
diffraction from a slit. Consider a two-photon process
driven by a pulsed field E(¢). The effective field that
drives the two-photon process through the induced (non-
linear) polarization is then proportional to E(¢) (in the
absence of intermediate resonances at the one-photon lev-
el). Its Fourier transform E'?(w) determines the fre-
quency response at the two-photon level. According to
the well-known Fourier relationship between multiplica-
tion and convolution, E‘®*(w) can be expressed as a
(self-)convolution of E(w), the frequency description of
the original pulse:

EPw)= [ do'E(w)E(0—w') . (1

This formula expresses the notion that the effect of the
pulse on one particular frequency at the two-photon level
is found by a summation of all combinations of frequen-
cies out of the fundamental pulse that add up to that par-
ticular frequency. Note that E?(w) peaks at 2w, if
E (w) peaks at .

If we assume that E(w)=|E(w)|e/*? is symmetric
around g, s0 E (wy+6w)=E (0,—dw), then E?(w) at
exactly twice the central frequency @, reduces to

E(Z)(2a)0)=f‘00 do'|E (0')]?e28e) ()

So E¥(2w,) can be written as a simple sum over all fre-
quencies of the fundamental pulse, each weighted by
|E(w)]? (its power spectrum), taking into account the
phase of each frequency component ¢(w).

A similar type of sum over weighted phases is encoun-
tered when Fresnel diffraction from a slit is studied [Fig.
2(a)]. A line source L (directed perpendicular to the pa-
per) illuminates a slit S (width Az, extending from
z=—1Aztoz=+1Az) at a distance L,. The (Fresnel-)
diffracted pattern is recorded on a screen P at a distance
L, behind the slit. Calculating the diffracted intensity at
P means summing up the contributions from all possible
paths from L to P through a point z of the slit, taking
into account the phase ¢(z) of each contribution. The
origin of the phase differences between the various paths
is the difference in geometrical path lengths, relative to
the wavelength of the light A. For the point O, assuming
Az <<L,,L, this phase is given by
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(for a more rigorous treatment of Fresnel diffraction, see
standard textbooks on optics, e.g., [5-7]). Note that
(1/L{+1/L,) is the sum of the curvatures of the wave
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FIG. 2. The analogy between Fresnel diffraction from a slit
and a two-photon process with a chirped pulse. (a) Fresnel
diffraction: the line source L illuminates the slit S, and the
diffraction pattern is recorded on the screen P. Each part of the
slit contributes to the intensity at O with its own phase. Full
and dashed curves represent the intensity and phase profile over
the slit, respectively. (b) Two-photon process with a chirped
pulse: each frequency within the fundamental bandwidth con-
tributes to the intensity at 2w, with its own phase. Full and
dashed curves represent power spectrum and phase profile of
the fundamental pulse, respectively.

fronts (=phase fronts) over the slit for waves coming
from L and O, respectively.

If one now introduces a dimensionless form of z,
5 [ 1 { 172

Ll 4+ , 4
AL, L, @

V=2

it is possible to write the diffractive field at O,E,, in
terms of the well-known Fresnel integrals (again, see
[5-7D,

+Av/2 : 2
i(m/2)v
Ey f dve . 5
—Av/2

Equation (5) indeed expresses the sum over phases
[¢(v)=(m/2)v?], similar to Eq. (2). It does not, however,
contain a v-dependent weight factor. This is a result of
the approximation Az <<L,L,, which implies that the
intensity over the slit is considered to be uniform. So in
the case of both Fresnel diffraction and the two-photon
process, a ‘“path-integral” is encountered, summing up
the various contributions of all paths and keeping track
of the phase of each contribution.

These integrals, Egs. (5) and (2), respectively, can then
be mapped onto each other completely, if we drive the
two-photon process with a pulse E(0)=|E(w)le’®’
with the following characteristics:

E if —fAo<(0—wy)=1Ao

E ()= 0 if lo—wol > 1Aw,

(6)

do)=alo—wy)? .

