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Inversionless amplification of a monochromatic field by a three-level medium
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We consider a three-level medium with low-frequency separation between the two upper levels. The
medium interacts with an external field that induces a coherence between the two upper levels. We ana-

lyze the amplification condition for the probe monochromatic optical field in a general nonresonant case.
We show that amplification without population inversion arises either at line center or at the sidebands,

depending on the sign of the population difference between the upper sublevels. This amplification

occurs in a limited range of the coherent pump intensity.

PACS number(s): 42.50.—p, 32.80.—t, 42.50.Hz

I. INTRODUCTION

A three-level medium is the simplest and most suitable
model for understanding the physical mechanisms of
amplification without inversion. The possibility of inver-
sionless amplification in a three-level medium with a A
configuration was demonstrated for the first time in the
pulsed regime [I]. It was shown that an ultrashort pulse
can be amplified without population inversion at both op-
tical transitions if the low-frequency (LF) coherence is ex-
cited just before the pulse interacts with the medium.
Different ways of preparing initial medium states were
discussed, including resonant pumping by a microwave
~/2 pulse [1,2]. Next, it was shown by Scully, Zhu, and
Gavridiles [3] that, in a A scheme, a monochromatic field
tuned to the middle of the low-frequency splitting and in-

teracting simultaneously with both optical transitions can
be amplified without population inversion in a steady re-
gime when the atomic coherence is excited by a strong
resonant microwave pump field such that the Rabi fre-
quency equals the low-frequency splitting.

Recently, analyses were presented for all possible reso-
nant three-level configurations where a LF coherent in-

put transfers energy into a monochromatic [5—10] or a
bichromatic optical field [4,6,8, 10,11], with each com-
ponent of the amplified field interacting on resonance
with only one optical transition. It was shown that there
are two different mechanisms of inversionless
amplification. One mechanism is a parametric coupling
of two optical components mediated by the LF coherence
[11]. The role of the microwave field in this mechanism
is reduced to the creation of the LF coherence o. ,~;

amplification occurs when this coherence exceeds a criti-
cal threshold: ~o, z~ ) ~n, an&3~, where n, 3 and nz are3the
population differences at the optical transitions in the
presence of the microwave field. This condition is

equivalent to the condition of population inversion in the
basis of the dressed states where the LF coherence van-

ishes [12]. Thus the excitation of the LF coherence leads
to the redistribution of populations among the sublevels
in the new basis. In the A scheme, this mechanism is

directly connected with the phenomenon of coherent

population trapping [13]. Part of the atoms of the lower
levels are trapped in a state that does not interact with
the resonant field. As a result, the amplification is possi-
ble when the upper-level population exceeds only the
population of the untrapped state but not the populations
of the original atomic levels. In the V scheme, this mech-
anism amounts to requiring a population inversion be-
tween the sum of the two upper states and the lo~er
state.

Another mechanism appears even in the simplest reso-
nant P scheme, where the microwave field is scattered
into the anti-Stokes optical component by means of the
atomic coherence of the adjacent optical transition,
which in turn is excited as a result of the Stokes scatter-
ing of the optical field by the LF coherence created by the
microwave field [6,10,14]. This mechanism occurs
without efFective inversion in the basis where the LF
coherence vanishes; hence amplification is possible even

when the sum of the upper sublevels population is less
than the lower-level population [10].

In this paper we consider the P scheme for the general
nonresonant case (Fig. 1): the monochromatic optical
field interacts with either one or with both optical transi-
tions, when the two upper sublevels are coupled by either
microwave or an external dc field. We analyze first the
amplification condition for a simplified model, the F
scheme (Fig. 2), where an external field influences the op-
tical polarization via the atomic coherence between the
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FIG. 1. The P configuration.
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FIG. 2. The F configuration.
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sublevels only. Then we establish the equivalence be-
tween the P scheme and more complex configurations in-

volving two autoionizing states decaying to an identical
continuum and a monochromatic 6eld interacting with
both high-frequency transitions [16—19]. Finally we

prove that the P scheme and hence the scheme involving
a continuum of states are reduced to the F scheme in the
dressed-state representation. We 6nd the gain profile and
show that the sign of the population di8'erence between
the upper sublevels determines if the inversionless
amplification occurs at line center or in the sidebands.

