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Laser cooling of trapped ions in a standing wave
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Laser cooling of trapped ions in a standing- and running-wave configuration is discussed theoret-
ically. The ions are assumed to be spatially localized on the scale provided by the wavelength of
the iaser (Lamb-Dicke limit). A master equation for the center-of-mass distribution of the ion is
derived for a multilevel system and explicit results are presented for two- and three-level systems and
harmonic trapping potentials, For the two-level system located at the node of the standing wave,
we find final temperatures that are a factor of 2 lower than the limit for a running wave and cooling
rates that do not saturate with the laser intensity. At the point of maximum gradient of the standing
wave, blue detuned cooling is found that is analogous to the Sisyphus cooling of free atoms. For a
three-level system we compare our results with those of Wineland, Dalibard, and Cohen-Tannoudji
[J. Opt. Soc. Am. B 9, 32 (1992)].
PACS number(s): 32.80 Pj

I. INTRODUCTION

Laser cooling of single trapped ions [1, 2] has been of
increasing interest for more than a decade [5—7]. Pro-
posed by Wineland and Dehmelt in 1975 [3], laser cool-
ing was first observed by Neuhauser, Hohenstatt, Toschek
and Dehmelt and by Wineland, Drullinger, and Walls in
1978 [4], and started a renewed investigation of the fun-
damental interaction between electromagnetic radiation
and matter with particular emphasis on the coupling be-
tween internal (atomic) and external (motional) degrees
of freedom. This fundamental interest is due to the fact
that a single trapped and cooled ion provides a quantum
system close to theoretical models in quantum optics.
This feature makes a single trapped and laser-cooled ion
the preferred subject for ultrahigh precision spectroscopy
and the ultimate candidate for time and frequency stan-
dards [1].

On the theoretical side, many aspects of laser cooling
of a single trapped ion are well understood [6]. Wineland
and Itano [8], and Stenholm, Javanainen, and Lindberg

[6, 9, 10] developed theories which allow us to determine
laser cooling rates in traps and final energies. In brief, as
long as the trap frequency v is smaller than the natural
linewidth I' of the optical transition for laser cooling (i.e. ,

the weak-binding limit), the final temperature is lim-

ited by T = hl'/2k& where ks is Boltzmann's constant
(Doppler limit). On the other hand, for trap frequencies
v ) I' (i.e. , the strong-binding limit), the trapped par-
ticle develops well-resolved absorption sidebands at the
trap frequency and can be optically pumped to its low-

est vibrational state by exciting selectively on the lower
sideband (sideband cooling). Experimentally, the resid-
ual temperature in this case (given by the residual un-

certainty of being in the lowest state) can be very low.

Both the Doppler and the sideband limit have been ob-

served in experiments, and agree well with the theoretical
predictions [11].

During the past few years significant progress has been
made in our understanding of laser cooling of free atoms
[12]: aside from the usual cooling by scattering forces,
many cooling schemes have been investigated and proved
successful, in particular those concerned with dipole
forces (in a standing wave) [13];extremely low tempera-
tures have been achieved with polarization gradient cool-
ing [14) (which is connected to a multilevel Zeeman struc-
ture), and dark state cooling [15]. Although laser cooling
of trapped ions has been demonstrated previous to cool-
ing of free atoms, these cooling mechanisms and variants
have not been investigated for trapped ions. In contrast
to studies of free atoms, theoretical and experimental
work is mostly restricted to two-level systems. A no-
ticeable exception is experimental and theoretical work
on three-level ions where Raman cooling has been pre-
dicted to achieve ultimately low temperatures [10], and

very recently theoretical work on Sisyphus cooling [16].
Otherwise, there is no work on laser cooling in multilevel

systems and standing waves with ion traps.
In the present paper we investigate theoretically laser

cooling of trapped ions in a standing-wave (SW) laser
field (see also [17]). Since trapped ions can be spatially lo-

calized to dimensions smaller than an optical wavelength
(Lamb-Dicke limit), cooling can be studied for diferent
positions of the ion within the standing wave. Of par-
ticular interest is the cooling dynamics at the node and
antinode of the SW, and the point of maximum gradient.

A simple, though not complete, model serves to illus-

trate one of the features that can arise from such consid-
erations. Take a two-level atom, trapped in the Lamb-
Dicke limit, and sideband laser cooled in a standing wave

where the node is at the trap center. The tuning of the
laser is uo —v, the free-atom resonant frequency minus

the trap frequency. This resonantly excites, for exam. —
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pie, transitions from the internal atomic ground state in
the first excited trap state to the internal atomic excited
state in the fundamental trap state. Subsequent decay to
the internal ground state in the trap fundamental state
completes a cooling cycle, while off-resonant transitions
excited from this lowest-energy state provide the corn-

peting heating mechanism. Locating the standing-wave
node at the trap center favors the cooling transition over
the heating transition because the lowest-energy state is
more nearly "in the dark, " having the smallest spatial
extent around the node. In this way, a lower tempera-
ture is reached compared to the running-wave case where
no such spatial advantage is present.

This simplified model cannot predict all the phenom-
ena treated here. Instead, we choose as the tool for our
calculation the quantum master equation for laser cool-
ing in the Lamb-Dicke limit, as derived for example by
Stenholm and co-workers for two-level systems in running
waves (RW) [6, 9]. We generalize this equation to mul-

tilevel systems and standing-wave configurations. Fur-
thermore, an essential element of our formulation is the
identification of heating and cooling rates in terms of
internal atomic correlation functions of the quadrature
components of the atomic polarization. For a two-level
system (TLS) we find that at the node of the SW and
for red laser detunings the final energy of the ion is half
the Doppler limit. In contrast to the RW configuration,
the final energy is independent of the laser intensity, and
in addition the cooling rates do not saturate as a func-
tion of the Rabi frequency. At the antinode we find only
heating.

This general treatment of laser cooling in traps allows
one to easily calculate the final energy of a trapped atom
for running as well as standing waves or for any other field
configuration. For illustration, the master equation is de-
rived for the case of harmonic trapping and it is shown
that with the application of standing waves for cooling a
trapped ion, the final temperature can be lower than the
Doppler limit (which applies for the running wave). This
is achieved when the trapped ion is located at the node
of the standing wave; at the antinode only heating is ob-
tained. Moreover, when the ion is located near the point
of the standing wave's steepest gradient and the laser is
sufBciently intense, cooling is observed for blue detunings
instead of red detunings as is the case for usual Doppler
and sideband cooling. This is the Sisyphus cooling effect,
as has been previously discussed for free atoms [13] and
has been recently calculated by Wineland, Dalibard, and
Cohen-Tannoudji for a three-level configuration [16].

