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Cyclotron resonance with 10 "resolution: Anharmonic detection
and beating a coherent drive with the noise
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We describe the detection of the radial motions of a trapped charge in a Penning trap via a fourth-

order electrostatic coupling to the axial degree of freedom. Two basic approaches are demonstrated.
The first uses a standard resonant drive to determine the cyclotron frequency and has a resolution of 0.1

ppb. The second approach beats the motion due to an off-resonant drive against the motion due to
thermal drives to give a continuous phase-coherent monitor of the cyclotron motion with a resolution of
0.01 ppb. The inherent systematic shift of these "anharmonic-detection" schemes is discussed, and ap-
proaches are given to reduce or eliminate it.

PACS number(s): 07.75.+h, 35.10.8g, 29.90.+r, 41.70.+t

I. INTRODUCTION

The precision measurement of the cyclotron resonance
of a charged particle in a Penning trap is crucial to the
current measurements of the proton-electron mass ratio
[1], several atomic and molecular masses [2—5], and the
electron's magnetic moment [6,7]. It is also fundainental
to tests of QED through comparisons of the electron's
anomaly [8] a, and tests of CPT invariance by looking for
particle-antiparticle asymmetries in such comparisons as
the g value of the positron to that of the electron [9] and
the charge-to-mass ratios of both the positron to the elec-
tron [10] and the antiproton to the proton [ll]. There
are also proposals to test QED in the high-field limit by
weighing the Lamb shift of hydrogenlike uranium [12]
and to measure [13,14] the fine-structure constant, again
via cyclotron measurements in a Penning trap.

This paper describes our current method of detecting
the cyclotron frequency through observable shifts in the
axial frequency when resonant cyclotron drives are ap-
plied. Our methods deviate from those of competing ap-
proaches [4—6] in that the coupling of the radial energy
into the axial degree of freedom is through a weak
fourth-order electrostatic term. In the first scheme the
cyclotron drive is swept in frequency and a triggered,
possibly nonequilibrium, axial shift occurs when the drive
passes through resonance. A typical cyclotron resolution
of about 0.1 ppb is experimentally observed. In addition,
a method will be described that utilizes the beating of a
coherent off-resonant cyclotron drive against the thermal
cyclotron motion present at 4 K. In this method, equilib-
rium conditions are maintained in all degrees of freedom,
enabling a continuous phase-sensitive monitor of the cy-
clotron motion. This may extend our cyclotron resolu-
tion to beyond 0.01 ppb. It should be noted that our
current spectrometer has systematic cyclotron shifts, pri-
marily due to magnetic field instabilities that enter just
under the 1.0 ppb level; however, we now understand
that the major instability is not from external sources of
field variation, but from changes in susceptibility of ma-
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where Ro is the minimum ring radius and Zo is half the
minimum end-cap spacing. The quadratic nature of this
potential confines the motion of a charged particle along
the z axis of cylindrical symmetry and induces harmonic
motion at an angular frequency given by
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Radial confinement is provided by a 5-T magnetic field B
applied along the z symmetry axis. This induces a cyclo-
tronlike motion at the frequency
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which is the free-space cyclotron motion at co, =e8/mc

terials passing through the high-field bore whose distribu-
tion varies as the external pressure varies. A solution to
this problem (i.e., controlling pressure over the experi-
ment) has been demonstrated [15] to yield long-term sta-
bility on the order of 0.2 ppb/h.

We assume that the reader is familiar with the basic os-
cillatory motions of a charged particle in a harmonic
Penning trap and therefore give only physical
justification for these motions. We refer the reader to
Refs. [16,17] in the literature for a more detailed descrip-
tion. Figure 1 is a scaled drawing of the Penning trap
used to take all the data presented in this article. It con-
sists of five cylindrically symmetric electrodes designed to
generate the quadratic electric potential
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Here Vo is roughly the potential difference between the
ring and end-cap electrodes, and d is the characteristic
dimension of the trap,
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FIG. 1. Detailed scale drawing of actual Penning trap used.
The hyperbolic end caps are at dc ground and the hyperbolic
quadring is at potential Vo. This produces a harmonic electro-
static well in the axial direction. The potential on the guard
electrodes is adjusted to minimize the fourth-order electrostatic
terms of the trap. Radial confinement comes from the 5-T axial
magnetic field which is stabilized by a superconducting double

loop [18] placed in the quadring electrode. Also shown are the
field-emission cathode, accelerator, and Ti reflection disk which
generate a variable energy, multipass, ionizing electron beam.
The probe electrodes are used to produce the necessary spatial
gradient in the sideband cooling drive.