II. DYNAMICAL EQUATIONS
FOR THE P SCHEME

~P11 =R] —21m(yoz]+ao 3]),
dt

P22

at
=Rz+2Im(yoz]+a rl oz3),

with the definitions

a;q = (]p; Ip I O'J & n]i p(( p&)

3

R;= —g (N p;; N;PJJ )/T—']J,
j=1

(2.3d)

(2.3e)

8= g ]r~„lq, &(q, l

j=1

(] 311+3& & +] I +a'131 1 & & 31

p'3z 1 +3 & & q z I
+pz31q z & & q, I )

— o(~»l z&&~]1+~»1~]&&~zl), (2.1)

where 4 =]p' 'exp( iE t/A) are the—atomic states with
energy E , m,"=(E; E)/. fi with i,j =1, 2,—or 3, and
E3=0. In the rotating-wave approximation and in the
basis ]p] z=]II] ze'"', ]p3=]113, the Hamiltonian (2.1) takes
the form

(2.2)

where a=@]3E/2]]i, y=IJ]zEo/fi, 5]=(E] E3)/A' —m, —
and 5z=(Ez E3)/fi co. — —

With the usual phenomenological addition of the in-
coherent pumping and damping processes, we obtain the
set of density matrix equations [15]:

We consider a three-level medium with a P
configuration (Fig. 1). The two sublevels of the upper lev-

el are coupled by the dc field Eo. The high-frequency
field E=(E/2)[exp( icot+ikz—)+c c ]excites. b.oth opti-
cal transitions 1~3 and 2~3. This system is described
by the Hamiltonian

where N is the population of level j in the absence of
coherent field (a=y =0), T'( and Tg are the longitudinal
and transverse relaxation times for the transition i~j,
and i) =]M23/p]3

The wave equation for the complex amplitude a is

aa 1 aa (a»+n'o»)
Bz c Bt Ac

(2.4)

and pump depletion will be neglected, implying that we
work in the intense pump limit.

We need a dc field in order to excite the cw coherence
because only in this case is there a steady-state solution of
the Maxwell-Bloch equations if the monochromatic field
interacts with both optical transitions simultaneously.
For this case, the transient processes when the atomic
coherence is excited by a microwave field interacts with
only one optical transition (in particular, if one of the two
transitions is forbidden), there is a steady-state solution of
the Maxwell-Bloch equations in the rotating-wave ap-
proximation when the low-frequency coherence is excited
by the microwave field. This last situation is described by
the same set of Bloch equations but with the modified
definitions y]=P]e' ', ]pz=]tjze ~, y=p]zEOI(2')
where Eo is the complex amplitude of the microwave
field, and 52=co23 —co —

co~ where co is the frequency of
the coherent pumping field and g=0.

To get the linear gain from which the amplification
condition derives, we need only Eqs. (2.3a), (2.3b), and
(2.4) where the functions n», n3z, and o,z are driven by
the external field y and are defined from Eqs.
(2.3c)—(2.3e) with a =0. In steady state, we have
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where the following definitions have been used:

g N3)g) +N32g2
T T

4 N)g)+N2g2+N3g, g2

g 23 N]g ] +Nzgz +N3(g] +gz )/2
T——T2

2 N)g)+N2g2+N3g, g2

gI=T', /T', , N t=N —Nt, 1=1 or 2,

g —2T /T 0 —co co

According to Eqs. (2.3a) and (2.3b), there are two ways in

which the dc field can induce the atomic polarizations
0 J 3 and {723 and therefore control the high-frequency
field absorption. One channel is via the terms gao. ,2 and

a]T]2 (where o,z is proportional to y), the second channel
is via the terms yo 23 and y*o.». If one of the two optical
transitions is forbidden, only the second channel remains.
In Refs. [6] and [10], we dealt with a bichromatic field

with components a and I3, and we found a similar pair of
channels (via the terms po]2, ao', z and via the terms

ycT23 y*o», respectively) which were shown to be con-
nected to the two different amplification mechanisms dis-
cussed in the Introduction. The question is therefore to
determine whether these two mechanisms are also con-
nected to the two channels determined here. To answer
this question, we first analyze a simpler model where the
direct connection between the sublevels by the dc field is
absent. In other words, we set y=0 in Eqs. (2.3a) and
(2.3b), but keep the terms which are proportional to o,z.

To differentiate this situation from the P scheme (where
I

y&0), we shall call it the F scheme (Fig. 2). In principle,
such a scheme can be realized when the atomic coherence
is excited by another monochromatic field resonant to the
adjacent transition (compare with the double-A scheme
of Ref. [6]). In addition, we will show that the P scheme
can reduce to the F scheme under certain conditions.

