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Two-photon double-beam optical bistability in the dispersive regime
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We report the observation and theoretical interpretation of two-photon double-beam optical bistabili-

ty, where the nonlinearity is obtained in a two-photon transition in a sodium atomic beam. The experi-
mental results, obtained in the dispersive regime, are compared with a simple crossed-phase-modulation
model, and also with a numerical solution of the interaction between the cavity fields and three-level
atoms, using the optical Bloch equations. For a wide range of parameters, both models agree with the
experimental results. Oscillatory regimes may also appear, in agreement with the predictions of the
complete model.

PACS number(s): 42.65.Pc, 42.50.—p

I. INTRODUCTION

Optical bistability (OB) has been the subject of continu-
ous attention for many years [1]. Since the beginning of
this interest, the intrinsic nonlinear character of the two-
photon transition was thought to provide a convenient
framework with which to obtain bistable behavior [2].
Two-photon OB, either in its absorptive part or in its
dispersive part, has been theoretically studied [3—6] and
experimentally observed, first by using a three-level atom-
ic cascade [7], and also in solids [8,9]. All these experi-
ments were performed in the degenerate case, where the
nonlinearity acts on one mode of the electromagnetic
field. The possibility of achieving multistable transmis-
sion characteristics by the interaction of two different
modes of the field in a resonator filled with a two-photon
nonlinear medium was also analyzed [10].

Also interesting is the dynamical behavior of optically
bistable systems that utilize a two-photon transition.
This problem has been analyzed in the degenerate case
[11]by using an eff'ective two-level model [12,13]. This
model is obtained from the complete three-level descrip-
tion [14] by eliminating the variables of the intermediate
level, under the condition of large detuning between the
one-photon transition and the field frequency. The
analysis of Ref. [11]reveals the presence of an instability
that leads to the onset of spontaneous undamped oscilla-
tions in the output intensity. This instability, which be-
comes most invasive in the bad cavity limit (i.e., when the
cavity damping rate is much larger than the atomic relax-
ation rates) belongs to a class of instabilities that is
universal for systems displaying two-photon processes

We recently considered the case of an atomic three-
level system excited by two difFerent laser beams [16,17]

with frequencies coo
' and coo

' close to the atomic reso-
nances. For a certain range of parameters (which we call
the dispersive y' ' limit), the basic physics of the non-
linear coupling can be understood very simply as a
crossed-phase modulation effect: the refractive index for
one beam is proportional to the intensity of the other
beam. When this coupling is reinforced by the feedback
of a cavity, bistable behavior, bifurcations and oscilla-
tions phenomena may appear.

In this paper we report the experimental observation of
two-photon bistability under nondegenerate conditions,
i.e., with a double-beam configuration. Under appropri-
ate conditions, spontaneous oscillation in the output in-
tensities of the two beams are also observed. We com-
pare the experimental data with the theoretical predic-
tions obtained from the complete three-level model, and
also from a much simpler model obtained in the disper-
sive g' ' limit. In Sec. II we describe the experimental re-
sults, in Sec. III we discuss the complete, three-level
semiclassical model, and in Sec. IV we discuss the latter's
y' ' cubic approximation in the steady state. Section V is
devoted to the illustration of the numerical results and to
their comparison with the experimental data. The con-
clusions of this work are given in Sec. VI.

II. EXPERIMENTAL RESULTS

The experimental setup is shown in Fig. l. The levels
involved consist of the 3s, /2-3p3/2 3d5/2 atomic cascade
in sodium. Two light beams at the required wavelengths
of 589.0 (beam 1, yellow) and 819.5 nm (beam 2, infrared)
are obtained from two cw, electronically stabilized dye
lasers, pumped by a single argon-ion laser. A sodium
atomic beam provides a density of 5X10" atoms/cm,
with a Doppler width of about 200 MHz full width at
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FIG. 1. Experimental setup. Two lasers at 589 and 819.5 nm
are tuned close to resonances of the 3s»2-3p3~, -3d», cascade in
a sodium atomic beam. The cavity resonates for each beam and
is single-ended. The intracavity intensities are monitored
through the dichroic mirrors M1 and M2.

