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%e develop a theory of near-resonant four-wave mixing induced by broad-bandwidth chaotic fields in

a medium composed of two-level atoms. By solving the equations of motion for the elements of the
atomic density matrix using an appropriate decorrelation approximation, we derive an analytic expres-
sion for the frequency spectrum of the signal wave for the case of the bandwidth of the fluctuations of
the pump field exceeding the other relaxation rates in the problem. The probe wave is considered weak

and of arbitrary bandwidth. The theory is valid for pump intensities up to and exceeding the

bandwidth-dependent saturation value. Finally, we show how the frequency spectrum is modified if ac-
count is taken of atomic motion. The theoretical results are of direct relevance to practical experiments
involving broad-bandwidth pulsed lasers and employing an atomic vapor as the nonlinear medium.

PACS number(s): 42.65.Hw, 32.80.Wr, 32.70.Jz

I. INTRODUCTION

Recent work has demonstrated the important effects of
the stochastic phase and amplitude fluctuations of the
driving fields in laser-induced atom-field interactions.
Studies have been carried out on the effects of field fluc-
tuations on the saturation and Stark splitting of an atom-
ic resonance, on the spectrum of the resulting resonance
fluorescence, and their effects in the related phenomenon
of the reversal of the asymmetry of the Autler-Townes
doublet in double-optical-resonance-type experiments
[1,2]. The effect of a finite laser bandwidth on the shape
of Hanle resonances [3] and on the efficiency of multipho-
ton absorption and ionization have also been calculated
and observed in experiments [4].

Nonlinear parametric processes are also strongly
affected by the fluctuations of the driving fields. These
include practically important schemes such as coherent
anti-Stokes Raman scattering (CARS) and degenerate
four-wave mixing (DFWM). The effects of field fiuctua-
tions in this area have been reviewed by Reintjes [5]. The
effects of pump laser fluctuations on CARS line shapes
have been calculated [6], and it has been demonstrated
that the fluctuations of the lasers employed can be the
limiting factor in the precision of temperature measure-
ments based on CARS spectra [7]. The DFWM
reflectivity induced by chaotic pump fields has been cal-
culated for the somewhat idealized case of the laser band-
width being much less than the atomic linewidth [g].
More recently we developed a theory of F%'M induced
by broad-bandwidth chaotic fields [9]. We showed that,
in contrast to the narrow-bandwidth case, increasing the
bandwidth of the pump fluctuations leads, at low intensi-
ty, to a reduced reflectivity compared to the coherent

case and furthermore to an increased effective saturation
intensity for the process. The theory was extended to
treat the time-dependent case of FWM induced by
broad-bandwidth lasers of arbitrary temporal pulse shape
and the theoretical predictions tested in experiments [10]
employing sodium vapor as the nonlinear medium and a
variable bandwidth dye laser to form the pump waves. In
addition, the pulse-shortening effects in DFWM induced
by intense broad-bandwidth lasers were investigated.

DFWM has been extensively studied as a method of
achieving phase conjugation and as a tool in high-
resolution spectroscopy [11]. The Doppler-free nature of
the response of a resonant medium in coherent DFWM
has been pointed out by a number of authors. This has
stimulated investigations of DFWM line shapes in spec-
troscopic studies in which the laser frequency is tuned
through the atomic resonance [12]. DFWM has recently
emerged as a potentially useful optical diagnostic tech-
nique for combustion studies [13]. Furthermore, it has
been demonstrated that the spectrum of the FWM signal
in experiments with broad-bandwidth lasers may yield
useful spectroscopic data over a wide frequency range
[14] in analogy with the technique of multiplex CARS.
This opens up the possibility of deriving concentration
and temperature measurements from spectra produced by
a single laser shot and thereby significantly enhancing the
temporal resolution of the technique. Of importance to
these broad-bandwidth experiments is the spectral con-
tent of the generated radiation rather than its intensity.
It is to the calculation of this aspect of the interaction
that we address ourselves in this paper. The theoretical
model is based on that used in our previous work [9] on
the saturation behavior of DFWM induced by broad-
bandwidth lasers. In the following section we show how
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this formalism can be extended to calculate the amplitude
autocorrelation of the signal field. The spectrum of the
generated radiation is then calculated from a Laplace
transform of the autocorrelation function. Finally, we
consider the effects of atomic motion on the power spec-
trum of the reflected radiation.