The paper is organized as follows: In Sec. II the mas-
ter equation for laser cooling of a multilevel system is
derived. In Sec. III we calculate the cooling rates and
final temperatures for the RW and SW configurations. A
discussion of these results is given in Sec. IV. Finally,
in Sec. V laser cooling of a three-level atom in a SW is
discussed for a model introduced by Wineland, Dalibard,
and Cohen-Tannoudji [16]. The technical details of the
adiabatic elimination procedure and a generating func-
tion technique for a numerical solution of the full master
equation of a two-level atom in a harmonic trap potential
are given in Appendixes A and B, respectively.

II. LASER COOLINC OF TRAPPED
MULTILEVEL IONS

IN THE LAMB-DICKE LIMIT

In this section we derive the master equation for laser
cooling of trapped multilevel ions in the Lamb-Dicke limit
[6, 9]. In this limit the ions are assumed to be well lo-
calized on the scale of the laser wavelength, and cooling
occurs on a time scale slow in comparison with the in-
ternal atomic dynamics. This allows adiabatic elimina-
tion of the internal degrees of freedom to derive a master
equation for the center-of-mass distribution function of
the ion. In previous work [6, 9, 10] this Lamb-Dicke mas-
ter equation has been derived and solved for two- and
three-level systems interacting with a running wave, and
for harmonic trapping potentials. Here we will present a
derivation for a multilevel system, a general trapping po-
tential and running- and standing-wave configurations.
We will show that the transition rates between the levels
of the trapping potential, which correspond to laser cool-
ing and heating, can be expressed in terms of correlation
functions of quadrature components of the atomic po-
larization operators. For a harmonic trapping potential
these rates can be interpreted as the absorption spectrum
of motion-induced sidebands of the laser fields.

A. Master equation for the multilevel system

We consider an ion trapped in a potential. The ion
interacts with laser light and is damped by spontaneous
emission. For simplicity we will restrict ourselves to a
one-dimensional atomic motion. The master equation for
the reduced system density operator p, which is obtained
by tracing over the empty modes of the radiation field,
obeys the equation (ti = 1) [6]

—p = —i[Hip + Hy + Vd;p, p] + 8"p.
dt (1)

Here, Hi~ is the Hamiltonian for the center-of-mass mo-
tion of the ion in the trap (external degrees of freedom);
it is a function of the momentum P and position oper-
ator R of the ion. Hy is the free Hamiltonian for the
internal energy levels of the ion, and Vd;~ describes the
dipole interaction of the laser with the ion. Damping by
spontaneous emission is contained in the Liouvillian 8",
given by

where 2', is the spontaneous emission rate ~i) —+ ~j),
and oj, =

~ j)(i~ is the corresponding atomic transition
operator. The term

1
1

Pij =-,
—1

accounts for the momentum transfer in emission of a
spontaneous photon with momentum hk, ~ in the decay
from the level ~i) to

~
j). W(z) is the angular distribution

of spontaneous emission which for a dipole transition is
W(z) = s4(1+ z2).

In the Lamb-Dicke limit (LDL), the motion of the
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ion in the trap is confined to a spatial region much
smaller than the dimension of the optical wavelength
of the exciting laser light. This allows an expansion of
the dipole interaction in powers of the small parameter
q = vrao/A && 1 where ao is the dimension of the ground
state of the trap, and A is the optical wavelength. Ex-
panding the laser-atom interaction around the trap cen-
ter R = 0, we write

Vd;p(R) = Vg;p(0) —RF —zR F'+, (4)

keeping terms up to second order in g. Here I" is the
gradient of the dipole interaction at R = 0, and F' is
the second-order derivative. Note that Vg;p(0), F, and
I" are atomic operators referring only to internal atomic
degrees of freedom. In a similar way we expand the term
P,~ in the Liouville operator (2). We find

l:"= l'.p+ l:2+d d

where

l.op = 'Yj i(2irj, i piri,j ai,j a'j, ip p&i,j a'j,i) (6)

is the usual damping term in the atomic master equation
when atomic motion is neglected, and

E.zp = n) p~, k, cr, ~ (2RPR —R p —pR )cr~,

describes the diffusion due to spontaneous emission. In
obtaining l:&~ we have used that the angular distribution
for spontaneous emission W(x) is normalized and an even
function of x, and have defined

dx x W(x),

d—p = (l-'o+ l-'i+ l-'z)p,
t

where

(8)

~op = i[Htp p] + ( i[+I + Vd'p(0) Pl + ~op) (9)

—= (l'-oz + l'-oI) P

which equals s for usual dipole transitions.
Summarizing, we write master equation (1) in the LDL

including terms up to second order in g as

in the trap according to Ht~. For the internal degrees of
freedom Eq. (12) agrees with the usual atomic master
equation for a multilevel atom undergoing spontaneous
emission. In order g the internal and external dynamics
of the ion are decoupled, and there are no mechanical
light efkcts. Laser cooling of the ion is contained in the
interaction terms l'.

~ and l'.2. In view of the smallness of g
the coupling between the internal and external degrees of
freedom (i.e. , the laser cooling) is slow compared with the
time scale of the internal atomic dynamics in the LDL.
This allows adiabatic elimination of the internal degrees
of freedom.

Formally, the adiabatic elmination [6, 9, 18] of the in-
ternal degrees of freedom can be achieved as follows. Let
us consider the eigenvalue spectrum of the Liouville op-
erator on the right-hand side of the master equation (8).
To zero order in the Lamb-Dicke parameter g the eigen-
vectors of l'.p with zero eigenvalue Ap ——0 are

l.o in) (ni C3 pss = 0 (n = 0, 1, . . .)