tivities of the input and output mirrors for both beams
are T, = T2=0.025, while the total losses (including the
mirror transmittivity) are P, =Pz=0.03. The cavity
width for each mode is therefore about 15 MHz FTHM.
The light beams inside the cavity are circularly polarized
in order to optimize the nonlinear coupling, and the out-
put beams, reflected by the cavity, are separated from the
input beams using prism polarizers. This configuration
also reduces optical feedback inside the dye lasers. The
cavity resonances for each mode of the field are observed
through the small losses of the corresponding high-
reflecting mirror.

Sodium is, of course, not a pure three-state system, and
its real structure should be taken into account. However,
for one-photon detunings (usually of the order of 10
GHz) much larger than the width b,F= 1.8 GHz between
the two hyperfine sublevels of the fundamental 3s, &z, we

(a)

half maximum (FWHM). The atomic beam is surround-
ed by a linear optical cavity (5.5 cm long, 5-cm mirror ra-
dius). The two laser beams are mode-matched to the cav-
ity so that they resonate with only the corresponding lon-
gitudinal fundamental mode. Mirror Ml (M2) nearly to-
tally reflects the infrared (yellow) beam. The transmit-

FIG. 2. Experimental observation of two-photon double-
beam optical bistability. The lower curves are the resonances of
the 589-nm beam and the upper curves those of the 819.5-nm

beam, when the cavity length is swept back and forth. Curves
labeled (a) represent the separate resonances (other beam turned
off): the relative widths of the curves are due to the wavelengths
difference between the two fields. Curves (b) and (c) are taken
when both beams can resonate approximately for the same cavi-

ty length.

FIG. 3. Each column refers to a different case. All the parts
of the figure are in pairs; the upper (lower) curve corresponds to
the ir (yellow) field. Figures labeled (a) exhibit experimental
traces obtained by a backward sweep of the cavity length for a
higher ir input power (0&"=46 and Oz" = 108; see Sec. III). Fig-
ures labeled (b) show the intracavity intensities rx, ~

and ~x, r

as a result of the numerical solution of the complete three-level
model obtained by a slow backward sweep of the cavity length.
The dark regions correspond to the domains of spontaneous os-
cillation in the field intensities. The parameters are C, =31 300,
C2 = 19 540, and 6=2400, 5=400, y, =30 rad/s, and

y2/y, =0.83. The initial values for the cavity-detuning parame-
ters 8, and 0& used in the sweep are tf, =2C, ih and 0,=1.7,
2.7, and 4.7 for left-hand, middle, and right-hand figures, re-
spectively. The figures labeled (c} correspond to the curves of
Figs. 1(b), 2(b), and 3(b), respectively, after averaging over the
spontaneous oscillations.
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can just consider the fine structure of the levels involved
in the transition. In the o + /o + light-beam
configuration, the interaction between the states

~3p &=—'„~=—,'), and ~3d &=—'„
M= —', ) is by far the most intense. Since the other cou-

plings can be neglected, we have a nearly closed, three-
state system.

Typical results are reproduced in Fig. 2. In each part
of the figure, and also in Figs. 3 and 5-8, the upper
(lower) trace refers to the infrared (yellow) beam. The
curves are obtained by sweeping the cavity length for-
ward (left-hand part) and backward (right-hand part).
Curves labeled (a) show the separate resonances of the
two fields when the other field is turned off. Near the
one-photon resonance between the 3s&/z-3@3/p levels, the
Fabry-Perot curve of the 589-nm beam can become mul-
tivalued (one-photon bistability}. By increasing the one-
photon detuning, this behavior disappears and the cavity
resonance is then just shifted due to linear dispersion.
Curves (b) and (c) are then obtained when the two beams
resonate approximately simultaneously in the cavity.
The bistable behavior is obviously mixed with a switching
phenomenon, and the observed curves depend both on
the respective resonance positions and on the intensity ra-
tio. As we will see, this is clearly a signature of the
crossed-phase modulation effect.