II. THEORY

We consider the laser fields to interact in the usual
near-collinear geometry [10] with an ensemble of two-
level atoms with ground- and excited-state energies cg
and c„respectively, and c,, —c. =%co, . The pump and
probe fields are assumed chaotic, with a Lorentzian spec-
tral distribution and center frequencies co& and co3. The
bandwidth b of the pump field is larger than any other re-
laxation rate in the problem: b ))~Q ~, ~Q3~, ~,I, where a.

and I are the longitudinal and transverse relaxation rates
of the atom and Q(x, t) and Q3(x, t) are the Rabi frequen-
cies associated with the pump and probe fields, respec-
tively. We treat the cases of probe bandwidth p as zero
or large in the sense defined for b above. The probe field
is assumed weak, ~Q3~ &&I, and we neglect, for the
present, the motion of the atoms.

d l

dt
—+c p3(x, t)= [Q3(x, t)po(x, t}

2

+Q*(x, t)p4(x, t) ),
—+d p4(x, t) =i [Q*(x,t)p5(x, t) Q(—x, t)p3(x, t )
dt

+Q3 (x, t)p)(x, t}],

—+a p5(x, t) = Q—(x, t)p4(x, t),l

where we have written

po(x, t) =pg' (x—, t} p„' (x—, t),

p, (x, t) =p,' (x, t),
p~(x, t):[p,'o(x—, t ]',
p3(x, t)=pg; —'(x, t},
p4(x, t):p' '(—x, t) p,", '—(», t),
p5(x, t)=p,g

'(x—, t)

(4d)

(4e)

(4

A. Basic equations

where

H=HO+R[Q(x, t)e '+Q3(t)e '+c.c. ] .

To derive the basic equations we assume, for the moment,
coherent fields and write

fiQ(x, t) =2i4g, E, cosk, x, fiQ (t3) =2p, E .3 (2)

Ho is the unperturbed atomic Hamiltonian and 2) the

damping matrix. We expand the density operator as a
sum of components at harmonics of the pump and probe
field frequencies

—im co& t —in (~3t k3+ )
Pij= PIJ e

m, n

and obtain, on substituting into (1), the following set of
equations

—+~ po(x, t)=~ 2 Im[Q'(x, t)p, (x, t)),—d
(4a)

l—+p p, (x, t) =—[Q(x, t)po(», t)+Q3(x, t)p4(x, t)],dt, ' 2

(4b)

The evolution of the atomic density operator is given
by the Liouville equation

i' =[H,p]+ifi[2),p],Bp

and

and substitute this in the nonlinear wave equation. Pick-
ing out terms oscillating at frequency 2'&

—co3 we obtain,
in the slowly varying envelope approximation, for the
amplitude of the signal wave

2' i F03
A4(t)= — f dx P ' '(x, t),

2eoc
(5)

where I is the length of the interaction zone. The positive
frequency part of the induced polarization is given in
terms of the atomic density operator by

a =I +id

P=I i b, , —

c =I +ih3,
d=~ —i5,
53=A —5,
b,4=6, +5

with I =a./2+y and y is the collisional dephasing
rate. 6 is the detuning of the pump waves,
b = —(e,,—

eg
—fm, )lk, and 5 the pump-probe detuning

given by 5=to& —t03.

To derive an expression for the amplitude of the gen-

erated wave, we express the induced polarization P as
—im~&t —in (~3t —k3x )

P "e e
m, n

—+p* p2(x, t)= [Q'(x, t)po(x, t)

+Q3 (x, t )p4(x, t)], (4c)

P XPgepeg

where X is the number density of interacting atoms and

pg, the electric dipole matrix element connecting the
atomic ground and excited states. Thus
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(2', c—o3)N l (2'
1 c03 )f

A4(t)= — dx p,p, (x, t)e
2eoc

The intensity of the generated wave is

to3) Ip, I
N

I4(t) = f f dx dx '(p&(x, t)p5(x ', t ) ),
260c 0 0

(6)

where now we assume fluctuating fields and the angle brackets represent an average over the spatial and temporal varia-
tions of the induced polarization caused by the stochastic driving fields.