Ideally, using Eqs. (1.4) and (1.5), the free-space cyclotron
frequency can be obtained by measuring m,

' and one of
the other two normal-mode frequencies. (Using this pro-
cedure, we determine that co, will differ from the ideal
value by no more than 1 ppb under typical operating con-
ditions for which the measured and calculated co differ

by no more than 1 Hz. ) Nevertheless, in practice it is
more prudent to measure all three normal-mode frequen-
cies and to derive the free-space cyclotron frequency by
using the quadrature invariance theorem [19]
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which can be obtained by squaring Eq. (1.4). Equation
(1.6) has been shown [19] to be invariant under all quad-
ratic field perturbations such as cross terms due to an el-
liptical electric field geometry in addition to a misalign-

reduced by the perturbation caused by the radial electric
field. This perturbation is the familiar EXB drift veloci-

ty which, coupled with the azimuthal symmetry of the
trapping fields, generates a slow circular "magnetron"
motion at the frequency
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ment between the magnetic field and the trap's electric
axis of symmetry.

While it is possible to detect and measure all three nor-
mal modes directly via the currents they induce in the
trap's electrodes [20], this is cumbersome because it re-
quires several carefully tuned preamplifiers for each ion
species to be studied in the trap. In addition, direct
detection of the image currents of the cyclotron motion
requires a strong coupling to the preamplifier. This
strong coupling necessarily broadens the cyclotron reso-
nance and can therefore reduce the resolution of this res-
onance. Similarly, the strong coupling to the
preamplifier necessary to directly observe the magnetron
motion would also adversely affect it. In this case, it
would drive the ions radially out of the trap because the
electric potential shown in Eq. (1.1) actually forms a hill,
rather than a well, in the radial direction.

For these reasons we have developed an indirect detec-
tion scheme that utilizes radial position-sensitive, and
therefore cyclotron and magnetron energy-sensitive,
shifts in the axial frequency brought about by small
anharmonic components in the trap's electric field. With
this scheme we need only one tuned preamplifier to moni-
tor the axial motion since the trap voltage can be adjust-
ed to bring the axial oscillation frequency co, of any ion
species into resonance. (This is true as long as the ion's
motion remains stable [21],i.e., co &co, /2. )

We will begin by describing the direct detection of the
axial motion. Next we describe the anharmonic electro-
static C4 term and how it couples the radial degrees of
freedom into a measurable shift in the axial frequency.
We then describe the detection method which beats a
slightly off-resonant drive against the thermal Brownian
motion at 4 K. Because of the possibly more general ap-
plication of this "beating the noise" technique, we in-
clude a section that contains a thorough theoretical
description. An appendix is added to give this descrip-
tion mathematical rigor. Discussion of the inherent sys-
tematic effects introduced by the necessary anharmonic
coupling are scattered throughout the paper and summa-
rized at the end where we suggest possible approaches
that can be taken to minimize or eliminate these shifts.

II. AXIAL DETECTIQN

Detection of the axial motion is virtually identical to
that used in the previous g-2 experiments and has been
described extensively in previous articles [6,16,22]. We
give here only a brief description primarily to define the
axial temperature and the detection resolution.

The charged particle s axial motion induces an oscilla-
tion current of about 10 ' amp in the trap's end caps.
The capacitance of one end cap to ground together with
the inductance of a helical resonator form a tuned circuit.
On resonance this tuned circuit's impedance is purely
resistive and, if resonant with co„ it will damp the axial
motion to the ambient temperature of the 4-K liquid-
helium bath. These currents, and therefore the axial
motion, are detected via the superheterodyne system
shown schematically in Fig. 2.

A key feature of this system is the liquid-helium-cooled
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GaAs field-effective transistor (FET) preamplifier whose
noise temperature reflects the 4-K environment. This al-
lows the phase-sensitive detector (PSD) to isolate a
coherently driven axial motion that is smaller than the
par icearticle's thermal motion, assuming that the detection
bandwidth is set narrower than the trapped particle's axi-
al linewidth. We modulate the trap's electric well depth
to generate FM sidebands in the axial motion. This en-
ables us to isolate the drive signal, applied at one of these
FM sidebands, from the narrow-band preamplifier which
is tuned many linewidths away at the frequency of the
fundamental axial motion. Finally, the PSD utilizes the
phase relationship between the drive and the resulting
motion of this harmonic oscillator to generate a synchro-
nous axial resonance as shown in Fig. 3.

