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Optical beams in saturable self-focusing media
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An approximate analytical analysis of two-dimensional optical beams propagating in saturable self-

focusing media is carried out. In particular, the radial shape and the phase shift of the stationary self-

trapped fundamental mode are investigated in detail. The dynamic variations of the beamwidth and the
phase shift for nonstationary propagation are also analyzed. The predictions of the analytical model are
compared with numerical results for stationary propagation and show good agreement.

PACS number(s): 42.65.Jx, 42.50.Rh

I. INTRODUCTION

Spatial solitons, i.e., optical beams that are self-trapped
in space due to a balance between the Kerr nonlinearity
and diffraction, have attracted considerable interest re-
cently. Several theoretical investigations have been pub-
lished [1—6], and spatial solitons have also been verified
experimentally [7]. The physical background, i.e., the
fact that the Kerr nonlinear refractive index can cause
optical beams to self-focus and self-trap in space has been
well known since the 1960s [8]. The formal equivalence
between self-focusing in space and pulse compression in
time was also established early [9], and under certain cir-
cumstances (anomalous dispersion and space-time sym-
metry), the comoving time coordinate can be treated as a
transverse dimension [2,3]. In particular, Silberberg [2]
has suggested the possibility of creating light bullets that
are prevented from diffracting in space and dispersing in
time by the Kerr nonlinearity.

However, it has been shown [2,3] that beams which are
self-guided in more than one transverse dimension are
unstable, and will either diffract away, or self-focus catas-
trophically, when perturbed. There are, however, several
ways to get around this stability problem and to create
stable, self-guided beams in two or more transverse di-
mensions. The most obvious way is to use a graded-index
fiber, which prevents the power from diffracting away,
thus opening a way to create stable beams, provided the
beam power is below the self-focusing power. Above the
self-focusing threshold, however, such beams will col-
lapse (see Ref. [10]). A way of making self-guided beams
stable above the self-focusing po~er is to prevent the ca-
tastrophic collapse by taking into account that the non-
linear refractive index saturates at high powers, as point-
ed out by Snyder et al. [4]. It should thus be of great in-
terest to study saturable media in more detail, since they
may provide a way to create stable solitons that are self'-

trapped in more than one transverse dimension.
The onset of saturation in the nonlinear refractive in-

dex was examined analytically very early by use of the
paraxial-ray approximation [11,12]. Some numerical re-
sults were also published in the late 1960s [13,14].
Higher than third-order nonlinearities, i.e., nonlinearities
with qualitative saturation behavior, were examined nu-
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where we have introduced the normalized nonlinear am-
plitude 4 =(n2/n0)E and the saturation constant
y2=n02/(n2, t

—n02). The radial and longitudinal coordi-
nates are denoted r and z, respectively, and k is the linear
wave number. Note also that we are considering two
transverse dimensions in Eq. (1.2) and that they can be ei-
ther both in space, or, if we have space-time symmetry,
one in space and one in time; cf. Refs. [2] and [3]. The
latter should be the case when we consider a space-time
symmetric pulse propagating in a slab waveguide in the
anomalous dispersion regime. However, in order to sim-

merically by Piekara, Moore, and Feld [15]. The moment
theory, which is aa exact approach, was used to examine
the mean-square radius of a self-trapped beam in a satur-
able nonlinear medium by Lam, Lippman, and Tappert
[16,17]. Anderson and Bonnedal showed [18] that a vari-
ational approach gives results in exact agreement with
the moment theory. The variational approach has also
been used in a few recent studies on the subject [19,20].
In another recent numerical analysis by Chen [21] the
self-trapped mode profiles were shown to depend on the
self-trapped amplitudes, and one aim of the present work
is to present an analytical derivation of these results.

In the subsequent analysis we will consider a refractive
index n of the following form:

n0n2[E/'

1+non2/(n„, n0)/E/—
where we have denoted the envelope of the electric field
with E, the saturated index with n„„and the nonlinear
Kerr coeScient with n 2. This kind of saturable refractive
index exists in various kinds of materials: dilute gases
[13] and other ensembles of polarizable molecules [14],
under certain conditions in plasmas [18,22], and also in
acid glasses with high nonlinear coefftcients [21]. The
equation that governs the evolution of the electrical-field
envelope in such media is the nonlinear Schrodinger
(NLS) equation, modified to take saturation effects into
account, i.e.,
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plify further discussion we will neglect the time depen-
dence, and assume the two transverse coordinates to be
both spatial.