The power spectrum of the signal wave is found from a Laplace transform, X, with respect to r of the amplitude au-
tocorrelation function:

( A4(t+r)A4 (t))
P(co)=Re X

f f dx dx'X[(p5(x, t+r)[p~(x', t)]*)e
=Re (8)

f f dx d x'(p (5xt)[p~( x', t)]*)
0 0

The first step in evaluating (8) involves calculating an expression for p&(x, t) from (2) and forming and averaging the
product [p~(x', t ) ]*p,(x, t). In Ref. [9] we showed that this product is given by integral expressions of the form

([p&(x', t)]*p&(x,t)) =e 'f ' f dt, dt~(Q*(x, 't, )Q(t~)p~(x', t, )p4(x, t2)}e

where

p&(t)+ —,
' f f dt&dt2e ' [e ' ' Q" (t& )Q(t2)+e ' ' '

Q(t& )Q*(t2)]p4(t&)

f f dt, dt2e ' [e ' Q Q3(t )2+e ' ' Q3Q(t, )]po(tz)
2 Qo oo

po(t)=1 —Re f f dt, dt2e ' ' e ' Q*(t, )Q(tz)p (t0z) (9)

In principle these equations could be averaged over the
fluctuations of Markovian driving fields of arbitrary
bandwidth using the procedures outlined by Georges and
Georges, Lambropoulos and Zoller [2]. Georges calculat-
ed the intensity and spectrum of resonance fluorescence
for the case of chaotic, phase-diffusing, and Gaussian am-
plitude driving fields. The intensity was obtained
effectively by averaging the last of Eqs. (9) for po. The
calculation of the spectrum was more complicated and
yielded an analytic result only in the limit of small aver-
age Rabi frequencies. In the present case of four-wave
mixing driven by chaotic fields the analysis is even more
cumbersome, and therefore we limit the discussion to the
case of the pump bandwidth exceeding all other relaxa-
tion rates in the problem, a model which admits of simple
closed-form expressions for the intensity and frequency
spectrum of the scattered radiation, which allows us to
treat intensities of the driving fields that saturate the
atomic medium, and which is experimentally realistic. A
further advantage is that it permits us in a simple way to
include the effects of atomic motion.

B; (x,x', t, r)=[p;(x', t}]"p (x, t+r) .

We start off by deriving an expression for
(B»(x,x', t, 0) ), which appears in the denominator of (8)

as follows: A set of coupled differential equations for the
temporal evolution of the B; (x,x', t, 0) can easily be de-

rived from the set of equations (4) for the density matrix
elements. The first few, which we give to illustrate their
structure, are

I

—+21 B»=——[Q (x', t}Bq4—Q(x, t)B4q], (10a)
dt

—+a +d' B,4 = ——[2Q(x', t)B5, Q(x, t)B44], —
dt

(10b)

B. Broad-bandwidth solution
—+a*+d B~,=—[2Q*(x,t)B„Q'(x', t)B44] . —
dt 2

To evaluate (8) in the limit of broad-bandwidth pump
fields, we first define These equations may be formally integrated to give
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(855(x,x';t, O)) =—f dt, e ' (Q(x, t, )845(x,x', t„O))—(Q*(x', t, )B~~(x,x';t„O)),
2 Qo

(1 la)

(Q*(x', t)854(x, x';t, O)) =I dti —e
—2(n*(x', t)n(x', t, )855(x,x', t„O) )+(Q(x', t)n*(x, t, )844(x,x', t, O) ), (lib)

( Q(x, t)845(x, x', t, O) ) = J dt, —e

—(Q(x, t)Q'(x', ti )B~(x,x', t„O) ) +2(n(x, t)n'(x, ti ) 85s( x, x', t„O) ) . (1 lc}

To evaluate the averages over field fluctuations of the
products in the integrands, we decorrelate the atomic
terms and the more rapidly fluctuating field terms writ-

ing, for example,

(Q(x, t)Q'(x', t, )8~4(x,x', ti, O) )

= (Q(x, t)n*(x', t, ) ) (844(x,x'; t, O) ) . (12)

This decorrelation procedure, while exact for driving
fields described by the phase-diffusion model [2], is appl-
icable to chaotic fields only in the large-bandwidth limit.
As this limit is approached, the atomic system becomes
increasingly insensitive to field correlations of order
higher than one, and the models then give identical re-
sults. A similar argument applies in the limit of low

pump intensity in which the atom responds mainly to
first-order correlations of the pump field. To give an in-
dication of the magnitude of the error incurred in using a
decorrelation approximation appropriate to a phase-
diffusing field for a chaotic field we may examine the
difference in the population inversion induced in the two
models for fields of the same bandwidth and mean inten-
sity. Georges [2] showed that the largest discrepancy be-
tween the result for a phase-diffusing field and that for a
chaotic field occurs for intermediate intensities, 0, ,=I .