Pp = P' 8 'P'p,

with

(14)

'P'X = ) in)(ni (niXin)
n=p

with in) with n = 0, 1, . . . eigenstates of the trap Hamil-
tonian, spin) = v„in), and pss the stationary solution
of the atomic density matrix for the internal atomic dy-
namics, l:orpss = 0. The subspace spanned by these
Liouville eigenvectors is infinitely degenerate. The "ex-
cited" nonzero (complex) eigenvalues AA, (k = 1, 2, . . .)
of l:p will be of the order of multiples of the trap fre-
quency, and the frequency scale of the internal atomic dy-
namics (the Rabi frequency, spontaneous transition rates,
etc.). The zero-order Liouville eigenstates corresponding
to Ao = 0 are connected by the operators l:q and l:z to
the subspaces associated with Ak g 0. This corresponds
to a coupling between the internal and external degrees of
freedom. To the extent that the laser cooling rate is slow
compared with both the trap frequency and the internal
atomic frequencies (i.e. , g « 1), the coupling between
these blocks of eigenvalues and Liouville subspaces of l:p
is weak and can be described in perturbation theory. We
define a projection operator 'P on the subspace with zero
eigenvalue Ap = 0 of l'p according to

l:gp= i[ FR, p], — — 10
the projection operator on the trap populations, and

= —F(—i [R, p]) + (i[F,p])R

F(&~F.p) + (&»p—)»
Q'X = lim e "X —= pss Trr»

taboo
(16)

l:2p = [R F', p] + l:2p, —
2

are the zeroth-, first-, and second-order Liouvillians, re-

spectively. In zeroth order in q Eq. (8) reduces to

the projection operator on the internal stationary atomic
density matrix pss (Trr. . . is the trace over the internal

degrees of freedom). Projection of the master equation

on the 7 space gives in second-order perturbation theory
in g

—p = l'-o p =—(l'-oz + &oI)p .
dt

(12) 'P p = ['Pl:2'P + 'Pl:—g( —l'-o) l'-i'P] p.
—1

dt

The equation describes the (undamped) motion of the ion This is the required equation of motion for the reduced
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density operator

Pp = & pss Trl p = psst (is)

with p = Trr(p) a density operator for the center-of-mass

degress of freedom. In writing Eq. (17) we have made the
simplifying assumption that PZi "P= 0, which is fulfilled

for cases of interest below.
In Appendix A we show that Eq. (17) can be rewritten

p
i (F ) [R~ ('P p)] + ) p kz, {,;) [2R(p p)R —R (P p) —(P p)R ]

dt q2
OO OO

dt{F(t)F(0))ss [R, [R(t), (P'y)]] — dt([F(t) F(0)1)ss[R (~'&)R(t)] i

0 0
(i9)

where lowering and raising operators according to

R(t) LQECR e iHzpiReiH&pi 1 MvR= (at+a), P=i (at —a).
/2Mv

' 2
(20) (24)

= ) in) {n[Rin') {n'ie '~'" (21)
Eigenstates of Hq~ are the Fock states in) with energy
eigenvalues E„=v(n + z). The eigenvalues and eigen-
states of the Liouvillian ZoE are ivk and in)(n+ ki, re-
spectively, with k = 0, kl, k2, . . . . A projection opera
tor 'Pf, on the subspaces associated with these Liouville
eigenvalues can be easily defined according to

is the Heisenberg operator for the ion position R, and

()ss stands for the atomic mean values in the steady
state pss. The first term on the right-hand side of (19)
is a correction to the trap Hamiltonian H&~ (a frequency
shift), and is usually not of interest. The second term
describes the difFusion due to spontaneous emission (with
k,~ the wave vector for the transition i, j). The last two
terms involve the autocorrelation spectrum of the dipole
force F at A = 0 evaluated at the transition frequencies
v„—v„of the trap eigenstates. These terms describe
the light-induced transition rates between the trap states
in). Both (F(t)F(0))ss and {[F(t),F(0)])ss are atomic
correlation functions for the atomic operators F which
refer only to the internal atomic dynamics and can be
evaluated using the quantum regression theorem [18] for
optical Bloch equations,

P„'p = ) in)(n+ ki(nipin+ k) .
n=O

(25)

It can be readily checked that in the present case the
condition PZi'P = 0 is fulfilled in view of (n]Ziin) = 0.
In Appendix A we show that master equation (19) can
be written as

d . t' 1
{F')ss i

[a'a p]2Mv

+(([S(&)+ D](al a' —a'aO)

+[S( ~) + D](at pa-aat p)~+ H.c—.){F(t)F(0))ss= Trl(Fe~"'Fpss)

{[F() F( )])ss =Trl(Fe "'[Fpss])

(26)

with S(v) the fiuctuation spectrum of the operator F(t),
22

To summarize, laser cooling of trapped ions in the LDL
can be solved in two independent steps: (i) we calcu-
late the cooling and heating rates in Eq. (19) from the
Fourier transform of the correlation functions of the in-
ternal atomic operator F, which is the gradient of the
dipole interaction at the position of the ion; and (ii) we
solve the rate equations (17) for the trap populations for
the given transition rates.

B. Harmonic trapping

A simple, but particularly interesting case is a har-
monic trapping potential described by the Hamiltonian

g2
H, p

— + —,'Mv'R'—:v (ata+ —,'),2M (23)

where M is the ion mass, v is the oscillator frequency of
oscillations of the ion around R = 0, and we have defined

S(v) = 1
dte'"'(F(t)F(0)) ss, (27)

and

D = u) {o,;)ssp,,ii..., . 2
(2s)

the diffusion coefficient due to spontaneous emission from
the excited atomic states. g,~

= k,~//2Mv (with i,j la-
beling the atomic transition) are the (small) LDL param-
eters. Equation (28) is proportional to terms {o„)ssp,z
that are the spontaneous emission rates from the level ii)
to

ij). Finally, the term involving (F')ss is a renormal-
ization of the harmonic-oscillator frequency v due to the
presence of the laser field. It is a small correction (of the
second order in rl) and will be ignored in the following
discussion. Equation (26) is the familiar master equa-
tion for a damped harmonic oscillator interacting with a
finite-temperature heat bath [19].
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Taking diagonal matrix elements in the basis of the
Fock states ~n), we have [6]

Op
kL, oy .