The first requirement means that the power spectrum is
square shaped with width Aw. This is the analog of the
uniform illumination of the slits with width Az. The
second requirement means that the phase profile over the
frequencies is quadratic, as is the phase profile over the
slit. In ¢(w), a measures the curvature of the phase
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profile, as does (1/A)(1/L,+1/L,) in the case of Fresnel
diffraction. This is schematically illustrated in Fig. 2(b).
In the case of Fresnel diffraction, the diffraction pattern
is fully determined by the dimensionless variable Av,
denoting the product of the slit width and the square root
of the curvature of the phase front [see Eq. (4)]. One
therefore expects the effect of the two-photon process to
be fully determined by VaAw, which is also dimension-
less. This is indeed the case, and we will come back to
this point in Sec. III.

It should be noted that E(w) as defined in Eq. (6)
represents a chirped pulse since ¢ is not a linear function
of o [Fourier transformation of a pulse with a phase that
depends on o only linearly shows that such a phase
causes a trivial translation of the pulse in time:
E(t)—>E(t+7); the pulse itself remains unchanged].
Due to this “quadratic phase chirp” the pulse has a
time-dependent frequency. For example, Fourier trans-
forming a pulse with a Gaussian enveloPe and a quadra-
tic ¢(w) results in E (¢)=|E( t)le' ©ot bt =|E (1)]e’" (b
is a constant), with E(t) Gaussian and w(t)=58¢(t) /St
changing linearly in time. Therefore such a chirp is often
called a linear frequency chirp. However, for an arbi-
trary pulse shape, including the square shaped |E(w)| of

g. (6), a phase of the form ¢(w)=alw—w,)* does not
imply that w(¢) is a linear function of time.

So far we have discussed the analogy for exactly twice
the central frequency of the fundamental pulse 2w, and
the central part on the screen O. For frequencies detuned
from 2w, and points away from O, the analogy no longer
strictly holds. The reason is that Fresnel diffraction
represents a one-photon (linear) process, in contrast with
the (nonlinear) two-photon process; in the case of Fresnel
diffraction, every part of the slit contributes to the inten-
sity at every part of the screen. On the other hand, not
every frequency contributes to every frequency at the
two-photon level because of energy conservation. For ex-
ample, there is no frequency ' within the bandwidth of
the pulse such that o' +(wy—1Aw)=(2wy+Aw).
Therefore the frequency (w,—3Aw) does not contribute
to the frequency (2w,++Aw) at the two-photon level.
This exclusion mechanism would be the equivalent of a
slit that is being closed as the diffraction pattern at a
point away from O is recorded. The closing of the slit
proceeds linearly with the distance from O; for observing
the pattern at O the slit is opened completely, while for a
distance Az away from O, the slit is just closed. In
mathematical form, this difference between the two-
photon process and Fresnel diffraction can be seen from
the integration boundaries when the generalized (de-
tuned) forms of Egs. (2) and (5) are considered:

ED[2Awp+80)]« [ A7y e 200 )
—Aw/2+ b0l
and
+Av/2+ |8v| : 2
Eo(8v)«< i(m/2w ,
P ) f—Au/2+|6u[ ¢ ®)

where Ep(8v) denotes the diffracted field at a point v
away from O. In the following discussion, we will not use
this idea of the “‘variable slit width,” since all important

features of the analogy are already present in the case of a
constant width.

III. EXPERIMENTAL DEMONSTRATION
OF SPECTRAL DIFFRACTION

Since a Fresnel diffraction pattern shows diffraction
fringes, one also expects, on the basis of the analogy de-
scribed in the preceding section, “diffraction fringes” in
two-photon excitation spectra resulting from pulses with
a square-shaped power spectrum and a quadratic phase
chirp. In this section, two experiments will be described
in which these fringes are indeed observed: frequency
doubling in a nonlinear crystal and two-photon excitation
of Rydberg states in rubidium.