The solution of Eq. (1.2) can be obtained numerically
as, for instance, in Ref. [13],but in the present analysis
we shall apply an approximate analytical scheme, the
variational technique; cf. [21] and [23]. In this approach,
an approximate solution to Eq. (1.2} is obtained by varia-
tion within a given set of trial functions. The method has
been successful in earlier studies [3,6, 10,21], and it is in
some cases superior to the paraxial-ray approximation
(cf. Refs. [3] and [6]). In the next two sections we will use
this analytical approach to examine two separate cases of
solutions to Eq. (1.2). Section II is devoted to an investi-
gation of stationary, self-guided beams. In Sec. III we
generalize the analysis by considering the dynamic propa-
gation of light beams in saturable media; i.e., we study
the combined effects of diffraction and self-focusing with
the latter being limited by saturation.

II. STATIONARY SELF-GUIDED BEAMS

When considering stationary solutions of the NLS
equation, it is convenient to separate the longitudinal and
radial dependencies by assuming a constant phase shift 5
along the distance of propagation, viz. ,

r
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2 Q
(2.4)

where A is the amplitude, a the width, and m the super-
Gaussian coefficient. Inserting this trial function into our
Lagrangian, and integrating the radial dependence we
find

&L&=f "Ldp= + 5—
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Q+ 4I(m, K) .
2y4

(2.5)

I (x) denotes the Gamma function, and I is a function
defined by

I(m, K}=f in[1+K exp( t )]d—t, (2.6)
0

where K =(y A ) . The constants A, a, and m can now be
obtained from the three Euler-Lag range equations
(5(L )/5A )=(5(L )/5a )=(5(L ) /5m ) =0, which give
rise to the system

with, in turn, hyperbolic, Gaussian, and sine shapes for
increasing degree of saturation. In order to analytically
reproduce these different shapes, we will choose a super-
Gaussian trial function,

2m

%(r,z) =%(r )exp i—
2

(2.1)
(y'5 —1)r 1+—' +' K =o,

m E (2.7a)

The dimensionless coordinate g is defined as g=kz. In-
serting this into Eq. (1.2) we obtain the equation that
governs the electrical-field envelope in the stationary,
saturable case:
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where we have also introduced the normalized radial
coordinate p = rk, and the phase delay 5 plays the role of
an eigenvalue. If the phase shift is used in the normaliza-
tion of the amplitude and the radial coordinate, we obtain
Eq. (2.2) with 5= 1, as have been done in the previous nu-
merical investigations [14,21]. It is, however, interesting
to examine 5 as a function of the nonlinearity. We now
reformulate Eq. (2.2) into a variational problem using the
Lagrangian

L=p +pM' —
z

4 — ln(1+y 4 )

(2.3)

The variational integral can be evaluated explicitly if we
choose a trial function for the radial shape %(p). This
choice is a crucial step in the variational method, because
the accuracy of our approximate solutions depends on
how well the trial functions approximate the exact solu-
tion.

The earlier numerical studies [14,21] of Eq. (2.2) have
shown that the shape of the fundamental mode depends
strongly upon the degree of saturation. Chen [21]
showed that the modal profile can be well approximated

2
m ~ +( 5 1)r 1+ + BI(m, K)
2 Q m BK

1

2 Q
L
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m m K Bm
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(2.7c)

From the above system we can obtain a relation involving
only Land m,

K BI BI + %(1+1/m)
BK Bm

(2.8)

where %(x) denotes the logarithm of the Gamma func-
tion. Equation (2.8) is a rather complicated, implicit rela-
tion between E and m, and it has to be solved numerical-
ly. Et is, however, possible to find an approximate, empir-
ical relation between E and m, viz. ,

K(m ) =4.48m —3.96+exp(7. 58m —5.42) . (2.9)

This relation is plotted in Fig. 1, along with some numeri-
cally calculated va1ues of K and m from Eq. (2.8). The
agreement is good for K & 500, and we can now use the
relation (2.9} to find the shapes of the stationary funda-
mental mode in a nonlinear saturable material. Thus we
have determined how the modal shape m depends on the
parameter E, which is a measure of the degree of satura-
tion. The limit E =0 corresponds to the pure nonlinear
self-trapped mode. In earlier studies [3,10,21] we have
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FIG. 1. The relation between the degree of saturation K and

the super-Gaussian coefficient m. The dots show numerical
computations and the solid line is the empirical relation given
by Eq. (2.9).