When the intensity of the infrared (ir) beam is in-
creased, the traces become more irregular [see Figs. 3(a),
which exhibit the result of a backward sweep of the cavi-
ty length]. As we will discuss in the following sections,
this feature is due to the emergence of spontaneous un-
damped oscillations in the intensities of the two fields.
These oscillations are averaged out by the detectors in
Fig. 3, but have been observed directly using faster detec-
tors, under conditions of fixed cavity length.

2

P)=

P3=

FIG. 4. Energy-level scheme.

0 0 0
0 0 0
0 0 1

0 0 0
0 1 0
0 0 0

1 0 0
0 0 0
0 0 0

(2)

III. THEORETICAL MODEL

The scheme of the energy levels is shown in Fig. 4.
The parameters y, and yz denote one-half of the transi-
tion rates of the atomic population from the intermediate
level, 2, to the lowest level, 1; and from the highest level,
3, to the intermediate level, 2, respectively. The observ-
ables of the single atom correspond to 3 X 3 matrices. In
particular, the coherences between levels 1 and 2, 2 and
3, and 1 and 3 correspond, respectively, to the lowering
operators

0 0 0
r = 0 0 0

0 1 0

0 0 0
s = 1 0 0

0 0 0

0 0 0
t = 0 0 0

1 0 0

and to the corresponding adjoints (raising operators),
r+, s+, t+. Similarly, the projection operators onto levels
1, 2, and 3 correspond, respectively, to the operators

If we indicate by p the density matrix of the atom and as-
sume that the electromagnetic field is in the vacuum
state, the time evolution of p is governed by the master
equation:

(3)

where H~ is the Hamiltonian of the free atom,

3I„=gE;P;, (4)

where the last term describes dephasing processes which
arise from elastic collisions. Hence the polarization vari-
ables r, s, and t have damping rates y~„y~,and

y~, respectively, where

and E; (i =1,2, 3) are the energies of the three levels.
The Liouvillian A~ accounts for the relaxation processes
of the atom and is given by

Aap=yi([r p, r+]+[r,pr+])

+)' ([s p, s+]+[s,ps+])
3

+ gg, ([P p, P;]+[P,,pP, ]},
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ylv y1+ I1+92

yl y1+ y2+ 92+ 93

yi, =y2+nl+n3 ~

0 0 0
1

r = —0 1 03 2
0 0 —1

1
1

s = —03 2
0

0 0
—1 0
0 0

(7)

On the other hand, the two population-inversion vari-
ables

2( T )I /2

y1= P 1

2( T )I/2

y2=
p 2

P 1E1

@ri.r~~

P2E 2"
(14)

ylvv= 2
y llm

(r ),

where E,'" and E2" denote the amplitudes of the two in-

put fields.
(c) Atomic polarizations

' 1/2

have relaxation rates

II

=2y 1 and
ylvw= —2
y llm

1/2

(s ), (15)

respectively. We call ~, (m2) the Bohr transition frequen-

cy between levels 1 and 2 (2 and 3), and we designate by
cou

'
(cou' ') the frequency of the driving field which is close

to resonance with the transition 1~2 (2~3). The one-
photon atomic detuning parameter is given by (see Fig. 4)

6—Q)1 COO
(1).

the two-photon atomic detuning parameter is defined as

z= —(r )

where N is the number of atoms.
(d) Population inversions

2 2m= ——(r ) n= ——(s ) .
N

'
N

In terms of these variables the semiclassical equations
read

6=~,+~,—(co,"'+~OI") .