In order to perform these experiments with well-
defined pulses, use was made of a laser system providing
short pulses with accurately tunable wavelength, band-
width, and chirp (for details, see [8]). Pulses from a
colliding-pulse mode-locked (CPM) dye laser, with a cen-
tral wavelength of 620 nm, were amplified in dye cells,
which were pumped at 10 Hz by the second harmonic of
a Nd:YAG (yttrium aluminum garnet) laser. To provide
a tunable wavelength, these pulses were focused in water
to generate a wavelength continuum. Selection of the
desired wavelength was performed with a pulse shaper [9]
(Fig. 3). This device consists of a grating, a lens, and a
mirror placed in the focal plane of this lens, on which the
various frequencies coming off the grating are separated.
By placing a slit in front of the mirror, both central fre-
quency and bandwidth of the pulse coming out of the
shaper can be chosen arbitrarily. These pulses were
amplified again to an energy of ~20 uJ. An example of a
measured power spectrum of the amplified pulses is given
as an inset in Fig. 3.

The shaper was also used to adjust the chirp of the
pulses. If the distance between grating and lens is exactly
the focal distance of the lens f, then the path length
through the pulse shaper does not depend on the frequen-
cy. If, however, this distance is varied by Ax, different
frequencies will no longer travel the same distance
through the pulse shaper. This implies that the frequen-
cy spectrum of the pulse before the shaper, E(w), is
changed to E (w)e'# after the shaper. If the bandwidth
of the pulse is not too large (< 10 nm), this extra phase is
very well described by a Taylor expansion of ¢, in which
only the first nontrivial order is kept: ¢(o)=a(w—w,)?,
where a is proportional to Ax. The proportionality fac-
tor can be explicitly expressed in terms of experimental

M
595.5 596 596.5
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f

FIG. 3. Pulse shaper: G is the grating, L is the lens, and M is
the mirror with a mask in front of it. Inset: square-shaped
power spectrum of a pulse coming out of the shaper.
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parameters: grating angles, grating spacing, and wave-
length (see [10] for a more detailed description).

The first two-photon experiment we performed to
demonstrate the diffraction fringes was optical second-
harmonic generation (SHG) in a nonlinear crystal. With
the pulse shaper, pulses were made with a central wave-
length of 605.6 nm and a 2.8-nm bandwidth, correspond-
ing to a chirp-free pulse duration of 380 fs. These pulses
were frequency doubled in a KDP (potassium dihydrogen
phosphate) crystal. The power spectrum of the
frequency-doubled light was then measured with a mono-
chromator (SPEX 1870) and an optical multichannel
analyzer (EG&G 1453A). The length / of the KDP crys-
tal was 0.5 mm, short enough to ensure that all frequen-
cies within the bandwidth of the pulse were properly
phase matched (Ak,,,,/=0.4m, where Ak, is the maxi-
mal phase mismatch).

For three different values of the chirp a, the measured
power spectra are given in Fig. 4(a). The spectra clearly
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FIG. 4. (a) Experimental (full lines) and theoretical (dashed
lines) power spectra of frequency-doubled light resulting from
pulses with a square-shaped power spectrum and increasing
values of the chirp. The wiggles can be seen as diffraction
fringes at the two-photon level, resulting from interference be-
tween the various excitation paths. (b) Comparison between the
shapes of the two-photon power spectrum resulting from the
pulse with the largest chirp (full line) and the Fresnel diffracted
pattern that results from the situation with a corresponding cur-
vature of the phase front (dotted line) The label “detuning”
refers to the frequency difference with the central frequency in
the case of the two-photon process, and to the distance between
a point and the central point on the screen in the case of Fresnel
diffraction [see also Figs. 2(a) and 2(b)].
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shows wiggles: the diffraction fringes. The measured re-
sults are in very good agreement with the results of a cal-
culation of |E‘®(w)|?, according to Eq. (1), using the
pulse defined by Eq. (6).

Despite the fact that the analogy is not perfect for fre-
quencies detuned from 2wy, as pointed out in Sec. II, the
properties of the fringes completely match those of
Fresnel diffraction [Fig. 4(b)]: going from the center to
either side of the pattern, the fringes become wider, the
maximum of each fringe grows higher, and its minimum
deepens (for a whole series of plots of Fresnel-diffraction
patterns see, e.g., [7]).