I

This discrepancy is approximately 19% of the phase-
diffusion-model result for b/I =0 1, 16.% for b/I =1,
and 5% for b/I =10. We therefore expect the error to
be unimportant in the regime that concerns us in this
work ofb/I &) l.

An important aspect of our procedure is that the com-
plete set of equations (11) is decorrelated simultaneously.
Thus we take into account correlations in products of
atomic and field terms that would be lost if we solved for
p5(x, t) using the set of equations (4) and then formed and
averaged the product B»(x,x', t, O)

First-order field autocorrelations such as that appear-
ing in (12) are given by

2
—b)~, —I, [(Q(xi, t))n'(x2, t2)) =2lnl cos[k4(xi —x2)]e

(13)
where ~n~ is the mean-square Rabi frequency associated
with each pump beam.

The integral equations (11},which involve convolutions
of exponential functions of time with averaged products
of atomic and field variables, can now be solved for the
steady state by taking Laplace transforms and using
F(t~ 00 ) =lim, OrÃ[F(t)]. The result is a set of linear
equations, 31 in all, of which the first few are

(8»(x,x', t, O)) = [(Q(x, t)Bq5 ) —(Q'(x', t}8~4)], (14a)

(Q'(x', t)854(x, x', t, O))=, [ —2(855)+(8~) cosk4(x —x')],ifn/'
b+d*+a

(Q(x, t)845(x, x', t, O))=,[2(B»)—(8~) cosk4(x —x')] .ifn/'
b+d+a*

(14b)

(14c)

The bandwidth of the probe appears in the integral
equations (11) by way of averaged products of the form
(Bkk(x, x';ti, O)Q3(x, t, )[Q3(x, t)]*). For the case of p
large, or, provided the probe field is weak, for arbitrary p,
the probe field and the atomic terms may be decorrelated
in a similar manner to that used for products of pump
field and atomic terms in (12). Obviously, this is also true
for p =0. The autocorrelation of the probe field is then
evaluated according to

(n, (x, t+r}[n,(x, t)]*)= ~n, ~'exp —
@~gal .

The set of coupled equations (14) may readily be solved to

give an analytic expression for the quantity(8( », xtx, O)), which is related to the intensity of the
refiected wave and for other averaged products of field
and atomic variables such as (Q(x, t)854(x, x', t, O)),
(Q3(t)(n(x, t)B„(x,x', t, O)) ), etc.

From the expression for (85,(x,x', t, O) ) we find an ex-
pression for (B»(x,x', t, r) ). First of all we use the fact
that (855(x,x', t, O) ) is stationary to drop the t argument
and set

855(x,x', r)=[pz(x', 0)] p5(x, w) .



2722 D. R. MEACHER, P. G. R. SMITH, P. EWART, AND J. COOPER 46

Then, using Eq. (4f), integrating and taking the average
over the field fluctuations we obtain the exact result

and

(s + b +p)b3(s) =p3, (16c)
(Bss(x,x';r) ) —(Bs5(x,x';0) )e

dt —QX, t B&4X,X';t e ' ". 15
0

Taking a Laplace transform with respect to ~ and setting

b5(s) =X(B»(x,x', r) ),
b~(s) =X(Q(x, ~)Bs4(x,x', ~)),
%s(x,x') = (85s(x,x', 0) ),
$4(x,x') = (Q(x, O)Bs4(x,x', 0) )

yields

where we have used the exact result [2]

(Q(x, r)85~(x, x';0) ) =e '(Q(x, O)Bs~(x,x';0) )

and

b3(s) =X(Q3 ( r)( Q(x, r)B»(x,x'; r) ) ),
$3(x,x')=(Q3(0)(Q(x, O)8„(x,x';0)) ) .

III. RESULTS

Equations (16) may be solved for b, (s). To lowest or-
der in I /b the solution is

(s +a)bs(s) =$s+ b~(s—) .