This dispersive resonance, referred to as the error sig-
nal, is used to frequency lock the axial motion via a volt-
age feedback to the trap's ring. In addition to stabilizing
the axial motion and thereby the trapping fields, the feed-
back voltage also gives real-time information about
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FIG. 3. The axial resonance of a single ' C + ion taken with
the apparatus shown in Fig. 2. A phase shift has been injected
into the heterodyne to produce this dispersive shape which is
appropriate as an error signal for the frequency lock.
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changes in perturbations that affect the axial motion.
For instance, a change in the radial position of the
trapped charge due to a resonant cyclotron drive pro-
duces, via the small electric anharrnonic coupling, a
change in the axial "spring constant" which can be con-
tinuously monitored by recording the feedback voltage.

Assuming the trap to be truly harmonic, the funda-
mental limitation to the resolution of the axial resonance
is due to the instability of the applied ring potential. This
potential is produced by oven-controlled standard cells,
and we experimentally observe voltage fluctuations of
about 2X10 over times of less than one minute. We
have also resolved changes in perturbations that induce
relative shifts in the axial frequency on the order of
R =b,co /co ~10 . This sets the magnitude of the per-z z z-
turbation necessary for the anharmonic detection dis-
cussed in the next section. It should be noted, however,
that these voltage fluctuations do not appear directly in
either co,

' or co to the extent that the axial lock loop can
correct for them to keep Vp constant.

III. ANHARMONIC DETECTION
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FIG. 2. Schematic of the axial-detection electronics. We
drive the harmonic axial motion on a FM sideband via an rf
drive applied to one end cap and then look at the induced
currents in the other end cap that flow through a parallel tuned
circuit, resonant at the fundamental axial frequency. The side-
bands are generated by modulating the ring potential. The
currents induced in the end cap are amplified by a GaAs FET
transistor submersed in liquid helium, and then mixed to dc to
display the phase relation between the drive and the driven axial
motion. (See Fig. 3.) This phase relation is used as an error sig-
nal which is integrated and fed back to the ring voltage to fre-
quency lock the axial motion to the drive source.

A real Penning trap, such as the one shown in Fig. 1,
does not produce a pure quadratic potential. We can,
however, approximate the real potential in an expansion
which contains the trap's basic rotational and reflection
symmetries with respect to the z axis,

2k
~p " rV= g Czk — Pzj, (cos8) .
2 J p

(3.1)

In this expansion r is much less than d for a single charge
in a typical Penning trap at 4 K, assuming that sideband
cooling [6] has been used to reduce the magnetron radius.
We are therefore justified in keeping only the first term
beyond the leading quadratic approximation. Rewriting
the Legendre polynomial in cylindrical coordinates gives
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FIG. 4. These axial resonances were taken using a few pro-
tons with a phase shift injected into the heterodyne to produce
an absorption line shape, a m/2 shift from the dispersive shape
shown in Fig. 3. (a) In this set of resonances the guard voltage
has been set to produce a negative value for C4, anharmonic
pulling down in frequency under successively harder axial
drives can be seen. (c) In this set of resonances the guard volt-

age has been set to produce a positive C4 thereby changing the
direction of anharmonic pulling. (b) By monitoring this anhar-
monic pulling while changing the guard voltage we can mini-

mize C4 and produce axial resonances which show no anhar-
monic pulling under successively harder drives. Comparing the
change in guard voltage (around this null) over which no anhar-
monic pulling is seen, and using a relaxation calculation for C4
changes as a function of guard voltage [25], we find that

C4 &3X10 at this null.

Here we have incorporated C2 into Vo to recover Eq.
(1.1) as the leading term. The z term induces a shift in
the axial frequency that is quadratic in z or linear in the
axial energy. We use this shift as an indicator of the size
and sign of the C4 term. By changing the potential of the
guard voltage (see Fig. 1) relative to the ring voltage, we
can change C4. In theory there will exist a guard voltage
at which C4 vanishes. At this guard voltage successively
harder axial drives will not induce anharmonic frequency
shifts in the axial resonance until a higher-order term be-
gins to dominate. These higher-order electrostatic terms
are minimized by using hyperbolic electrodes [23] rather
than some other cylindrically symmetric geometry [24]
such as cylinders and plates. With the guard voltage set
to either side of this C4 null, the axial resonance will
show anharmonic pulling with successively harder drives
as shown in Fig. 4.