To obtain some insight into the number of fringes, con-
sider all combinations (w,w,) that add up to 2w
o tw,=2w, It is clear that they have the form
0 =wy— 8w, w,=wy+8w (where —1Aw=8w=1Aw).
According to Eq. (6) this corresponds to phases
#,=¢,=a(dw)?, so that the total phase of such a path is
b =0, +0,=2a(8w)>. The largest phase difference
occurs between the extreme paths—the one with 8w =0
(s0 w;=w,=w,) and the one with Sw=1Aw (so
0 =0y— 100, 0,=0yt1A0)—Ady =laldw)’. If
A¢,., amounts to =7 these extreme paths interfere des-
tructively, which causes the development of a local
minimum in the two-photon spectrum at 2w,
Equivalently, if A, ,,~27 then the interference is con-
structive, resulting in a local maximum. Then, however,
there will be two frequencies, detuned from 2w, for
which the extreme paths leading to these frequencies
have a phase difference of 7. This results in two local
minima at these freugencies, and so forth. This line of
reasoning shows that the total number of peaks in the
two-photon spectrum N can be estimated by

A 2
+ ¢max:1+a(Aw) .

9
T 2 ©

N=1

It is clear that N is completely determined by the dimen-
sionless variable V' aAw, which has already been men-
tioned in Sec. II. This can now be understood, because
its square a(Aw)? is a direct measure for the maximum
phase difference over the excitation pulse. The values of
a(Aw)? for the results in Fig. 4 are 4.77, 7.0, and
13. 6, respectively. Consequently, on the basis of Eq. (9),
one expects three, four, and seven fringes in the spectra,
in accordance with the results.

In order to demonstrate that the observed diffraction
fringes are a property of the two-photon process and not
due to some spurious effects in the KDP crystal (e.g.,
phase-match conditions, depletion of the fundamental
pulse), we also performed another experiment: two-
photon excitation of electronic Rydberg states in rubidi-
um, resulting almost exclusively in population of d states.
The bandwidth of the excitation pulse (1.56 nm, corre-
sponding to a chirp-free pulse duration of 680 fs) was
large compared to the spacing of the levels, so that
several states were excited around n/ =28d. After excita-
tion, the populations of the levels were probed with
pulsed field ionization. The field-ionized electrons were
detected with a channel plate. The electric-field strength
of the ionizing pulse increased in time, so that the elec-
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FIG. 5. Distributions of populations over Rydberg levels
after two-photon excitation with pulses with a square-shaped
power spectrum for two different values of the chirp. The
dashed curves give the theoretically expected envelopes of the
excitation spectra.

tron signal, recorded as a function of time, showed con-
secutive peaks corresponding to Rydberg levels with de-
creasing principal quantum number (for details, see [10]).

Two measured results, for a(Aw)?>=3.6m and 5.6, are
shown in Fig. 5, as well as the corresponding calculated
envelopes for the distributions over the excited levels.
The diffraction fringes are clearly visible in the envelopes.
The main part of the discrepancy between the measured
and calculated results can be attributed to the fact that
the horizontal axis for the measured results represents a
linear time scale which is not a linear energy scale, due to
the characteristics of the field-ionizing pulse.

IV. EXPERIMENTAL DEMONSTRATION
OF SPECRAL FOCUSING

One of the useful aspects of an analogy between two
fields is the fact that it can often be used fruitfully to
translate an idea well known in one field to another field
where it has not yet been recognized. In this section, a
translation will be given of the Fresnel zone plate, result-
ing in the possibility of spectral focusing in multiphoton
excitation. Several experiments illustrating this effect
will be discussed.

Although the principle of the Fresnel zone plate is dis-
cussed in many textbooks (e.g., [5]), we will briefly sum-
marize the relevant ideas as a starting point of the subse-
quent extension. From Fig. 2(a) it is clear that the short-
est path from the light source L to the central point on
the screen O is the straight line LO. All other paths
through the slit are longer, resulting in a phase difference
between these paths and the direct one. For some paths
this phase difference is ~2wn, resulting in constructive
interference, while for others it is ~2m(n +1), resulting
in destructive interference. A mask in the slit which
blocks those zones through which paths go that interfere
destructively greatly enhances the intensity at O: the
light is focused. Such a mask is called a Fresnel zone
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plate.