Similarly we obtain

(s +b +d)b4(s) =g4+2i ~Q
~

b5(s)+ib3(s)

(16a)

(16b)

l

1 %s(x,x')
bs(s)= s+a 1+ [~Q~ /(s+a)][1/(s+b +d)]
Substituting (17) in (8) and canceling the spatial integrals
that appear in the denominator and numerator finally
yields for the power spectrum,

P(co) =Re 1 1

s+a 1+[~Q~ /(s+a)][1/(s+b+d)] s (
—~„—s, )

The spectrum for low pump intensity ~Q~ /be&&1 is
thus a simple Lorentzian of half-width at half maximum
I centered at the frequency of the atomic resonance,

The frequency spectrum of the reflected wave is shown
for a few values of the saturation parameter ~)Q~ /ba. in

Fig. 2.

rP ( co4 ) —
& &, cd4

—co coeg
I +C04

(19)
IV. ATOMIC MOTION

An interesting feature is that this is independent of the
probe bandwidth and detuning for p, A3, 5 & 6, in contrast
to the monochromatic case b =0, when
co4=co —(2tu, —co3). This is because if the frequency
bandwidth of the pump field exceeds the detuning of the
monochromatic probe field, a perturbation theory calcu-
lation of the third-order susceptibility is dominated by di-
agrams of the form of Fig. 1, in which the intermediate
step is two-photon resonant for co', =e3. For pump inten-
sities approaching or exceeding the bandwidth-dependent
saturation value given by ~Q~ =b)r the frequency spec-
trum of the reflected wave becomes power broadened.

Degenerate four-wave mixing is commonly employed
as a spectroscopic technique in gaseous media. It is
therefore useful to determine the effect of the atomic
motion on the spectral properties of the reflected radia-
tion. The foregoing analysis may be readily modified to
take this into account. The density matrix must now be
averaged over the distribution of atomic velocities along

1.0

J3
h 0.6

-40 -20 20
FREQUENCY (units of ~)

40

A

V

FIG. 1. Schematic diagram showing one process contributing
to the induced third-order polarization.

FIG. 2. Graph showing the spectral power density of the
reflected wave as a function of the frequency offset from the
atomic resonance for p =b =1000~, I =10~, 5=6=0, and for
~Q~ /bs=0 1, dashed line; 1, cont.inuous line; 10, dot-dashed
line.
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the axis defined by the intersecting beams as well as over
the fluctuations of the driving laser fields. We therefore
replace the expansion (3) with

p;, = f p(u)p;, (u, t)du,

where p (v) is the probability density for the longitudinal
velocity distribution,

1/2 2
toes ln2 ~es (ln2)vp(u)= exp-

chd m ~2 Q2

p, (u, t)= gp; "(x. , u, t)
m, n

Xexp[ im—, (co,t —k, x k, u—t )

im—t(co&t+k&x +k&vt)

(20} and b d is the Doppler width. We define

B j(x,x', v, v', t, r) = [p;(x', u', t) ]*pj(x,u, t+ r),
and, as before, derive coupled equations for
(Bl(x,x';v, v';t, O)). Using these we derive Laplace
transformed equations, counterparts of (16), for
b&(s, v, v'). We obtain, again to lowest order in I lb,

in (—to3t —k 3x k)ut —)],
Pl =Pl 1+7tl2

b5(s, u, u') =b5(s, v)Ss(x, x', u, v'),

where

(21)

1 1
b, (s, v)=

s +tt +ik3v 1 + [iQ~ l(s +a +ik3v)][ 1l(s +b +d +ik3v)]

The frequency spectrum is given from (8) by

f ' f ' f" f" p(v)p(v')b5[i(t0 —co,s 64), v,—v']du dv'dx dx'
P(iv) =Re (22)

f ' f ' f" f p(v)p(v')%5(x, x', u, v')dv dv'dx dx'

For arbitrary Doppler width b,d, Ss is a complicated function of u and u . The solution of the set of equations for S„
the counterparts of Eqs. (14) including the Doppler effect, may be carried through in detail, but the analysis is extreme-
ly tedious and we do not include it here. Instead we present an approximate result that is valid for the case of the
Doppler width 5d, large compared to x but small compared to b. We first reformulate the velocity integrals appearing
in (22) as a product of integrals over u and b, v =—v —u' and carry out the integration over hu using a suitable contour in
the complex plane. We notice the atomic motion modifies the denominators appearing in (14) which are now of the
form 2I +ik3hv, b+I +ted+i(b, +k3bv+Ek, v), where @=+1,etc. As described in Ref. [9] we consider only the con-
tribution to the integral of the most significant poles and, in this way, derive an approximate expression for the integral
of Ss(x,x', v, v') over b, v. This is given in Eq. (22) of Ref. [9]:

CO ae To 1
p(b, u)db, uS&(x, x', u, u')=

3 f+
CO 16bd(1+28) (b3 —k3u) +yo f (g+f) 1+2f l[tt(1+28)]

(23)

where

f=(I +~8)
C

]ce
1+2e

' 1/2

70
(b3 —k3v) +yo

(24)

y0=2I +~(1+8)+p
and 8 is the saturation parameter given by

beni'
b 2+ +2

Here we are only interested in the dependence of the
right-hand side of (23) on the velocity U, since the other
factors cancel with the denominator of (22). Thus the
frequency spectrum is

P(co}=Ref p(u)du bs[i(a) co,s
—b,~},u]—

The velocity dependence of $5(x,x', v, u') is insignificant
for small Doppler widths 5d «63 or when the total
width yo is large. The spectrum then approximates to a
simple convolution of the power broadened spectrum (17)
with the Doppler line shape. This is shown in Fig. 3, in
which the spectrum is plotted for p =b for various values
of the pump laser intensity and Doppler width. The
spectra are here normalized to the same peak intensity;
the absolute reAectivity in each case is found by integrat-
ing the expression (23) over the distribution of velocities
v. This just gives the result (22) of Ref. [9]. Figure 4
shows the spectrum for zero-probe bandwidth p =0 and
constant probe detuning from resonance and for a few
values of the Doppler width. The variation in the spec-
trum with Doppler width shown in Fig. 4 is as follows:
For small Doppler width 6d & h3, the spectral response is
Doppler broadened as mentioned above. However, for

A3 and p =0 the spectrum is a Lorentzian of width
I at frequency co4=co, —b3. Thus the effect of the
Doppler motion on the spectral response in the p =0 case
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0.8

h 0.6

w 0.4
M
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~ 0.2
Z
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FREQUENCY (units of K )

-200 -100 100
FREQUENCY (units of ~ )

200

1.0
CO

—0.8

w 0.4

z
LLi 0.2
X
M

-150 -100 -50 50 100
FREQUENCY (units of pc)

150

FIG. 4. Graphs showing the spectral power density of the
reflected wave for the case of monochromatic probe p =0,
broad-bandwidth pumps b =1000~ and I =10~, pump detuning
5=0, probe detuning 6,= —100~, and Doppler widths

hd = 10~, dashed line; 30~ continuous line; 100~ dot-dashed line.

4, for intermediate Doppler widths the spectral profile
has a double peak.

V. CONCLUSION

FIG. 3. Graphs showing the spectral power density of the
reflected wave for the case p =b =1000~, I =10~,5=5=0, (a)
for the low-intensity case fl~'Ibtc=0 land Do. ppler widths
Ad=10~, dashed line; 50~ continuous line; 100~, dot-dashed
line; (b) for Doppler width Ad =50~ and 0 /b~=0. 1, dashed
line; 1, continuous line; 10, dot-dashed line.

is to shift the center frequency of the signal with respect
to that of the Doppler-free case given by (18) rather than
broaden the distribution of radiated frequencies. This is
because the diagram of Fig. 1 now applies in the rest
frame of a particular velocity class provided 5, is re-

placed by 63+k3U. The contributions to the polarization
of this diagram have then to be averaged over all velocity
classes. The generated signal is dominated by the contri-
bution of the velocity class for which the probe is reso-
nant, 63+k3U =0, and the frequency of the detected sig-
nal is therefore shifted from the atomic resonance by an
amount h3 and has a spectral width determined by the
homogeneous width of the transition. As shown in Fig.

We have found analytic expressions for the frequency
spectrum of the reAected wave in near-resonant four-
wave mixing for the case of broad-bandwidth pump
waves interacting in a near-collinear geometry with a
weak probe wave in a medium composed of two-level
atoms. The solution is valid for an arbitrary bandwidth
of the weak probe wave. Results have been obtained for
the Doppler-free case and for the situation in which
atomic motion is important.

This work represents a study of an experimentally real-
izable model of a nonlinear-optical parametric process
and is of direct relevance to spectroscopic four-wave ex-
periments employing broad-bandwidth lasers and gaseous
nonlinear media. Experimental work to test the predic-
tions of this theory is underway.
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