The p z term adds to the axial well depth a shift that
is quadratic in p or linear in the radial energies. This
term generates a shift in the axial frequency, and there-
fore a shift in the ring's feedback voltage when we induce
changes in the cyclotron and magnetron energies with
resonant drives. This is the anharmonic detection to
which we have referred. Finally, there are shifts in the
cyclotron and magnetron frequencies resulting from the

p z and p terms that can introduce serious systematic
errors.

A detailed calculation for the anharmonic frequency
shifts due to the C4 perturbation has been performed pre-

viously [17]. This can be accomphshed in a straightfor-
ward manner by rewriting the C4 perturbation in terms
of the creation and annihilation operators of the funda-
mental oscillator motions and then applying first-order
perturbation theory. We present the calculated shifts
parametrized in terms of two constants,

6C4
and P=

eVO
(3.3)

Here a characterizes the relative strengths of the trap-
ping electric and magnetic fields, while P is proportional
to the C4 perturbation which is a function of the guard
compensation voltage.

The calculated shift in the axial frequency, represent-
ing the signal in the anharmonic-detection scheme, is
given to leading order in a by

bc@,(C~)
=P( ,'a E,—+—,'E, +E ) —.

CO

(3.4)

Figure S(a) shows a typical cyclotron resonance taken via
a hE, induced shift in the axial frequency. This power-
broadened resonance was taken with the low power of
= —140 dBm capacitively coupled through 50 0 to op-
posite quadrants of the split quadring electrode shown in
Fig. 5(b). The axial lock is monitored while this drive is
swept up in frequency through the cyclotron resonance.
On resonance, cyclotron energy is absorbed producing a
shift in the feedback voltage to correct for the perturba-
tion described in Eq. (3.4). The drive is then turned off
and the cyclotron motion is allowed to cool back into
equilibrium with a weakly coupled resistor at 4 K [one of
the low Q tuned circuits shown in Fig. 5(b)]. The drive is
then turned on again and swept from the opposite direc-
tion to bracket the cyclotron resonance.

A resolution of b,oi', /co,
' = 10 ' has been achieved for

resonances taken with this approach. To get an estimate
of the inherent systematics introduced by the C4 pertur-
bation, which is fundamental to detection, we must also
look at the calculated [17] shifts in the cyclotron and
magnetron frequencies. They are, again to leading order
in',

b,co', (C~)
=Pa ( —'a E, ——,'E, E)—

CO

(3.5)

and

bco (C4)
=P( aE, +E,+E )—.

~m
(3.6)

These calculations assume the ring potential is fixed.
In the experiment, however, the axial frequency is not al-
lowed to change. It is held constant by changing the ring
potential as explained in the section on axia1 detection.
This will induce an additional shift in cu,

' and co as C4 is

increased from zero. To compute these shifts, we first
differentiate Eq. (1.5) with respect to co, and neglect the
small correction of order o. in the variation of m,

' to ob-
tain
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b, ro (lock) b,co,(C4)—2 (3.7)
b,co,'(lock) Ere, (C4)=0! (3.8)

Then the relation co,
' =co, —co gives to this leading order Combining these lock-induced shifts with the original

shifts due to C4 gives the total observed systematic shifts
for a C4 perturbation under the experimental conditions
of an axial lock

bra, (C&+lock) —:0, (3.9)
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FIG. 5. {a) The cyclotron resonance of a small cloud of pro-
tons, taken via anharmonic detection with 0.1 ppb resolution.
(b) The hyperbolic quadring contains four electrically isolated
copper electrodes which are rigidly attached to a macor sub-
strate to maintain cylindrical symmetry. An rf drive applied
across opposite quadrants ( A and C) is swept through the cyclo-
tron frequency both from below resonance and from above. On
resonance, energy is absorbed inducing a sudden shift in the axi-
al feedback voltage which is displayed {a). The points of initia-
tion of the initial axial shift (or triggered response) identify the
maximum limits of the resonant frequency. When the rf drive is
off, the cyclotron motion comes back into thermal equilibrium
(r, ~&=10 min. ) with the low-Q tuned circuits at a temperature
of 4 K. These tuned circuits are formed by resonating the -4
pF capacitance between each ring quadrant and ground with in-
ductors shorted to ground through 680 pF. The electrical
points A, 8, C, and D, and therefore the quadrants of the ring
electrode, are shorted together at the magnetron frequency to
give a high-conductance path for the image currents associated
with the magnetron motion. Because the magnetron motion is
unstable, substantial resistive losses in the ring electrode would
drive the ions radially out of the trap.

hew (C4+lock) E,
2

—Em (3.11)

R 2

R, = AE —10
2

(3.12)

If we then assume that this increased cyclotron energy
dominates in Eq. (3.10), the C4 induced systematic shift

Although we have not displayed the algebra here for this
first-order (C4) perturbation calculation, one can show
that E does not appear on the right-hand side of Eq.
(3.10) to all orders in a and similarly E, does not appear
in Eq. (3.11) to any order in a.