In practical situations, a Fresnel zone plate is used for
focusing, instead of a normal lens, if no transparent lens
material is available for the wavelengths of the light (or
particles) that are to be focused. They have, for example,
been used for the focusing of x rays [11], slow neutron
beams [12] and, very recently, even atoms [13].

Returning to the analogy, one sees that it should be
possible to enhance the spectral energy at 2w, by block-
ing those paths to 2w, that interfere destructively because
of their phase difference with the shortest path. As was
shown in Sec. II, the total phase of the path
(wp—bw,wy+8w), leading to 2w, is given by
bior(80)=2a(8w)>. One now has to divide the paths into
zones, such that the maximum phase difference within
one zone is m. The zone boundaries are given by dw,,
n=12,...,n,,, where (n—1)m<é¢,<nm for all
values of 8w in the interval (6w, _,8w,). The maximal
phase ¢, =1a(Aw)* determines n,,,. This is illustrated
in Fig. 6 for the case of n,,, =4. Note that the width of
the zones is not equal, since ¢, is not a linear function of
8w. The width of the nth zone is proportional to
(V'n —V'n —1), which approximately decreases with n
like 1/V'n. The enhancement of energy at 2w, can now
be obtained by either blocking all odd frequency zones (n
odd), or all even frequency zones (n even). This blocking
removes the destructive interference between paths from
neighboring zones which have a phase different of .

Following the procedures of pulse shaping by Weiner,
Heritage, and Kirschner [9], the obvious place to select
the desired frequency intervals is right in front of the
mirror in the pulse shaper (Fig. 3), since the frequencies
are separated there. It would therefore suffice to put a
mask in front of the mirror with open slits at those posi-
tions that correspond to, for example, all odd zones.
However, there is an experimental problem: the frequen-
cies on the mirrors are only focused down to the
diffraction limit d;;;, which is proportional to Af/D,
where f is the focal length of the lens, and D the diameter
of the light beam before the shaper. Since it is useless to
make slits with a width smaller than a few times the
diffraction limit (such a slit cannot perform proper fre-
quency selection), the number of Fresnel zones that can
be used is limited. In order to make dy;;,, as small as pos-
sible, one can decrease f, or increase D. The first option,
however, does not work, because the separation of the

#(w)

-6 -6 8 [
—A(.;/Zwi“"l W, W, bwg A;U/Z

(o)

FIG. 6. The phase profile over the bandwidth divided into
(Fresnel) zones: a new zone starts each time the total phase of a
path to 2wy, 2¢(w), exceeds an integer number of 7.
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frequencies on the mirror is also proportional to f. This
implies that the “resolving power” of the shaper, which is
the frequency separation divided by the diffraction limit,
is independent of f. Consequently, D must be made as
large as possible in order to decrease d);;,. In our case the
practical limit of the beam diameter was D =13 mm. In
combination with f =250 mm, this results in d_  ~30
pm. This implies that the smallest useful slit width was
=~ 100 pm, which limited the number of zones to 6.

The actual total width of the zone plate we used was
2.0 mm, and contained a smallest zone of 97 um. It was
designed to pass the first three odd zones of an appropri-
ately chirped pulse, and block the even ones. Note that
the chirp a has to be adjusted to make the slits coincide
with the actual Fresnel zones. The effect of the zone
plate on the power spectrum of the pulse coming from
the shaper can be seen in Fig. 7. All frequency intervals
are well resolved.

The effect of the zone plate on freugency doubling is
shown in Fig. 8. In the left column measured power
spectra of frequency-doubled light are given for four situ-
ations. The two results in the lower part of the figure
were obtained with pulses having the same chirp, but a
different form of the power spectrum. The dotted line
represents the results for a pulse with a square-shaped
power spectrum, a bandwidth of 1.6 nm and a chirp such
that %a(Aw)2=6ﬂ', which amounts to six Fresnel zones.
If the zone plate is used to block the even zones, the full
line is meaured, clearly showing the enhancement of en-
ergy at 2w, at the cost of energy at detuned frequencies.