1 I(m, K )

y~ KI (1+1/m )
(2.10)

1 I dI
m E BE

1/2 (2.11)

Now, we are mainly interested in how these parameters
depend on the power of the self-trapped beam, which can
be calculated as

210

P:— 2' A ~exp
0

seen that the mode profile in this case is well approximat-
ed by a hyperbolic secant function. Using the super
Gaussian as trial functions in Ref. [10] we have previous-
ly shown that the modal shape in the pure nonlinear
case in a homogeneous material corresponds to
m =ln(2)=0. 693, in good agreement with the value ob-
tained by our empirical relation for K(m)=0, which
yields m =0.69.

The phase shift and pulse width can be determined
from Eqs. (2.7a) and (2.7b):

FIG. 2. The parameter I( as a function of normalized self-
trapped power P/P„.

slow for high powers as the refractive index becomes
more and more saturated. The normalized phase shift
5y as a function of beam power is plotted in Fig. 4. It
increases monotonously with power and has an upper
limit equal to unity. Note that the stationary phase shift
5 is positive for all powers, indicating that the eft'ective
index of the induced waveguide is greater than no, previ-
ously a point of controversy; cf. [6]. Figure 5 shows the
beam width (a /y ) as a function of (P/P, ). The behavior
of the width is similar to that given in earlier analytical
[16,17] and numerical [11, 14] studies, and it is also very
similar to the width for the stationary TE modes, exam-
ined in Ref. [20]. We see that self-trapping cannot occur
if the pulse width a is too small, or if the relative index
difFerence (n„, no)/no—a- 1/y is too low. This fact can
qualitatively be obtained from optical ray theory by com-
paring the diffraction angle for the beam with the angle
for total internal re6ection at the beam boundary. Nar-
row beams have larger diffraction angles and will need
larger index dift'erence in order to be self-guided. This
qualitative discussion has been made earlier in Ref. [8] re-
garding nonsaturative self-trapping, and in Ref. [21] con-
sidering the saturable case. The main difference between
the two cases is that in a given saturable media (with a

Kmm I'(1+ 1/m )

BI
E BE

(2.12)

Note that the E parameter, the width, the phase shift,
and the power are given as functions of the super-
Gaussian coe%cient m. In the nonsaturable limit y=0,
corresponding to m =0.69, the critical power for self-
focusing is P, =11.8 [24]. Self-trapped beams only exist
if P )P„and in Fig. 2, we illustrate the relation between
K and (P /P, ). Obviously, the power needed for trapping
is higher in the presence of saturation. However, other
nonlinear saturable refractive indices can allow stationary
beams below P, (cf. Refs. [11],[14],and [15]).

Figure 3 shows the super-Gaussian coefFicient m as a
function of beam power. The increase in m becomes very

FIG. 3. The shape parameter m vs normalized po~er. The
Gaussian shape (m = 1) corresponds to (P /P, )= 13.46 and
k =9.24.
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FIG. 4. Nonlinear phase shift 5 plotted as a function of
power.

FI
The strai ht l'

IG. 5. Dependence of self-trapped beam 'dthwi on power.
e straight line (P/P, )=1 is the low-power asymptote. The

minimum beamwidth occurs at (a /y) =2.12, and it corresponds
to (P/P, )=4.1, K=3.19, and m =0.87.

given value of y) there is both a minimum beam width

a;„and a minimum power P, below which self-trapping

cannot occur, whereas in a nonsaturable media beams of
any width can self-trap, provided the amplitude becomes

high enough. In this analysis the minimum value of
(a /y ) is 2.12; see Fig. 5.

We have collected the self-trapped parameters for a
few different degrees of saturation in Table I, along with
the exact numerical solutions. The earlier known expres-
sions for a Gaussian trial function [18]can be obtained by
putting m =1 in Eqs. (2.10) and (2.12), and the results
have been added to Table I for comparison. Note that
the super-Gaussian trial function does not only provide
better approximations, but also additional information
about the modal shape behavior through the parameter
m. The modal profiles corresponding to the cases of
Table I have been plotted in Figs 6(a) —6(c). Our varia-
tional model agrees very well with the numerical results,
but the agreement starts to deteriorate for high values of
K (K) 100), i.e., the highly saturated case. The super-
Gaussian trial function cannot accurately reproduce the
modal shape in this limit, since the mode profile
effectively consists of two different parts. Near the
center, where %(p) is large compared to unity, Eq. (2.2) is
similar to the equation for the zeroth-order Bessel func-
tion. Far from the center, in the region where %(p) is
comparable to unity, the modal shape starts to decrease
exponentially. This is similar to the behavior of the
modal shape of the fundamental mode in a step-index
fiber. It is difficult to model this kind of modal shape

III. DYNAMIC PROPAGATION

We will now generalize the previous analysis to consid-
er beams whose parameters are allowed to vary with dis-
tance of propagation. Approximate analytical solutions
to the dynamic form of Eq. (1.2) has earlier been found b
using the paraxial-ray approximation [11,12]. More ac-
curate results can be found using the variational scheme
[3]. Parts of the following variational analysis have been
done earlier, cf. Ref. [18]. However, in the present work
we will analyze the results of the variational approach in
more detail.