III. AMPLIFICATION CONDITION
FOR THE F SCHEME

Let us consider the propagation of a monochromatic
field

E =—[ exp(

idiot+—

ikz)+c c ],. .

interacting with a three-level medium in an F
configuration (Fig. 2). The cw atomic coherence o,z is

supposed to be excited between the two upper sublevels.
The equations for the complex amplitudes of the off-

diagonal elements 0.» and cr23 of the density matrix in the
slowly varying amplitude approximation are

BO )3

at

~o 23

Bt

1

» +i5] o»+ia. (n3] rt(T]2)
T

1 +]52 a23+la( ln32 &12) .
T

(3 1)

Because we seek the linear gain, we can assume n&3,

n23, and 0. ,2 to be constants defined by some external
sources. Let us seek solutions of (2.4) and (3.1) in the
form cr]3, cr23, a-exp( icot+ikz). Th—is leads to the
dispersion relation

CO . 31 9&]2 I gl n32 (9 12)
k =Eg )3 +

c 1+iTz b, ] g+iTz bz
(3.2)

where g]3=22TNcoliz]3l Tz /ck, g= Tz /Tz,
2=~& ~i2 The amplification condi-

tion Im(k ) (0 is

t] (7 13)2
Im( cr )P3]P'23 12 1+(t] T]3 )2

1 2

g ( 7.23 )2

I+(5 T )

T2 T2 n3]T2 lP]3l 32 2 lP23l+ ) +
I+(b]T2 ) I+(bzT2 ) 1+(2]], T' ) I+(6 T )

(3.3)

In the limit 1/T2, 1/T2 ~0, this condition takes the
simple form

M)2
Im(i 3]]M23o]2) (0 .

Thus if the optical field is tuned between levels 1 and 2,
such that h&h2 & 0, it is necessary to have

Im(]]l31]M23~12) & 0.
In the symmetrical case, defined by the conditions

Tz = Tz = Tz, b, ]
= b,2= co]2/2, we have, from (3.3), —

co]2T2 Im(]]23]p23o ]2)+2 Re(]M3]]]l23&12)

& n3] liz3] l'+n3z l]]23zl'

We stress that this inequality is quite different from the
inversionless amplification condition of a bichromatic
field:

lo 2] l
& ll ]3n23

which is equivalent to the condition of population inver-
sion in the basis where the atomic coherence vanishes [6].
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If the first term in the left-hand side (3.4) vanishes, the in-

equality (3.4) is more restrictive than condition (3.5).
However, the contrary is also possible, i.e., condition (3.4}
can be easier to verify than condition (3.5). In that case,
inversionless amplification of a monochromatic field is
possible even when p»+pz2 &p33 and amplification of a
bichromatic field is impossible [6]. However, in that case,

p»+p22 has to exceed a critical threshold. This requires
a finite frequency splitting (co,z&0) and field interactions
with both optical transitions simultaneously: p, 3%0,
p2q&0.

To observe inversionless amplification in the F scheme,
it is necessary that both optical transitions be dipole-
allowed transitions: p»%0, @23@0. However, it is also

sufhcient to have a large enough atomic polarization at
only one of the transitions: the other atomic polarization
can be small as a result of fast relaxing process. For in-

stance, in the limit Tz ~0 and 023~0, Eqs. (2.4) and

(3.1) reduce to

1 . a
13

+ foal +13+ (F13 31 P23 12)
T2 Pls

(3.5a)

o.
&2 couples sublevels in such a way that the interaction of

the field with the transition 2~3 leads to the depletion of
the upper states, even if the sum of their populations is
less than the lower-level population.

k ——=g))
C

where

Ois+'9 02&

ar"
2

o,3=iaT2 [(n» 2}cr—,z)(ihz+g)

+'yTz (rin3z o'12)]/P r

+23 i+T2 [( qn32 ~12)(i~1+ 1)
+iy'Tz (n31 —2}cr12)]/P,

P=(1+iX,)(g+i3,,}+P, P= ~y~2(T13)',

IU. AMPLIFICATION CONDITION
FOR THE P SCHEME

Let us return to the analysis of amplification condition
in P scheme. Seeking solutions of Eqs. (2.3) and (2.4) in
the form o,3, Oz„and a-exp( i9t—+ikz) leads to the
dispersion relation

Bcx 1 Bcx

az+ ~ at

2~1~NIP13I'
0 i3 ~ (3.5b}

b, =(co» co co)Tz—, —bz=b, (co,z
—co~)Tz—

The gain G = —Im(k) is given by

The amplification condition (3.3) then takes the form

13
~1 Im(831923+12)+ R (P31P23+12)/T2

+ n3'1 I@31I'/Tz' . (3.6)

In this limit, the physical mechanism leading to inver-
sionless amplification is especially simple. The optical
field a acting on the transition 2~3 creates an atomic po-
larization at the optical transition 1~3 via the interac-
tion with the LF coherence o. ,2 as described by the source
term iup 2o3, /2p» in (3.5a). Under appropriate condi-
tions on cr&2, the atomic polarization e&& can drive the
optical field a and result in a net gain of emission over
absorption.