The spectra of the frequency-doubled light given in the
upper part of Fig. 8 werre obtained with chirp-free pulses
having the same height of the power spectrum
I(w)=|E(®)|* as the chirped pulses. The results show
that one really can speak of focusing. The full curve re-
sults from a pulse with a bandwidth of 0.58 nm, which is
equal to the width of the first (central) zone of the pulse
described above. Although this pulse is chirp-free, the
yield at 2w, is lower than that of the focused result. Fur-
thermore, the two-photon spectrum is a factor of 2.1
broader [full width at half maximum (FWHM)], while the
bandwidth of this pulse is a factor of 2.5 smaller than
that of the one used to obtain the focused result. If a
chirp-free pulse is used with a bandwidth such that the
frequency-doubled spectrum has the same width
(FWHM) as the focused one, the dashed curve results. In
this case, however, the yield at 2w, is a factor of 6.7
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FIG. 7. Power spectrum of the excitation pulse, with the
Fresnel zone plate put into the shaper. The zone plate blocks
the first three even Fresnel zones.
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FIG. 8. Experimental (left) and theoretical (right) power
spectra of frequency-doubled light for four situations, which
show the effect of spectral focusing. Lower part: the dotted line
results from a pulse with a chirp that amounts to six Fresnel
zones. When the even Fresnel zones are blocked, the yield at
2w, is enhanced at the cost of yield at detuned frequencies (full
line). Upper part: results from chirp-free pulses. In the case of
the full line, the bandwidth equals that of the first (central)
Fresnel zone of the pulse used in the focused result. In the case
of the dashed line the bandwidth is such that the width
(FWHM) of the resulting frequency-doubled spectrum is the
same as for the focused result. A (vertical) blowup by a factor
of 6.7 is given for the dashed result (dotted line).

lower. The dotted curve is a 6.7 X vertical blowup of the
dashed one, drawn to facilitate comparison of the results.
All measured results are reproduced well by calculations
using Eq. (1) (right column of Fig. 8).

From the data in Fig. 8 it is clear that a chirp-free
pulse cannot give the same combination of small spectral
width and high yield at 2w, as obtained by spectral focus-
ing. Thus spectral focussing can be used for efficient
selective excitation of one (discrete) level out of a series.
For the case of two-photon excitation of Rydberg states
in rubidium (see Sec. III), the basics of this notion are il-
lustrated in Fig. 9. The dotted curve is the distribution of
Rydberg levels resulting from the same chirped pulse as
the one used to obtain the results of Fig. 8. Using the
zone plate results in the distribution given by the full line,
which mainly consists of one, efficiently excited, level.

As a more pronounced demonstration of the unique
combination of high yield and good spectral resolution, a
wavelength scan over the Rydberg series was made. The
wavelength was scanned by rotating the grating of the
pulse shaper with the help of a stepper motor. After the
light pulse, the total population in the excited states, in-
tegrated over all levels, was measured. This was done by
recording the total electron yield after pulsed field ioniza-
tion. Figure 10(a) shows the result of the scan made with
the focused light. It is seen that the levels n =28 are
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FIG. 9. The effect of spectral focusing shown in the case of
two-photon excitation of Rydberg levels in rubidium: the
dashed distribution results from a pulse with a chirp that
amounts to six Fresnel zones. When the even Fresnel zones are
blocked, the full line results, showing mainly one efficiently ex-
cited level.

completely resolved, while levels up to n=37 can be
identified.

If the scan is made with a chirp-free pulse having the
same bandwidth as the first (central) zone of the chirped
pulse used in the focused result, keeping I (@) constant
[Fig. 10(b)], the yield decreases slightly, as can be con-
cluded from the vertical scale. The resolution, however,
deteriorates much more drastically (compare with the full
curve in the upper part of Fig. 8): now only levels n <24
are fully resolved, while identification of the levels al-
ready stops at n =29.