We assume, on the other hand, that the input frequencies
co&" and coo

' are close to resonance with two cavity fre-

quencies co,'" and ~,' ', respectively, and we define two

cavity detuning parameters 01 and 02 as follows:

(0 (0
i =1,2

where k; (i =1,2) are the loss parameters for the two
modes, namely

x
&

=k
& [

—( 1+i9I )x
&
+y

&

—2CI u ],
x2 =k2[ —

( I +i 82)x 2+y 2
—2Cz w ],

v =r~„[—(I+id)v+ .,xm+ zxz],

w =yz +i(5 b) w+x2n——x', z
y~v

(g —2)(m —1)+—( I+()n1 2

r

yll yllz =
yy& 1 +l 5 Z + WX

1 UX2
yq, 4yq,

'
4yq,

(17a)

(17b)

(17c)

(17d)

(17e)

cP,
k;= l —1,2 (12)

——(x;u+x, v')+ —(x2 w+x2w') (17f)
X being the round-trip cavity length. The factor 2 in the
denominator arises from the fact that each of the two
mirrors Ml and M2 (Fig. 1) is nearly totally reflecting for
one of the two beams. In the following, for the sake of
simplicity, we neglect standing-wave effects and we simu-
late the system using a ring cavity model with a total
length equal to twice the length of the linear cavity used
in the experiment.

It is convenient to formulate the semiclassical model in
terms of normalized variables. We introduce the follow-
ing quantities.

(a) Cavity-mode amplitudes

1 1 1 1ri=r„———2 (m —1)———+4 n

2
(x2w+xzw')+ (xIu+x, v*), (17g)

4

y lln

llm

(18)

where b and 5 denote the atomic detuning parameters 6
and 5, respectively, normalized to y~„weset

P1E1 P2E2

@ri.r~~
)'" ' (13) and the bistability parameters Cl and C2 are defined as

follows:

where E, and E2 are the slowly varying envelopes of the
two intracavity fields, and p, (p2) is the modulus of the
dipole moment of the atomic transition 1~2 (2~3).

(b) Input field variables

field(

1

fieldl

c01 P2

l being the length of the atomic sample and o."" the ab-
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sorption coeScient per unit length for the lower transi-
tion 1~2. We also have

as nonlinear phase shifts 4",' and 4z"' normalized to P, /2
and P~ /2, respectively:

field n g2
4 gt

601
(20)

2

+0 4 ~2~25 2 (23a)

In Eq. (20), n„denotes the atomic density. In writing
the expression of C„wehave taken into account that
each of the two mirrors Ml and M2 (Fig. 1) is nearly
completely rejecting for one of the two beams; the same
consideration holds for the definition (14) ofy, and y~.

The model (17) holds in the uniform field limit [1(b)]
and in the plane-wave approximation. We neglect the
Doppler effect of the atomic velocity distribution since all
atomic detunings are much larger than the Doppler
width.

COI p'y
4 co

(23b)

By using the usual definition of the transverse linewidth,

3
C01

r1 6 ~ 3P1 (24)

one can obtain more symmetrical forms for these two
phase-shifts:

IV. THE y' ' APPROXIMATION

In the limit of large atomic detunings

(21)

1 ~12P1P2 IE2 I'

8 e,A'ch'5

I ~)~)pp IE1 I

'
~ eofich5

(25a)

(25b)

the steady-state equations for our model can be written in
a very simplified form which allows for a straightforward
physical interpretation in terms of g' ' processes. As a
matter of fact, in the limit Eq. (21) one can introduce ex-
pansions in power of the electric fields and keep, in the
final field equations, terms up to third order (cubic ap-
proximation). Precisely, the steady-state equations ob-
tained in this limit read

1+i 8 —2C
1

1 1

V2

y~~

4r~„h5
(22)

2 5 —6 rr imam 21+i 8z —2Cz ' ' lx, I

4y „b,5(5—E)

In the case of purely radiative damping (ri; =0,
y~„=y~ /2=y&), Eqs. (22) take the simpler form

V1

x =v' x;, V =v' y;,
C =vC;, 6'= vh 5'= v5,

with

(26)

v =rz. ~r1 (27)

The new normalized parameters defined according to
Eqs. (26) and (27) are independent of the collision rates,
and Eqs. (22) take the form

2C1
y1=x1 1+i 81—

which show us that they are equal if the field intensities
are the same in photon units: this is a characteristic of a
pure parametric effect, and can be directly derived by
solving the optical Bloch equations for a three-level sys-
tem [14]. Near the two-photon resonance and for b, ))5,
there is no one-photon bistability and this two-photon
dispersive nonlinearity is the only relevant effect.