This simple expedience of using lock-induced shifts for
absolute energies is done to simplify equations later. It in
no way changes the value of the free-space cyclotron fre-
quency cu, obtained by using the quadrature invariance
equation (1.6), since this equation is not changed by vari-
ations in the trapping potential. It does, however, refiect
the experimentally observable changes in co,

' and co

when corresponding changes occur in the trapped ion's
various energies and/or in C4. It should be noted that
the axial-lock time constant is set long in order to stabi-
lize the loop. If energy is absorbed at too fast of a rate,
the loop will lose lock. In that case one should revert
back to using Eqs. (3.4)—(3.6); however, the analysis be-
comes difficult because equilibrium conditions no longer
exist. The basic difference between the two cases is that
anharmonic pulling of the cyclotron frequency changes
sign and detection sensitivity may be altered (though, un-
der certain conditions, systematics might be legitimately
estimated by assuming only the values of E„E„and E
prior to the interrogation of the cyclotron resonance).

For the remainder of this paper we mill assume that
the trapped ion has a mass-to-charge ratio of three. This
represents H+, which is the most difficult atom to deal
with in our trap because it cannot be multiply charged to
give an increased signal-to-noise ratio [2,14). A H+ ion
in our trap in a 5-T magnetic 6eld with 40 V on the
quadring electrode has a cyclotron frequency co, =26
MHz and an axial frequency co, =5 MHz. This gives a
value of +=0.2.

As explained earlier, we can resolve relative shifts in
the axial frequency given by R, =Aco, /co, = 10 . There-
fore, via Eq. (3.4), the onset of detection will occur when
the cyclotron energy has increased such that
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in the cyclotron frequency becomes

b,co,'( C& + lock) 2

R =2X10 "CX

2
(3.13)

at the onset of detection.
To validate our assumption that the cyclotron energy

dominates in Eq. (3.10), we must estimate the size of P to
determine b,E, at the onset of detection via Eq. (3.12).
The value of P can be estimated by comparing the experi-
mental width of the guard voltage over which C4 is mini-
mized (as determined by the method described earlier),
with an electrostatic relaxation calculation [25] that pre-
dicts changes in C4 for a given change in the guard volt-
age. For our trap this relaxation calculation predicts

AV
AC4 = 1.4X 10 (3.14)

where 6V represents the change in the voltage applied
to the guard electrodes shown in Fig. 1.

Our guard nulls typically determine hV /Vo to within
+0.002, which predicts an uncertainty in the null of C4
at AC4=2. 8X10 . Using this and a ring voltage of
V0=40 V gives P=4X10 (eV) ' or, via Eq. (3.12), an
estimate of a AE, =5 X 10 eV at the onset of detection.
This certainly dominates over the 3X10 eV thermal
energy of the 4-K axial motion validating our original as-
sumption and therefore the systematics estimated in Eq.
(3.13). Note that P can be increased to about 5 X 10
(eV) with no noticeable increase in the C~ induced sys-
tematic. This has the benefit of lowering the change in
cyclotron energy necessary for anharmonic detection
through the axial motion and therefore lowering sys-
tematics due to other perturbations such as a magnetic
gradient and relativistic effects which also scale with the
trapped particle's energy. For P) 5 X 10 ' (eV) ' the ax-
ial energy at a temperature of 4 K begins to contribute to
the systematics described by Eq. (3.10).

The systematic described by Eq. (3.13) is fundamental
to anharrnonic detection and assumes that the C4 pertur-
bation dominates. It is possible that there exist other
energy-dependent perturbations that produce anharmon-
ic shifts in the axial motion [16,17]. If this is the case,
then, the guard voltage null (obtained by minimizing the
axial shifts produced by successively harder axial drives)
represents a cancellation of the C4 perturbation against
these other perturbations under changes in the axial ener-

gy only. In general, C4 would not be nulled out in this
case and we would therefore expect a different systematic
shift in the measured cyclotron frequency.