The Lagrangian corresponding to Eq. (1.2) is

L=p B%

Bp
pl %

%*ac
ae

p iqpi2
y'

1
~ln(1+y i%i )y'

(3.1)

with a super Gaussian, hence the results tend to be less
accurate. Therefore, the strongly saturated limit might
be better analyzed with the approach suggested by
Snyder et al. [4], in which the beam is assumed to propa-
gate in a step-index fiber with n, in the core and no in

the cladding. In the region of lower powers, which
perhaps could be of greater practical interest, the analyti-
cal model presented here should give good approximate
solutions of the mode profile.

TABLE I. Sta
'. Stationary beam parameters compared with numerical solutions p

o . e have chosen y= l. The modes are plotted in Figs. 6(a)-6(c).

Variational approximation
Super Gaussian
a P 5 P

Gaussian
Numerical

solution
p

0.01
0.1

1

10
100

0.6949
0.7035
0.7739
1.0104
1.3256

17.27
5.671
2.430
2.375
4.680

11.93
12.73
21.53

176.4
6330

0.001 84
0.0180
0.150
0.582
0.900

12.67
13.69
24.29

174.5
4121

0.002 49
0.023 9
0.177 5
0.580 1

0.877 6

11.79
12.68
21.90

180.3
5491

0.002 05
0.0200
0.159 1

0.585 4
0.894 7
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Note that %'(p, g) in this section is a complex-valued func-
tion, and that the asterisk denotes complex conjugate. In
order to be able to average over the radial coordinate we
have to specify the radial shape. Section II showed how
the modal shape varies with amplitude in Fig. (3). This
dependence is, however, not very strong, and the Gauss-
ian shape, i.e., m =1, is a convenient average that will
not alter the qualitative behavior of the beam dynamics.
The Gaussian will also greatly simplify our calculations.
Furthermore, it will make us able to compare the results
with the paraxial-ray predictions of Ref. [12]. We will

therefore choose a Gaussian trial function:

v(p)
0.3

0 25[

0. 15 -'

I

I

0. 05 "

2

%(p, g) = A (g)exp —— +ip b(g)+i/(g)1 p
2 g(g)

g 1(K)
2y4

where K = [ A (g)y ] and the function 1 is defined by

~ ln(1+t )
I x = dt .

o t

(3.3)

(3.4)

Variation with respect to each one of the four unknown
functions will give

d
(A g )=0,

d
(3.5)

(3.2)

There are four real functions of g to be determined: the
pulse amplitude A, the width g, the phase shift P, and the
phase-front curvature b (see [25]). Note that P is defined
with a different sign as compared to the phase shift 5 of
Sec. II. Averaging over the radius will give

T

(L, ) =A2 —+g4 2b'—
2 Bg Bg 2y'

y(p)
3-

10
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30 50 60 p b(g)=— 1 da
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Q—ln 1+
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(3.6)

(3.7)

. 5
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1 4P a 1 as

Q2 P Q4 2 a 2 Q
L

a,—ln 1+
a

(3.8)

y(p)

iG
p

In the above expressions (P/P, ) denotes ( Aogo) /4 (cf.
[24]), and g, =y A&go =Kg& where K has the previous
definition. The quantity a, could be interpreted as the
width the beam has to have in order to experience satura-
tion efFects [12]. We integrate Eq. (3.7) once, and adopt
the well-known potential description [12,23] for the
width a:

2
dQ

d
+m(g )=0, (3.9)

where the potential m.(a ) is given by

1 4P a as
2

m(g )=C+ + i
P,

(3.10)

0 ———————
2 8 12

p

FIG. 6. The modal shapes of the approximate super-

Gaussian solutions (dashed) and the numerical solutions (solid)

in the cases (a) K =0.01,0. 1, (b) K = 1, 10, and (c) K = 100. Note

in this example that K =4'0.