2
(35)

A =2Re[S(v)+D],

A~ ——2 Re[S(—v) + D]
(30)

Equation (29) is identical to the standard cooling mas-
ter equation for a TLS interacting with a RW (although
here the expression of the transition rates Ay is general).
Thus, the solutions and interpretations given in Ref. [6]
for Eq. (29) apply also to the present case. The mean
value (n) obeys the equation

—(n) = —(A —A+)(n) + A+t (31)

so that we identify W = A —A+ with the cooling rate.
Cooling occurs for W ) 0. The corresponding final en-

ergy is

Ess = v((ata)ss+ 2i)

=vi + —
i

(W)0).( A+
A

(32)

III. Ag RATES FOR A TWO-LEVEL SYSTEM
IN RUNNING AND STANDING WAVES

Here we derive explicit expressions for the rates A
and A+ [Eq. (30)] for a two-level system in a running
and standing wave. Our results for the running wave
coincide with those derived by Stenholm and co-workers

[6, 9] derived by somewhat different methods. A detailed
discussion of the predictions for the standing wave and
its comparison with the results for the running wave will

be given in Sec. IV.

A. Running wave

d

t
—p„= (n+1)A p„~i —[(n+1)Ap+nA ]p„+nA+p„

(29)

for the populations p„= (n]p]n) with transition rates A~
given by

OO

S(v) = rl2
~ ~

dte' '(o„(t)o„(0)),k2) p

according to the quantum fluctuation regression theorem.
For the Bloch equations of a TLS at rest we have

(36)

d—„,(~*)= -~(~*) + &(~.)

—„( ) =-&( *)-&( ) —Ilo( ) (37)

—(o,) = Ap(o„) —2p(o, ) —2p.
dt

Here, I' = 2p is the spontaneous decay rate. The steady-
state solutions to these Bloch equations are

(&*)ss = ~p

(~w)ss =»p/P
( .)..= -(~'+ &')/P

where P = p2 + Ap + 0p2/2. For Eq. (36) we find

S(v) = q
, ('Ap 1

(2 'D

x 2»p (—iv + p) (cry) ss —vD( —&v + 2 7) (&g)ss
—iv( —iv+ p)( —iv+ 2&) + vflo( —&v+ V)(&*)ss

(39)

where

'D = —iv[(—iv+p) (—iv+ 2p)

yA (—iv+2')+Op( —iv+p)]. (40)

Furthermore, the diffusion coefficient defined in (28) is

Here 0~ = o+ + o, o.„=(0+ —o )/i, and o, are the
three components of the Bloch vector, 6 = ~L, —~p is
the detuning between the laser and the TLS transition
frequency, and Ap is the Rabi frequency. Note that in
the present case of a running wave the operator F is
proportional to the atomic polarization component o.„.
This is related to the fact that the ionic motion in a RW
corresponds to a phase modulation of the laser field. In
order to determine the rates A~ [Eq. (30)) we calculate
the fluctuation spectrum (27) of the operator F(t),

(33)

Op
HpI = HI + Vd;p(0) = ——o, + o

2

and for the operator F,

(34)

For cooling in a RW the interaction term in the Hamil-
tonian may be written in a frame rotating at the laser
frequency uL, as

z+e ikL, R + z &ikL—,R-Qp

2

where cr are the usual pseudospin operators for a TLS,
Ap is the Rabi frequency for the TLS-laser interaction,
and A:L, = uL, /c. According to Eq. (4) one finds for the
interaction of the laser with the internal degrees of free-
dom

D = ~g'P(1+ (~.)»)/2 = —,'~~'»'p/P. (41)

Substituting (41) and (39) in (30) gives the rates A and
A+. One can show that these rates coincide with results
derived earlier by Stenholm and co-workers [9].

B. Standing wave

In a standing wave the laser-atom interaction is

Vg;~(R) = cos(kL, R+ p)cr i,
2

(42)

where y accounts for the relative position of the ion in
the SW. In particular, &p = m/2 corresponds to an ion
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~(v) = rl'
l l

«et"'(o*(t)o*(0)) (44)i p

which can be calculated again by the quantum fluctu-
ation regression theorem. The Bloch equations for this
case are the same as for a RW (37) with Ap replaced by
A~. For the fluctuation spectrum we have

2, (Ao i y&~ 1

i
x(2pA~b, (o,)ss —iv[A~+ (—iv+ p)( —iv+ 2p)]

—&(-.+2 )( .)..—.«.I,)..),
(45)

where 'D (with Ap -+ A~) has been defined in Eq. (40).
The diffusion coefFicient D is again given by Eq. (41).
This completes the calculation of the A~ rates.

For a SW the cooling rate W = A —A+ can be written

W=2 — Re dt's'"' 0~ t o 0 ss2 0

dte ' '(o (t)cr (0))ss

%vs t 0
2 0

(46)

with g = rlAp sing. In the following we interpret this re-
sult from a difFerent perspective. We rewrite the Hamil-
tonian part of the master equation (1) in an interaction
picture with respect to the ion motion (the Hamiltonian
IIt~). This corresponds to a transformation to the rest
frame of the ion. With a = ae '"' and ai' = aie+'~t, and
in Grst order in the LDL expansion, we arrive in at

1~ + P
( +e—isrt, t + — ill, t)

0
2

+—(o+[ae ' +"'+aie ' "']+Hc j2 (47)

This Hamiltonian describes the interaction of a TLS (at
rest) with a laser at frequency ul. which has two side-

centered at a node of the SW, &p = m/4 is the position
of the maximum gradient, and &p = 0 characterizes the
position at an antinode. According to Eq. (4) we find

b, Ap cos((p)
~01 = ——az+

(43)
Ap sin p

2
klo .

Note that the effective Rabi frequency A„= Ap cosy for
a TLS at rest depends on the relative position y of the ion
in the SW. In particular, we have A~ yz ——0, A~ i4 =
Ap/y 2, and A& p =Ap. On the other hand, the operator
F scales with sin(y). Furthermore, F is proportional
to the polarization component o~ which mirrors the fact
that in the reference frame of the ion the laser appears
amplitude modulated. We find

bands at frequencies uL, + v. The laser corresponds to a
(strong) pump field. In the LDL we have rl (( 1 and
the sidebands can be considered as weak probe fields.
Note that the amplitude of the sidebands is proportional
to the quantum-mechanical operators a and a~, and the
two sidebands are correlated: for a SW the sidebands are
in phase, corresponding to amplitude modulation of the
laser (for a RW these sidebands would be out of phase,
corresponding to phase modulation).