The effect of collisions can be best identified by using a
slightly different definition for the field variables and the
parameters, namely (i = 1,2)

1+i 61 2C1 +
2b ~5

Vz
(22')

2C| lx
& I C& IX& I+ (1+T„il—(&')' b, ') 5'

Ix, I'
1+i 192 2C2

2h 5

The different terms in these two equations have clear
signification: 2C1/5 is just a linear phase shift due to the
one-photon resonance (which can be reincluded in 8&),
2C& lx| I /b, is the nonlinear dispersion due to the satu-
ration of the same one-photon transition (and responsible
for one-photon dispersive bistability), while
C| lxql /(6 5) and Calx, I

/(6~5) represent the non-
linear two-photon dispersion described above (cross-
phase modulation). These two terms can be interpreted

(28)

V2 =x2 ' 1+1 02—
( Ql )25I

Ql
X 1+T„11(5' —b, ')

91+92~coll
r1

(29)

where all effects of collisions are included in the parame-
ter
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When 5 « 6, it appears clearly that the collision-
dependent terms are reduced by a factor (5/5) (just like
the self-phase modulation effect) relative to the cross-
phase modulation effect. Therefore, the collisional con-
tributions are negligible for 1/6»T„»/A. This should
be satisfied in our experiment. This result leads also to
the interesting conclusion that the two-photon nonlinear
effect (scaling as I/5 5) is less affected by collisions than
the one-photon nonlinear effect in two-level atoms [scal-
ing as (1+T„,~)/b, ].

One can easily verify that, in the limit I/O)) T„&&/b,
in which self-phase modulation and collisional broaden-
ing are negligible, Eq. (22 ) can be written in a very com-
pact form. In fact, by setting

x, =(C2/b, ~5~
)'~ x, , y, =(C2/b, ~5~

)'~ y, ,

x, =(C, /b, '(5()' 'x„y,=(C, /&'(5))' 'y2,
2Ci

02=02

(30)

Eqs. (22) and (22') reduce to

y&

I+i(8,+ x2~ )
(31a)

y2

I+i(82+~x,
~

)
(31b)

and depend only on the four parameters y „y2,0, and 02.
Equations (31) represent the generalization of the simple
model of two-photon optical bistability given in Ref. [16].
In Eqs. (31) one must take the negative (positive) sign
when 5 is positive (negative).

It is important to note that, even if in the limit of large
atomic detunings one can obtain a cubic model that de-
scribes the steady-state behavior of the system, the same
is not true for the dynamical behavior. As a matter of
fact, a cubic model for the time evolution of the systems
holds only in the good cavity limit, k, and k~ much less
than the atomic relaxation rates, but this is not true in
the case of our experiment. This cubic model predicts
the onset of spontaneous oscillations, in qualitative agree-
ment with the experimental observations, but the oscilla-
tion frequency is proportional to k, and k2, which differs
from the experimental case.

For the same reason, one cannot perform a simple
linear-stability analysis in the cubic approximation. In
the conditions of our experiment, the linear-stability
analysis must be done by linearizing the complete model
(17) around steady state. The linear-stability analysis re-
veals, as usual, that the negative-slope parts of the
steady-state curves of ~x, ~

and ~xz~ (as a function, for
example, of the input intensities or of the cavity length)
are unstable. In addition, it is easy to meet situations in
which some segments of the steady-state curves with pos-
itive slope are unstable. In this case, one has the onset of
spontaneous oscillations in the output intensities. The
presence of these oscillatory instabilities agrees very we11

with the predictions of the models of two-photon bistabil-
ity based on the effective two-level description [11,15].