Hence this inversionless amplification is due to the fact
that the external source exciting the atomic coherence

I

G =g» Re[ [( n31+7lo 12)(0+152)

+(2)'cr",2 ~zi~ n32)(1+id, , )

—iy Tz (rin32 —o1z)

(4.1)

In these notations, the linear gain/absorption of a two-
level system would be G =g»N&&. In the symmetrical
case defined by b, , = —bz, Tz =Tz, ~p13~ =~p23~, and
co =0, this formula coincides with (3.4). Hence in this
case, the action of the field y is reduced to the excitation
of the atomic coherence and the P scheme becomes
equivalent to the F scheme. If the transition 2~3 is for-
bidden (@23=0),the gain (4.1) in the resonant case co,2=0
takes the form

[qP(N» 4T, /T,") —N»g](g+P—) —6', [N»+qP [N»+4T, /(Tz" g)]G=g
1+4qPT/((TP)] ~P~2

(4.2)

where q =Tz /Tz and g= Tz /Tz .
When dealing with amplification without population

inversion between atomic levels, it is sensible to
differentiate two situations. One is the absence of initial
population inversion, i.e., before switching on the
coherent pumping. Another is the absence of the popula-
tion inversion in the steady state, i.e., under the action of
the coherent pumping. When population inversion at the
optical transitions is not realized initially, it cannot occur
in steady state under the action of the microwave pump-
ing. This follows directly from the steady-state solution
(2.5). However, the opposite situation, when there was

initial population inversion but it disappeared in steady
state, is possible. In particular, it is realized when the
transition 2~3 is forbidden and all the pumping and re-
laxation processes are radiative. This situation was ana-
lyzed in [7,9]. Indeed using the detailed balance condi-
tion (i.e., introducing the transition probabilities in the
form w, „=N„/T', "), we can verify easily that the
amplification condition found in [7,8] implies initial pop-
ulation inversion N2& &0. However, in general when all
transitions are allowed or when there are nonradiative de-
cay processes, the Maxwell-Bloch equations (2.3) and
(2.4) allow for the possibility of amplification in the ab-
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FIG. 3. The gain G = —Im(k) defined by Eq. (4.2) in units of
g» vs detuning in the case N» & 0 corresponding to an
amplification in the sidebands. The parameters are N~ =0.45,
X,=0, N, =0.55, g, =0.01, g =0.45, g, =0.001, (=45.45,
q =0.022, and P =20600.

qlN» l
& 4T, /T,",

and strong enough pump

q»N„/(lN2, I 4T, /T2') .—

(4.3)

(4 4)

In the case N» &0, the maximum gain occurs at line
center while absorption takes place in the sidebands. On
the contrary, if N2& &0, there is absorption at line center
and gain in the sidebands. The maximum gain in the lim-
it of a strong pump y &)1/T2 is achieved when the de-
tuning equals the Rabi frequency: lb, , l =y Ti .13

It is worth stressing that Maxwell-Bloch equations
with the phenomenological incoherent pump and relaxa-
tion rates are valid as long as the Rabi frequency is small

C:
'Q —Q 3-
C3

sence of the initial population inversion N, 3 &0 and

N» &0.
According to the expression (4.2) for the gain, it is pos-

sible to get this amplification either at line center if
N» &0 or at the sidebands if X» &0. This is illustrated
in Figs. 3 and 4 where we take N2, = —0.45 and 0.45, re-
spectively; the other available parameters were chosen (i)
to fulfill the inequality (4.5) and (ii) to maximize the gain
in each case In pa.rticular, for /=1 (i.e., T2 =T2 ), the13 23

condition for inversionless amplification in both cases can
be expressed in the same form. Namely, it implies large
enough population di6'erence at the transition 1~2:

enough as compared to the frequency transition [15]:
y «co,2. Hence one has to be careful when considering
the resonant case for a dc field because it implies level de-
generacy (coi2=0). However, for the microwave field, the
analysis of the resonant case is correct even in the limit

y T'z )& 1 provided co,2Tz » 1. Thus inversionless
amplification both at line center and in the sidebands can
appear although the magnitude of the gain tends to zero
when y T2" » 1 as seen from Eq. (4.2).