and C is an integration constant. Note that this potential

differs considerably from the potential derived with the

paraxial-ray method [12]. The constant C is defined by

m(go)=0, if we assume the incident beam to be a plane

wave. In the subsequent discussion we will use ao=1,
2

which is no restriction, thus C= —1 —4(P/P, )1(K)/K,
and a, =K.2
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propagation [6].
We have solved Eqs. (3.7) and (3.8) numerically in a

few different cases in order to further clarify the behavior
for different combinations of (P/P, ) and IC. The solu-
tions are given in Figs. 12(a)—12(c). Figures 12(a) and
12(b) show two oscillatory beams. The phase delay P
shows similar behavior in the two cases, with its fastest
decrement in the points of maximum width. This is quite
contrary to the behavior of the phase in a nonlinear
graded-index fiber, in which the phase shift decreases
fastest in the points of maximum power [28]. This
difference may be qualitatively explained by assuming the
nonlinear saturated media to be a linear waveguide. In a
linear waveguide, the longitudinal growth rate of the
phase P&, also known as the propagation constant for sta-
tionary beams, is inversely proportional to the beam
width [29]. The nodes of the beam will experience almost
the same waveguide as in the maximum width points, due
to the refractive index being saturated. The derivative P&
will thus increase, counteracting the decrement implied
by the Kerr effect. This counteracting effect at the nodes
will, however, be rather small compared to the overall de-
crease of the phase. However, the counteraction will be
more significant if the Kerr effect is weaker as in the
domains (d) and (f). In Fig. 12(c), we see a monotonously
diffracting beam with parameters in domain (d). Initially,
the saturation is strong enough to overcome the Kerr
influence, thus making the phase grow. As the width
grows, the Kerr influence will dominate more and more
over the saturation, and after some distance of propaga-
tion the phase becomes negative. In the case of powers
below 2P, /3, the Kerr behavior is not strong enough to
make the phase decrease, and the linear behavior dom-
inates. Qualitatively speaking, the Kerr inliuence on the
phase shift is limited by the saturation, and powers above
2P, /3 will create negative phase shifts first after some
distance of propagation. In a pure Kerr media [6], the
phase will always be negative when the power is above
this limit.

IV. CONCLUSIONS

In conclusion, we have investigated, with an approxi-
mate analytical method known to give good accuracy
[3,6,23], the properties of beams propagating in nonlinear
saturable media. Regarding stationary beams, the varia-
tional technique gave very good agreement with numeri-
cal calculations. The fact that the modal shape of the
fundamental mode differs with the degree of nonlinearity
can be understood as due to the different kinds of induced
waveguides that arise for different degrees of saturation.

TABLE II. The different shapes of the fundamental mode
that may arise in the studied saturable medium, and a few prop-
erties of these self-trapped beams.

Degree
of saturation

Zero
Medium

High

Induced
waveguide

=sech2(r )

parabolic
graded index

step index

Modal shape

=sech(r)
exp( —r')

Jo(r);r &a
Ko(r);r &a

Stability

unstable
stable

stable
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In the absence of saturation we have a waveguide induced
only by the Kerr index, and equal to that analyzed by
Chiao, Garmire, and Townes [8]. This waveguide is
characterized by being unstable against perturbations in
amplitude and width. If we take saturation into account
there are, roughly speaking, two kinds of waveguides that
the self-trapped beam can propagate in: a graded-index
guide for low onset of saturation, and a step-index guide
in the strongly saturated limit. The graded-index guide
will have a Gaussian as fundamental mode, and the step-
index mode will be described by two joint Bessel func-
tions [29]. Beams propagating in these kinds of
waveguides were shown in Sec. III to be stable against
small perturbations in width; see Table II. This has also
been shown in other ways in earlier works [4,20]. The
sensitivity of these self-trapped beams to modulational in-
stability does, however, remain to be investigated.

The dynamical propagation of a beam in a saturable
Kerr-nonlinear media was analyzed using the well-known
potential description. The stationary beams were shown
stable, and deviations from the stability gave rise to oscil-
latory behavior. Beams may also diffract monotonously,
and these different behaviors correspond to different
domains in a parameter plane, spanned by the input
power and the degree of saturation. This parameter
plane is also very useful when considering the qualitative
behavior of both the phase and the amplitude of a wave.
It was shown that, in general, a wave in a saturable non-
linear medium can behave in six different ways. Finally,
we emphasize that one spatial coordinate may be re-
placed with time, thus creating a stable, nondiffracting,
nondispersing optical pulse: a light bullet.
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