V. NUMERICAL RESULTS

In order to meet the conditions of the experiment —in
which one performs a slow forward and backward sweep
of the cavity length —in our numerical calculations, we
sweep the cavity detuning parameters 0, and 02 of the
two fields starting from initial values 0, and 0z and set-
ting 8, =8, +58, 82 =8&+ (A,z/A, , )58, where the factor
k2/k& takes into account that, upon variations of cavity
length, the variation of 8, and 82 are in the ratio A, z/A,
Some of the curves we will show display the stationary
solutions of Eqs. (17) [or the solution of Eqs. (22), if one
considers the y' ' approximation] as a function of 58,
whereas other curves are obtained by performing a slow
forward or backward sweep of 0, and 02, as described be-
fore, in the full dynamical equations (17) (i.e., including
the derivatives with respect to time). The second type of
curve can indicate the presence of oscillatory instabilities
and display the location of the unstable domains. Be-
cause the experimental curves attained by sweeping the
cavity length are obtained using a detector with a narrow
frequency bandwidth that averages the oscillations in the
output power of the two fields, we also consider curves
derived by introducing an averaging of the oscillations in
our numerical results. All the following data refer to the
collisionless case g; =0 (i =1,2, 3).

Figure 5 shows the numerical solutions of the two cou-
pled stationary equations (22) for a linear scan of the cav-
ity length with different initial positions 0, and 0z of the
two separate resonances. The bistability parameters are
C, =31300 and Cz=1.6C, for a"" 1=940 (taking into
account the double pass in the atomic beam for our ex-
perimental linear cavity). The other parameters corre-
spond to the values of the experiment shown in Fig. 2:
the detunings are 5=2400 and 5=400. The input Rabi
frequencies, expressed in y, units, are 0,'"=48 and
Oz"=66, so that y, =360 and yz =490. Note that we ob-
tain strong nonlinear effects with very small laser intensi-
ties (typical powers of the order of 1 mW). One can
clearly see a nonsymmetric behavior between 02 & 0,

(a} (b) (c)

(e)

FIG. 5. Stationary solutions of the g model for different
values of the initial detuning parameter O&(01=2Cl/4). (a)
02=0, (b) Oq=0. 7, ( ) O~=1.4, (d) 02=2. 1 (e) 0~=2.8, and (fl
O~= 3.5. The values of the the other parameters are specified in

the text.
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(b)

FIG. 6. Curves labeled (a), left and right, coincide with the
experimental curves shown in Figs. 2(b) (backward sweep) and

2(c) (forward sweep), respectively. Graphs labeled (b) are ob-

tained by a linear sweep of the cavity length in the complete
three-level model; the values of the parameters are the same as
in Figs. 5(c) and 5(e), respectively; in addition, y& =30 rad/s and

yz/y& =0.83.

(where beam 2 switches beam 1 outside its cavity reso-
nance) and 8z) 8& (where it is just the opposite). For
equal input intensities, the switching limit occurs exactly
at Oz" =6I&, but for different intensities the most power-
ful beam tends to stay longer at resonance: e.g. , if beam 2
is stronger than beam 1, then the switching limit is now
at g01im + g0

In this range of values of the input intensities and
atomic detuning parameters, the stationary solutions ob-
tained from the complete model (17) differ very little from
those given by the y' ' approximation. This can be seen,
for example, in the four panels comprising Fig. 6(b),
which corresponds to Figs. 5(c) and 5(e), respectively.
The same figure shows also the comparison with the ex-
perimental curves in Figs. 2(b) and 2(c), which turns out
to be satisfactory.