Coming back to the cooling rate and using the explicit
form of o~ in terms of o'+, we may write

W = A —A+ ——A(v) —A( —v),

where

(48)

A(v) = g Re dte'"t([o (t), cr+(0)])ss
0

+g Re dte'"'([o (t), o (0)])ss.
0

(49)

IV. LASER COOLING OF A TWO-LEVEL
SYSTEM IN A STANDING WAVE: DISCUSSION

In Sec. III we have calculated cooling rates and fi-
nal temperatures of a single trapped ion in a given wave
pattern. Here we present a discussion of numerical re-
sults for a SW and compare it to a RW. It has been
demonstrated that sideband cooling of trapped ions with
a RW makes it possible to reach the lowest vibrational
eigenstate ]n = 0) [11]. Therefore, it is of experimental
interest to investigate how far laser cooling in a stand-
ing wave leads to lower temperatures and higher cooling
rates, especially when the trap frequency is smaller than
the natural linewidth (i.e. , weak binding limit) which is
most oRen realized in experiments with trapped ions.

Figure 1 shows a comparison of the cooling rates
W = A —A+ and the final energies (n) for the standing-
wave case at y = z'/2 [node of SW, Figs. 1(a) and 1(b)]
and rp = x/4 [point of maximum gradient, Figs. 1(c) and
1(d)], and for the RW [Figs. 1(e) and 1(f)) for three dif-

The first term is the usual absorption coefficient for a
probe beam of frequency aL, + v. The second term is
related to the absorption coefficient, appearing in three-
wave mixing due to correlations in the absorption (or
emission) of two photons of frequency ul, and subsequent
emission (absorption) of one photon of frequency uL, + v
and another of uL, —v, when the three lasers are in phase.
Hence, A(v) is the classical absorption-gain coefficient for
photons of frequency cuL, +v, while A(—v) is the same for
photons of frequency toI, —v. Then, the cooling condition
implies A(v) ) A( —v).

Hence, we conclude that laser cooling can be analyzed
in terms of the absorption coefficients for a TLS. This
procedure can be extended to the multilevel case by tak-
ing into account the corresponding sidebands on all cool-
ing transitions. The absorption spectrum of a TLS in a
probe fields with frequencies uri, 6 v and a pump field of
frequency &dr, is discussed in some detail by Meystre and
8argent [20].



2674 J. I. CIRAC, R. BLATT, P. ZOLLER, AND W. D. PHILLIPS 46

ferent Rabi frequencies Ao ——0.5, 1, and 2I' as a function
of the laser detuning 6/r. For the RW [cf. Fig. 1(e)]
we obtain the usual dispersive behavior for the cooling
rates W, i.e., for red detuning (6 & 0) there is cooling
and for blue detuning (b, & 0) there is heating. The
cooling rates saturate with increasing Rabi frequencies
Ao. These results coincide with those of Lindberg and
Stenholm [9]. In the low-intensity case (Ap « I') these
rates can be written as [6]

Ap = r[aP(h) + P(D + v)] .

Here

A2 (I'/2) 2'( ) =
2r2(r/2)~+~2

(5o)

is the upper-state population for a (nonsaturated) two-
level atom driven with frequency Ap. As can be seen
from Fig. 1(f), for the RW the lowest energy is reached
for low intensities and for a detuning 6 = —I'/2.

For a trapped ion located at the node of a SW [IIp =
x/2, Figs. 1(a) and 1(b)] we find cooling for red detun-
ings with cooling rates which do not saturate (i.e. , as
long as I7A & I' is fulfilled) and final energies which are
independent of the applied Rabi frequency. Note that
the final energy is a factor of 2 lower than for the RW
at low intensities. This can be understood as follows: a
trapped ion at the node of the SW does not encounter
the laser at frequency ~L, since A~ ~2 ——0; however, due
the oscillatory motion of the ion there exist weak side-
bands at frequencies u~ + v. Consequently, there is no

4
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I
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4 2 Q '2
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FIG. 1. Cooling rates W/11 and final energies (n) for a
trapped tvro-level ion in a SW configuration at the node [y =
~/2 (a),(b)], at the point of the maximum gradient [ig = vr/4

(c),(d)] and for a RW (e),(f) as a function of the laser detuning
4/I'. The parameters are I' = 1, v = 0.5, arid Ap = 0.5r
(solid line), Ap = I' (dashed line), fop = 2I' (dashed-dotted
line).

excitation and no saturation due to the (possibly strong)
laser at frequency uL„so that the cooling rate increases
with Oo, and there is no diffusion. Explicitly, we find for
all intensities 00

Ay = rP(6 6 v), (52)

which should be compared with Eq. (50) for the RW case
valid for low-intensities. The cooling rate W in the low
intensity limit is identical with that of a SW. Since there
is no saturation of the cooling rate it can be much higher
than for the comparable case of a RW [cf. the scales in
Figs. 1(e) and 1(a)). Since A~ and A show the same
dependence on the Rabi frequency, the final energy (n)
which is determined by the ratio A+/W is independent
of the Rabi frequency and is approximately a factor of 2
lower than for the RW case. Similarly, at the antinode
of a SW we find in the low-intensity limit A~ = nrP(k)
and clearly no steady state can be reached since there is
always heating due to the difFusion of the spontaneously
scattered photons on resonance.

Interesting cooling and heating dynamics is observed
at the SW's steepest gradient, i.e. , for p = vr/4. As can
be seen in Figs. 1(c) and 1(d), for low Rabi frequencies
[actually for Ap & max(v, r)] similar cooling results oc-
cur as for a RW [cf. the solid lines in Figs. 1(c) and
1(d)]. However, for large Rabi frequencies the ion expe-
riences a strong dipole force due to the large gradient and
laser cooling appears for blue detunings and heating for
red detunings. This is the Sisyphus cooling effect which
was found first in laser cooling of free atoms [13] and was
recently calculated for trapped ions in a standing wave
[16]. As can be seen from Figs. 1(c) and 1(d), the cool-
ing rates are smaller for the given Rabi frequencies as
compared to the RW case. However, inspection of Eq.
(45) shows that the cooling rate does not saturate and
increases with increasing Rabi frequency. Similarly, the
final energy is determined by the applied Rabi frequency.