By reducing the bandwidth of the chirp-free pulse, one
can, of course, reach a spectral resolution comparable to
the case of the focused result. But then the yield de-
creases heavily [see Fig. 10(c) and compare with the
dashed curve in the upper part of Fig. 8]. One may
wonder why the signal-to-noise ratio seems the same in
Figs. 10(a) and 10(c). The reason is that this ratio is
infinitely good for both measurements; the shape of the
“wiggles” at the short-wavelength side, where many Ryd-
berg levels are excited by the same pulse, critically de-
pends on the exact shape of the pulse, which is different
for Figs. 10(a) and 10(c). The wiggles are real and not
noise in the data. These results, once more, illustrate that
a chirp-free pulse cannot reproduce the characteristics of
the focused one, given a certain height of the power spec-
trum.

Instead of keeping the height of the power spectrum
constant, one can also compare the effects of the focused
pulse and the small-bandwidth pulse when they have the
same average intensity I (which we define as the intensity
averaged over the pulse area between the two points at
half maximum). To do so, the height of the power spec-
trum of the small bandwidth pulse must be increased by a
factor of 2.1. Consequently, its yield increases by a factor
(2.1)*=4.4, which means that it is still less than the yield
of the focused result. Exactly the same numbers are
found when the comparison is made for pulses with the
same average of the intensity squared IZ

The width of the focused two-photon spectrum can be
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FIG. 10. Wavelength scan over Rydberg series in rubidium,
showing the combination of both high yield and good resolu-
tion, resulting from spectral focusing. (a) shows the focused re-
sult: the chirp amounts to six Fresnel zones, and the (three) odd
ones are passed through the zone plate in the pulse shaper. (b)
Results from a chirp-free pulse with a bandwith equal to the
wdith of the first (central) zone of the pulse used to obtain the
focused result. The resolution deteriorates heavily compared to
the focused result. In (c) the resolution has been improved
again to the level of the focused result by reducing the band-
width of the chirp-free pulse, keeping I(w) constant, but this
also reduces the yield (note the difference in vertical scales).

related to the chirp a and the bandwidth Aw. To do so,
the equivalents of the chirp and the bandwith in terms of
the corresponding parameters of Fresnel diffraction are
useful (see Sec. II): a<(1/A)1/L,+1/L,) and
Aw<>Az. Now suppose that the (normal) zone plate is
used as a lens for a parallel beam with diameter D. This
implies [see Fig. 2(a)] Az—D, L,— o, and L, = f, where
f denotes the focal length of the lens. Then the above-
mentioned translations reduce to a<>1/Af and Aw<>D.
Using these identifications the diffraction-limited width
of a lens, which is proportional to Af /D, translates to a
diffraction limited width of the focused two-photon
power spectrum which is proportional to 1/aAw. Since
the number of Fresnel zones N, is proportional to
a(Aw)?, the focal width is proportional to Aw/N, as well.
This relationship was also verified with a computer pro-
gram that calculated the effect of various spectral zone
plates. It shows that the focusing power, given a certain
bandwidth Aw, can largely be enhanced by increasing the
number of Fresnel zones.

V. CONCLUSIONS

In this paper we have demonstrated an analogy be-
tween a two-photon process and Fresnel diffraction from
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a slit. Although the latter process is linear (one photon),
whereas the first is nonlinear, both a Fresnel-diffracted
pattern and a two-photon power spectrum can be con-
sidered to result from interference between different
paths leading to one final state. In the case of a multi-
photon process, the different paths are formed by
different combinations of frequencies out of the broad
bandwidth of the pulse which add up to the same final en-
ergy. Since the phases of the frequencies are determined
by the chirp of the excitation pulse, one can control the
multiphoton excitation spectra by controlling chirp and
bandwidth of the pulse.

Using these ideas, it is possible to shape pulses which
give rise to focusing of spectral energy at the two-photon
level: most of the energy at this level is then concentrat-
ed in an effective bandwidth which is much smaller than
the bandwidth of the original excitation pulse. The
characteristic power spectrum and chirp of these pulses
result from the use of a spectral Fresnel zone plate, which

is a translation of the conventional Fresnel zone plate. In
several experiments it was demonstrated that the effect of
spectral focusing offers a unique combination of high ex-
citation yield and small effective bandwidth that cannot
be obtained using chirp-free pulses, given a fixed height
of the power spectrum of the pulses.
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