The amplification conditions at line center (5=0) were
analyzed previously [6]. It was shown that the necessary
condition of amplification (4.3) is compatible, in a wide
domain of the material parameters, with the inequalities
for the relaxation rates in a three-level medium:

2 . 1 1 1 1

mk ' j' mk J ~jm ~J'k ymk
m 'k= +N . +

(4.5)

and with the condition of no population inversion at both
optical transitions: N» )0, N3z &0. In particular, the
most favorable limit is 2/T, =P(m, j,k), N, =0 and
T « T « T

~
. The amplificatio occurs here when

the population of level 2 exceeds a very small critical
value N2 =(T', /T,' )'~ &(l.

In case it is the transition 1~3 which is forbidden
(Iu»=0), a similar analysis applies. In this situation, in-
versionless amplification occurs at line center if N, 2 &0
and at the sidebands if N, 2 &0. Let us mention that the
same mechanism of inversionless amplification appears
also in the three-level configurations with lower-level
splitting.

If we keep the two-photon resonance condition
(5=5Tz ) but not the one-photon resonance condition
(i.e., nonresonant Raman scattering), it follows from the
analysis of Eq. (4.1) that the amplification condition takes
the usual form of population inversion between the levels
2 and 3: Nz3 &0.

V. AMPLIFICATION CONDITION
IN THE BASIS OF DRESSED STATES

y
y =5.cp. , j=1,2 .J J J'

The solution of the eigenvalue problem (5.1) is

To further clarify the role of the external field, let us
rewrite the dynamical Eqs. (2.3a}, (2.3b), and (2.4) in the
basis of the states dressed by the external field, i.e., in the
basis of states diagonalizing the Hamiltonian of the atom-
ic subsystem (1,2}:

6,

—0.8—2
I I I I 1 I I i I

—1

I
I ~ I i I I I I I I I I 1 I 1 I I I I I

1

I I I I I I I 1 I

2

1 e
(e2+ ly l2)1/2 —y+

FIG. 4. The gain G = —Im(k) defined by Eq. (4.2) in units of
g» vs detuning in the case N» & 0 corresponding to an
amplification at line center. The parameters are Xi =0,
X, =0.45, N, =0.55, g, =0.001, g, =g =0.001, /=0. 002, q = 1,
and P =0.2.

1
q' =

(e~+lyl2)i~~ e
fi, ,= [fi, + fi,+(n'„+4l) l')'"]/2,
e=[n„+(n&g+4lr I')'"]/2 .

(5.2)



46 INVERSIONLESS AMPLIFICATION OF A MONOCHROMATIC. . . 2705

In this basis, Eqs. (2.3a), (2.3b), and (2.4) take the form ri3i =ni~=(N3, +4y T, T2 —N, 2/2)/(1+4y TT2 ),
= —I iio, &+ I iso &3+ia(R3, —Flo,2),at

BO 23 = ~ ~= —1 22o 23+ I 2,cr»+ ia(qr732 CT ]2)
Bt

Ba 1 Ba ' Pi3

%e have used the notations

Ij (QIIplq, ), nj j( jjr p3 p3

p;, = &q; I ply, ), a=p»E/2&,

1/rz =1/T2 +i5k, k=1 or 2,
e2/ 13+ Iyl2/p3r =VP2,3'Pi3 ii e2+

I y
e'/9'+

I y I'/r, i3

r„= e2+
I

I2

(5.3)

(5.4)

cri2=N2, (2iyT2 —1)/(2+8y TT2 ) . (5.5)

and to verify that population inversion in this basis never
arises (n 3, =n 32 & 0) if it did not exist initially between
the atomic states (N», N32 & 0). Moreover it is also obvi-
ous that it cannot appear in the dressed states
(p»+p2i &p») if it is absent in steady state between the
atomic levels (p»+pz2 &p33} because the unitary trans-
formation (5.2) does not change the trace of the matrix.
Thus from (5.3) it follows that it is low-frequency coher-
ence between the dressed states o &2 which is responsible
for the inversionless amplification. The principal role of
the low-frequency coherence between the dressed states
in this mechanism has been stressed recently in the cases
of amplification without inversion both on the initial- and
on the steady-state population [8] and also in the steady-
state population only [9]. At the resonant pumping
(co~=coi2) the low-frequency coherence in the steady
state is expressed by