The turnover from red detuned cooling (for low Rabi
frequencies) to blue detuned cooling is depicted in Fig.
2 in more detail. The curves a, 6, and c represent the
cooling rate W/I72 (upper part) and the final energies
(lower part) as a function of the detuning for the Rabi
frequencies Ap = 0.75I' (curve a), Ap = 1.25I' (curve 5),
and Ap ——1.75I' (curve c). As the Rabi frequency in-
creases, the cooling rate changes sign and blue cooling
starts as is expected for Sisyphus cooling. The overall
behavior of a trapped ion subject to cooling and heating
in a SW at p = 71/4 can be seen in Fig. 3. Here, a
contour plot of the final energy (n) (with contour lines

(n) = 2, 4, . . . , 20) is given as a function of the detuning
6 and Rabi frequency Qp. For Ap & max(I', v) cooling
appears for red detunings only and for Ap & max(I', v)
blue cooling starts. Note that the detuning range for
which Sisyphus cooling appears increases with increas-
ing Rabi frequency, whereas the detuning range where
red detuned cooling is still observed decreases in a cor-
responding way. A similar plot for the RW case mould
exhibit red detuned cooling only with contour lines, in-
dicating that the anal energy increases with increasing
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gies ~A~ g ower curves( ) (1 rves) for s trapped two-level ion in s SW con;
figuration at the point of the maximum gradient (rp = ~
The parameters are I' = 1, v = 0.5, and 0 ——d 0 = 0.75I' ~curve

a) Ao = 1.25I' (curve b), and Ao = 1.751' (curve c).a~, 0—

Rabi frequency, as already discussed in the context of
Fig. 1.

To exhibit the position dependence of a trapped ion
in the SW, we show in Fig. 4 a contour plot of the fi-
nal energy as a function of the detuning 6 and phases

(with contour lines (n) = 2, 4, . . . , 20) for a Rabi fre-
quency Ac ——6I'. As expected, for y = 0 an
(i.e. , at the antinodes) no cooling is observed, whereas
red detuned cooling appears for phases in the vicinity

FIG. 4. Contour plot of the mean final energies (given by
the mean quantum number (n) ) of s trapped ion in s SW
configuration for a given Rabi frequency as a function of the
laser detuning b, /I' for various phases p. The parameters are
I' = 1, Ao ——6I' and each contour line indicates an increase in

(n) by 2.

of &p = vr/2 (i.e. , at the node) and blue detuned cool-
ing exists for phases around &p = 7r/4 (i.e., at the S 's

maximum gradient). Note that the area where lowest

(n) values are achieved is much larger for red detuned
cooling than for blue detuned cooling. This is due to the
fact that for blue detuned cooling the final energy is al-
ways determined by the applied Rabi frequency whereas
at the node the final energy is independent of Ac. Figure
5 shows a similar contour plot except that the Rabi fre-

uency was chosen to be Oo = I'. s expe cted no blue
detuned cooling appears and the area where red detuned
cooling occurs is much wider than for Bc = 6I' since
there is no heating due to the dipole forces. Again, at
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FIG. 3. Contour plot of the mean final energies ~given

by the mean quantum number (n) ) of s trapped ion at the
aximum gradient of a SW configuration as a function ofmaximum

the laser detuning b, /I' for various Rsbi frequencies
The parameters sre I' = 1, p = m/4 snd each contour line
indicates an increase in (n) by 2.

FIG. 5. Contour plot of the mean final energies (given by
the mean quantum number (n) ) of s trapped ion in s SW

' noftheconfiguration for a given Rabi frequency as a function o
laser detuning b, /I' for various phases y. The parameters are
I' = 1 Ao = 1I' and each contour line indicates an increase in

(n) by 2.



2676 J. I. CIRAC, R. BLATT, P. ZOLLER, AND W. D. PHILLIPS 46

40
SW,y=TF/2

30-

20;

10

4 [ SW, rp=ii/4

the antinodes (p = 0 and &p = vr) no cooling is observed.
In Fig. 6 we plot the transfer rates A~ as a function

of the trap frequency v. Note that A (—v) = A+(+v).
Thus for v ) 0 the figure shows the transfer rate A
(n ~ n —1) while the function for v ( 0 corresponds
to the transfer rate A+ (n ~ n + 1). The subplots in
Fig. 6 are (a) SW at the node (&p = 7r/2), (b) SW at the
maximum gradient (y = vr/4), and (c) RW for the pa-
rameters are Ao ——1,4, 61', and 6 = —3I'. For a given v
the cooling rate is given by the difference W = A —A+
and can be inferred from the asymmetry of the curves in
Fig. 6 with respect to v = 0; the final energy is propor-
tional to A~/W. According to the discussion following
Eq. (47) the v dependence is equivalent to scanning the
frequency of the probe beams ~L, 6 v corresponding to
the motion-induced sidebands and the parameters in Fig.
6 correspond to an intense pump field at ~L, . Resonances
as a function of v appear at v 0 and at the gener-
alized Rabi frequency. In Fig. 6(a) there is only one
resonance present since at the node of a SW there is no
light field at frequency ul, . In contrast, in Figs. 6(b) and
6(c) the center and the left peak are associated with a
nonlinear mixing of the carrier at frequency ~l. with the
sidebands cuL, +v. The central peak is relevant for cooling
in the weak-binding limit (v ( I'), whereas the left and

right peaks describe cooling in the strong-binding limit
(v ) I').

Finally, it is worth mentioning that all figures pre-
sented so far do not dier substantially from those ob-
tained by solving numerically the (exact) master equa-
tion (1) (see Appendix B). DifFerent results were found
only for some parameters in the case of blue detuned
cooling. An example is shown in Fig. 7, where we plot
(n) as a function of the detuning 6/I' obtained by (i)
numerical solution of master equation (1) (solid line) ac-
cording to the procedure outlined in Appendix B, and (ii)
from the rates A and A+ (dashed line) as given in Sec.
II. The parameters in the figure are P = vr/4, v = 15I',
and Ao = 40I'. As can be seen from the solid line, for
some detuning there is no blue cooling in contrast to
the calculations using the theory developed in Sec. II.
The deviation is observed for detunings in the vicinity of
[(2v)z + Az ]i/z. We interpret this result in the following
way: as mentioned in the preceding section, cooling takes
place when the absorption coefficient defined in (49) ful-
fills A(v) ) A( —v), i.e. , when the sideband at frequency
~1. + v is more absorbed than that at frequency ul. —v.
Taking into account higher orders in the LDL expansion,
we find that there exist (very weak) sidebands centered
at frequencies aL, 6 2v which are not considered in the
treatment given in Sec. II. Usually they make a small
contribution to the final energy in LDL. However, their
contribution can become important when in first order

A(v) —A( —v). In this case, the first-order cooling rate
is nearly zero and the absorption of photons of frequency
u1, —2v (heating the ion) can dominate the cooling be-
havior. For a positive detuning this sideband frequency
may be very close to the transition frequency of the TLS
and consequently causes heating. This is predominant
for 2v = (Az+ Az)'/z

I

I
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I

I
I

I
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2S

FIG. 6. Rates A /il as a function of the trap frequency v
for a trapped ion in a SW configuration at the node [y = 7r/2

(a)], at the point of the maximum gradient [&p = n /4 (b)] and
for a RW (c), as a function of the laser detuning 4/I'. The
parameters are I' = 1, Ap = I'(1), Ap = 4I' (2), Ap = 61 (3),
and 4 = —3I'. For positive v this represents the transition
rate for ]n) ~ ]n —1) and for v negative this represents the
transition rate A+ for transitions from [n) ~ jn+ 1).