Figure 7 shows a case in which the slope of the steady-

FIG. 8. The parameters are C, =31 300, C& =27 350,
5=2400, 5=400, y, =30 rad/s, and y&/y, =0.83. The left-

hand curves display the steady-state solutions of Eqs. (17), while

those on the right are obtained by sweeping the parameter 50.

state curve leads to a double hysteresis cycle. In this
case, there is an unstable positive-slope segment of the
steady-state curve which leads to spontaneous oscilla-
tions. The presence of oscillations becomes common-
place if one increases the intensity of the ir beam to
Qz"=108 as in Fig. 3 (keeping the other parameters un-

changed with respect to Figs. 2, 5, and 6). As a matter of
fact, the complete model predicts that extended parts of
the steady-state curves become unstable and lead to the

Resp

FIG. 7. The left-hand curves are the steady-state solutions of
the complete three-level model. The thick segments correspond
to unstable states. The right-hand curves are the result of a for-
ward and backward sweep of 50. The parameters are
C, =31300, C~=27350, 6=2400, 6=400, y, =30 rad/s, and

y&/y& =0.83 ~

FIG. 9. Each column refers to a different value of the param-
eter 50. The values of the other parameters are the same as in
Fig. 8. The upper curves show the intensity oscillations of field

1; the middle curves the corresponding spectrum (on a logarith-
mic scale), and the lower curves the projection of the phase-
space trajectory onto the plane of the variables (Rex„Imxl).
Left, 60=3.01; right, 60=4.52.



2742 P. QRANGIER et al. 46

Eezt

JLIIIIQ

on Figs. 2 and 3. A comparison with the experimental re-
sults is attempted in Fig. 3. The six panels comprising
Fig. 3(b) show the curves obtained in a dynamical sweep
of the complete three-level model, while the six panels of
Fig. 3(c) show the result of averaging the oscillations out.

The character of the oscillations becomes complex
when the input powers are increased. Let us consider, for
example, Fig. 8, which shows both the steady-state
curves, obtained from the complete model (17), and the
corresponding dynamically swept curves. In this case the
steady-state curves display the presence of an island, and
the thick segments of the steady-state curves are unsta-
ble. By varying the cavity length (i.e., 58) one meets os-
cillations of period 1 [Fig. 9 (left)], period 2 [Fig. 9
(right)], period 4 [Fig. 10 (left)], and period 8 [Fig. 10
(right)]; the period-doubling sequence leads, as usual, to
chaos [Fig. 11 (left)]. An example of the period-6 window
in the chaotic domain is shown in Fig. 11 (right).

VI. CONCLUDING REMARKS

FIG. 10. Same as Fig. 9, but for left, 58=4.61, and right,
50=4.64.

onset of oscillations. The oscillation frequencies are cal-
culated to be in the range 5 —15 MHz, depending on the
values of 0& and Oz, and change notably along the steady-
state curve when one passes from one to the other ex-
treme of the unstable positive-slope segment. The numer-
ical values of the oscillation frequencies agree quite well

with the values which are experimentally observed, using
a fast detector and a spectrum analyzer. On the other
hand, these oscillations are averaged out by the detectors

J l)~DJ(

Remi

We have observed two-photon double-beam optical bi-
stability, and we carried out a rather detailed comparison
between experimental data and the theoretical descrip-
tion. We used both a complete three-level model and an
appropriate g' ' approximation that holds in the limit of
very large atomic detunings and describes the behavior of
the system in terms of cross-phase modulation.

The comparison of theory and experiment is very satis-
factory for suSciently small values of the input intensities
(see Fig. 6). For larger values of the input power of field

2, the agreement is still reasonably good in some cases
[see, for instance, Fig. 3 (left and middle columns)], and
much worse in other cases [Fig. 3 (right column)]. The
main source of discrepancy may lie in the fact that the
calculations use a plane-wave approximation in a ring
geometry, whereas the experiment is done in a linear cav-
ity with Gaussian beams. It is very satisfactory that the
experiment really reveals the presence of spontaneous os-
cillations in the output intensities where theory predicts
them, and with the same frequency.

It has been shown that one-photon optical bistability
can subsequently modify the quantum noise of the input
field [18—20]. Two-photon bistability is also a well-

known candidate for quantum-noise-reduction effects
[11,15,21], and very intriguing predictions can also be
made for the input-output transformation of the quantum
noise of the two fields interacting in a two-photon
double-beam optical system. Such a device therefore
seems quite well suited for the study of quantum-noise
effects and their relation with the associated mean-field
instabilities.
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