ye
e +lyi

One can see that this transformation eliminates the terms
which were proportional y in Eqs. (2.3a) and (2.3b). The
dynamical (or Hamiltonian) part of Eqs. (5.3) for the P
scheme in the new basis is similar to the dynamical part
of Eqs. (3.1) and (2.4) for the F scheme in the old basis.
The difference between these two sets of equations is due
to relaxation terms only. In particular, if Ti =Kg =T2,
we have 1»=I &2=1/Ti, r,z= I i, =O, and Eqs. (5.3) in
a new basis coincide with Eqs. (3.1) and (2.4) in the old
basis. Hence if we substitute in the arnplification condi-
tion (3.3) for the F scheme the variables o;j, n;j, P;j for
the variables cr, , n;. , p, , and express them in the old
basis, we obtain the arnplification condition for the P
scheme in the form G &0, where G is defined by (4.1).
This means that there is only one mechanism of inver-
sionless amplification in the P scheme (with microwave or
dc pump). This mechanism appears already in the sim-

plest F scheme where a monochromatic field interacts
simultaneously and therefore nonresonantly with two
nondegenerate optical transitions. As shown above, in
the P scheme (in contradistinction with the F scheme), in-
versionless amplification occurs even in the case Q&2=0
and even if one transition is forbidden. This is due to the
fact that the microwave field not only creates the atomic
coherence o.

&z but also splits and mixes the upper atomic
states. In fact, if 0,2=0 and p23=0, we have in the
dressed-state basis (5.2): p»=p2& =p, 3/i 2 and co,2=2y.
Hence in the effective F scheme, there is a splitting of the
upper level and interaction of the monochromatic field
with both optical transitions simultaneously.

Thus the P scheme in the dressed-state representation
is reduced to the effective F scheme. It is not diScult to
calculate the population differences between the dressed
states and the lower level under resonant pumping
(Biz=0, i.e., co =su, z):

It tends to zero when y T2 »1 and hence inversionless
amplification vanishes in this limit as already mentioned.
This result is in full agreement with the fact that it is in
the dressed-state basis that the diagonal distribution has
to be established in steady state, at least in the framework
of the traditional rotating-wave, Born-Markoff, and secu-
lar approximations. The last assumption implies strong
enough coherent pumping [20]: yT'z" »1. Thus this
mechanism can appear only beyond these approxima-
tions.

This is quite different from the mechanism based on
the coherent population trapping, where the necessary
and suScient condition for amplification when y T'2" »1
takes the form of population inversion between dressed
states [21].

Recently, the possibility of inversionless amplification
was demonstrated in a more complex scheme involving
two autoionizing states decaying to an identical continu-
um and a monochromatic field interacting with both opti-
cal transitions [16—18]. The comparison of density ma-
trix and wave equations [17,19] for this situation with the
corresponding Eqs. (2.3}and (2.4) for the P scheme shows
that the decaying into the identical continuum is de-
scribed by similar terms and hence plays a similar role as
the pumping in the P scheme. Thus the physical mecha-
nism of inversionless amplification in these more complex
schemes is essentially the same as in the simpler P and F
schemes.

VI. CONCLUSIONS

The main results of this paper are the following.
(1) A monochromatic field can be amplified without

population inversion in a three-level medium of the F
configuration (Fig. 2) if it interacts simultaneously with
both optical transitions and the atomic coherence o.

&z
be-

tween the two upper sublevels is excited by the externa1
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source. The condition of amplification can be less
stringent than for a bichromatic field, where each com-
ponent interacts with its own transition. Furthermore,
amplification does not imply population inversion in the
basis where the atomic coherence vanishes.

(2) The P scheme where two nearby sublevels are cou-
pled by a dc field (or by a microwave field) is equivalent
to the F scheme in the dressed-state basis. The coupling
field plays three major roles in the inversionless
amplification process: (a) It induces atomic coherence be-
tween dressed states. (b) It splits the upper atomic states
and hence reduces adsorption for the resonant optical
field. (c) It mixes the upper atomic sublevels and there-

fore leads to the effective interaction of the mono-
chromatic field with both dressed states. Because of this
effect, inversionless amplification becomes possible even
when one optical transition is forbidden.

(3) Amplification without inversion for the P scheme
occurs at line center or at the sidebands, depending on
the sign of the sublevel population difference.
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