FIG, 7. Mean final quantum number (n) of a trapped two-

level ion at the maximum gradient of a SW configuration as

a function of the detuning b, /I'. The parameters are I' = 1,
Ao = 40I', and v = 15I . The dashed line shows the result

obtained from Ag rates as given in Sec. II and the solid

line represents the outcome of a numerical solution of the
(exact) master equation according to the procedure given in

Appendix B.
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V. LASER COOLING OF A THREE-LEVEL
SY'STEM IN A STANDING WAVE

In a recent paper by Wineland, Dalibard, and Cohen-
Tannoudji [16] a single trapped three-level ion is consid-
ered to be laser cooled in a standing wave. They obtain
in the LDL the evolution equation for the energy of the
trapped particle. The authors calculate in particular the
case where rp = vr/4, i.e. , the Sisyphus cooling at the
point of the SW's maximum gradient, and they restrict
their treatment to the case of a three-level atom.

In the following we compare the outcome of a calcula-
tion based on the theory presented in Sec. II with the re-
sults of Wineland, Dalibard, and Cohen-Tannoudji. For
that reason we assume, analogous to Ref. [16], that the
atom's internal structure is given by three levels, i.e. , a
ground state lg), an excited state le), and an interme-
diate state lr) in between. The transition lg): [e) is
assumed to be an electric dipole transition excited by a
standing-wave laser beam with Rabi frequency A~ whose
frequency is blue detuned with respect to the g-e res-
onance. Level le) is assumed to decay spontaneously
at a rate I' = 2p both to the intermediate state lr)
(with branching fraction P) and to the ground state [with
branching fraction (1 —P)]. Occupation in level lr) is as-
sumed to be transferred (incoherently) back to level lg)
with a rate R„

In order to derive the coefficients A and A+ that de-
fine master equation (26) we need the optical Bloch equa-
tions for the three-level atom at rest. For the particular
three-level system described above they read as

where pg, p„and p„are the populations of levels ]g), le),
and ]r), respectively, b, denotes the detuning, and (0~)
and (cr„) are the quadrature components of the atomic
polarization for the transition ]g): [e). In the steady
state the solution of Eqs. (53) is found to be

n'~
SS ~2+ g2+ P p —i

4
~

02
SS vp —1

Pe

SS P +~ p —1
Q&

Pr 2 R„g

(&*)ss=&flump
'

(&.)ss =&flump
'

where now

Az 02 Pp 2+F2+
2 2R„

With this solution we find the diffusion coefficient D de-
fined in (28) that reads as

D = ~[p."(v.',~(1 —P) + n.',~P) + p,"n,',R -./2],

(55)

„,pg =2~—(1 P)p. +R,-,p,

Z&p
= 2&p. + 2'(~),—

d p. =2&Ppe —R.-gp. ,

2'(~g)

(53)

where il,&
are the (small) Lamb-Dicke parameters. We

calculate the spectrum

e'" (&*(&)&*(0))~&

0

~, ( *)= —v( *)+&(

Z, (~&) = f1&(p. pg) —-~(~g) ——&(~*)

for the pumped transition lg): le) with Eqs. (53) and
using the quantum regression theorem. Eventually, we
obtain for the coefficients A and A+

&(i(pg —p. ) + (~lp/2) [~*M(v) + i~gL(v)]) + [~ —iv —(~l,'/2)L(v)](pg + p. )xae +2D,+ (p —iv) [p —i v —(A~/2) 1(v)]

Ap(v) = A (—v),
(56)

where

2Q —$V
L(„) lt

2&(1 —P) Rr g t-
Rr~g —iv ( 2p —iv

2R„2y

R, g
—iv g v 2p —iv ) 2p —iv
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FIG. 8.G. 8. Mean final quantum number (n) of a trapped
three-level ion at the maximum gradient of a SW configu-
ration as a function of the Rabi frequency of the laser cool-
ing transition. The parameters are 6 = 10 ~~blue d

. , R, ~ = 0.01. The solid lines show the results
according to the theory developed in Sec. II, the dashed lines
are calculated from (58). The dashed-dotted line indicates
the Doppler limit for these parameters.

an a ia atic e iminamaster equation was derived usin d' b
tion procedure for a multilevel system in the LDL 1'd
for a en

e ) val
general trapping potential. An essential step in the

the tr
ormulation of this master equation is th

t e transition rates between the trap levels in terms of
internal correlation functions for qu d ta ra ure components
of the atomic polarization.

Explicit soiutions of the master equation were obtained
for a harmonic trapping potential and two- and three-
leve systems in running and standing waves. For the two-
level system located at the node of the standing wave we
find final temperatures, which are a factor of 2 lower than
t e imit for a running wave, and cooling rates which do
not saturate with the laser intensity. At the point of max-
imum gradient of the standing-wave blue detuned cooling
was found which is analogous to the Sisyphus cooling of
free atoms due to dipole forces. For a three-level system
we ave used our techniques to study a model which has
been discussed very recently by Wineland, Dalibard, and

o en-Tannoudji [16], and found agreement with these
results within the limits of their approximation.

The theoretical tools developed in this paper o en the
prospect to calculate in a straightforward way the cooling
rates and final energies for complicated muttitevet iona in
traps.

The calculations of Wineland, Dalibard, and Cohen-
Tannoudji are based on the assumption that the rate
R„s, the frequency v, the decay constant I', and the
detuning b, obey the following relation

g (( v (( I (& +. (57)

In case that inequality holds, the final energy of the
trapped ion is derived to be
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(58)
APPENDIX A

Figure 8 shows the final mean quantum number (n) as

function of the Rabi frequency Ao (solid lines). In order
to compare this calculation with the result given by (58)
we chose the parameters R„z ——0.01', v = O. lp, I' = 1,

= 10' in accordance with condition (57). The dashed
lines show the results according to [16].

N ote first the remarkable agreement between the re-
su ts. We have verified this agreement when conditions
57) are fulfilled. Note also that the minimum

reac ed for the curves with P = 0.9 is much smaller than
that of the Doppler cooling limit E . However, as
soon as the condition (57) is violated, deviations occur
which tend to be smaller for higher Rabi frequencies

VI. CONCLUSIONS

In this paper we have studied theoretically laser cooling
of trapped ions in standing- and running-wave configu-
rations, where the ions are assum d t b ll
ca ized on the scale of the laser wavelength (Lamb-Dicke
imit). For the center-of-mass distribution of the ion a

d & = Tr (P'& &+ && (—&o) '& &]P). (A2)

The first term in Eq. (A2) is readily calculated and gives

2
(+')ss&'[R' W)

+a.g p~, k, .(o„)ss[2R(P'p)R—R ('P'p) —('P' )R ]

~72

(A3)

In this appendix we derive the master equation (19)
starting from Eq. (17). We also specialize this equation
or a harmonic trap to obtain (26). As we are interested

on y in the evolution of the external degrees of freedom,
we trace Eq. (17) over the internal states. On the other
hand, it can be shown that for any internal operator X

Trl(XP'p) = (X)ssp,

where p is the reduced density operator defined in the
text. Then, we find
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dtTri ['Prie ' l:i'Pp]
0

dt'P'Zi@e ' '
0

x [Ci@'P'Trr (Fe~"'FP' p)

'P' —Tr r( Fe "'Sir'P' p) R],

where for the last equality we have used the facts
that the internal and external operators commute and
Try (Zip. . .) = 0.

The factors which appear inside the parentheses can
be found using the quantum regression theorem,

(F "'FV'p) = (F(t)F(0))ss&,

Trr(Fe "'&»&'p) = ~([F(t) F(o)]) p

where, as usual,

(A4)

(F(t)F(0))ss —— lim (F(t+ r)F(~)) .

In addition, given that

e~' 'Zi~p = -i[(e~' 'R), p],
ezoztpR= pezoztR

and R(t) = e~'z'R is the Heisenberg operator of R in
the potential, we find the master equation (19).

For a harmonic trapping potential we repeat this
derivation of the master equation by projecting on the
Liouville subspaces A,

' = 0, +1, . . . according to (25). Us-
ing (24) and (23), we find

The derivation of the last term is more involved. We
start using the properties of the Laplace transformation
to express

Try [PLi(—Lo) 'Li'Pp]

d . ( (F')ss&—Vi = —&I v — I[aa p~ldt ( 2Mv )
+D(api„.a~ —a~a@A,. + atpi, a —aa~yy + H.c.)
-(S(-v)[a [a' p I]+S(v)[a' [a p ]I

+ T( v)—[a, pi, a~] + T(v)[ai, ph,.a]j,
where pi, is the density operator in the subspace A:, and
D has been defined in (28), S(v) in (27), and

APPENDIX B

In this appendix we show the method we have used
to solve numerically the exact master equation (1) for a
TLS interacting with a laser SW in a harmonic potential.
This master equation is given by

—p = —iv[aia, p] + 2iib, [o„p]

ip&i9(a +a) i &
—iV'& —i9(a +a)

4
+p(2o po+ —o+o p —po+o ), (Bl)

where all the terms have been defined in Sec. II. To solve
Eq. (Bl) we define the characteristic functions by

u(o~, Ai, A2, t) = Tr e'"' e'~"o~p(t) (B2)

where (o~,j = 0, 1, 2, 3) = jl, o,o„,o,). Knowledge
of u(o~, Ai, A2, t) gives all information about the evolu-
tion. Substituting this definition in the master equa-
tion (Bl) we find the following evolution equation for
u(o', Ai, A2, t)

T(v) = dte'"'([F(t), F(0)])ss.2 v 0

Using the properties of the commutators between a and
a~, we find (26).

u(& ~ Al I A2) = &v
l Al

~A
+ A2

l
u(& ~ Al~ A2) + & u([o ) oz]) Al~ A2)

[e "' e' u(o o~, Ai + g, A2 + g) —e "'"e' u(o, o ) Ai + g, A2 + g)

+e"''ie '&u(o cr~, Ai —g, A2 —il) —e '"e ' u(o, o', Ai —g, A2 —il)]

+&2e(A, —A„~)u(o+o~o-, A„A,) —u([o&, o+o-]+, A„A,),
where now

(B3)

8(A, il) = — dq'W
l

—
l

e" (B4)
&n)

and W(2:) has been defined in Sec. II.
partial differentia equations (B3) may be transformed in a set of infinite ordinary differential equations by making

the ansatz

u(o', A„A2) = ) A", A, u„
n, m=o

where the coefficients u~ are given by
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i ~+m
us = (at"a os).n, m

Taking into account the relations

(B6)

e+"'"u(os, Ai kr!, A2 + r!)=) A", As L„+
Aim

e+"''Iu(crs, Ai + rl, A2 6 g) = ) Ai A2 L„+
A im

drl' I+
~

—
~

e" ("' ') (os, A, As) = ) AiAs M„.
r/

n, m=o

where we have defined

) u' (+ )('- &[

a=O b=m

L'„'„,=) ) '. b(+q)'-"
[

sa b t'2a&
, =) ) u„.(-I).— ~, ~~.

c=o d=o k )
min(x, y) +„)- ( I).—,(+n)

~

y
(*-i)'

1 1

(2a + 1)! (2a + 3)!

one finds the following infinite set of differential equations:

~ 1
~~m

' 2&.m

O O -„y2-,, 2+

+q, 4 (M.. .o + M„,) —(u'„+u'„)',
2+

. Ap

4(M, ,o+ M, s) + (u„+us )

L~,m, o). —&&~,m

Ln, m, s) fun, m~

We have solved these equations in the steady state with an iteration method, assuming u„, , = 0 for certain no
and mo, and checking that the results did not change when no and me were increased.
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