The systematic associated with anharmonic detection
scales as a R, and can therefore be reduced by reducing
co, or increasing ru, . We currently use a single-filament
superconducting magnet which has a maximum field of 6
T. This is typically the highest stable magnetic field that
can be reached. Multifilament superconducting magnets
can reach fields approaching 10 T but in general are not
as stable as the single-filament magnets, although stable
multifilaments magnets are known to exist [4]. Persistent
magnets with fields as high as 20 T have recently become

2
co 6''+ 6m

(3.15)

which on substituting a=co, /m,', gives to leading order
in cz

6'
& 6' z ~4 6'm+0 +

67z 4 Q)m
(3.16)

Nonetheless, the C4 induced shifts in the magnetron fre-
quency described by Eq. (3.11) can be large and easily ob-
servable. Figure 6 shows the observed shift in the magne-
tron frequency as a function of P. Using the slope of the

commercially available [26]; however they also suffer
from field-stability problems in addition to poor homo-
geneity. We conclude that increasing co, will be difficult.
Therefore, the most straightforward way to reduce a
would be to reduce the potential on the ring, thereby re-
ducing the axial frequency. Unfortunately, this would
make the trap more susceptible to asymmetrical surface
charging and patch effect that reduce the harmonic
volume of the trap, thus making it difficult to resolve the
axial resonance at the 10 level. (For instance, the
higher-order C6 term may come into play. ) Fortunately,
studies [27] have indicated that patch effects on surfaces
at 4 K can be drastically reduced with the use of graphite
and gold coatings. We can also reduce n, by increasing
the size of the trap. This will decrease the coupling of the
trapped ion to the axial detection making it more difficu
to detect and resolve a single ion whose linewidth will be
narrower and therefore more susceptible to fIuetuations
in the ring potential. This decrease in coupling can be
counteracted by working with multiply charged ions
[2,14,28] or by developing higher-Q tuned circuits [29] in
the detection front end. It might also be possible to re-
place the oven-controlled standard cells with a zero-bias
series array Josephson voltage standard which ean reach
tens of volts and show voltage stabilities comparable to
the 70-GHz source that drives it [30). Another possibili-
ty is to use the voltage on the ring of a reference trap [31]
with a trapped ion whose axial frequency has been locked
to an ultrastable frequency synthesizer.

A reduction in a and therefore the inherent systemat-
ics associated with anharmonic detection below 0.1 ppb is
apparently possible. In addition, with a more stable volt-
age source the axial resolution R, may be improved
which effectively increases the signal in the anharmonic
detection scheme. This reduces the minimum energy
changes needed for detection and therefore the systemat-
ics associated with these changes.

We have ignored the systematic introduced into the
magnetron frequency by the C4 perturbation. This is be-
cause relative errors in the magnetron frequency are re-
duced by the factor of a /4=4X 10 when used in Eq.
(1.6) to predict the free-space cyclotron frequency. This
can be seen by differentiating this quadrature invariance
equation to obtain
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FIG. 6. Experimentally observed shift in the magnetron fre-
quency of a single ' C + ion as a function of P (guard voltage).
The magnetron energy can be estimated from the slope of this
graph and is E =4X10 ' eV, which is about 100 times the
minimum energy predicted by sideband cooling.

graph in Fig. 6 and ignoring the axial energy in Eq. (3.11)
we get an estimate for the rnagnetron energy of
E =4X 10 eV. Interestingly, this is about 100 times
the minimum energy predicted by side-band cooling
theory [6] but is in better agreement than other minimum
magnetron energy measurements obtained independently
in two other Penning traps using electrons; these other
traps have shown a discrepancy [22,32] of about a factor
of 400 to 600. Fortunately this larger than expected mag-
netron energy does not enter into the C4 systematic shift
of co,

' because the axial energy at 4 K still dominates [see
Eq. (3.10)]. The magnetron energy's relative contribution
to C4 induced errors in the predicted free-space cyclotron
frequency can be shown to be on the order of 0.005 ppb.
To do this, we insert the locked frequency shifts given by
Eqs. (3.10) and (3.11) into Eq. (3.16) to obtain to leading
order in a

cyclotron motion to return to equilibrium with the resis-
tor after adsorbing enough energy to observe resonances
of the type shown in Fig. 5(a). This equilibration must be

accomplished if we wish to minimize systematic errors
before we begin the sweep from the opposite direction
that brackets co,'. Even if side-band cooling at ~,' —~, is
used to speed up equilibration time, we will spend several
minutes sweeping out the resonance and only a few
seconds absorbing drive energy. We therefore spend only
a small fraction of the total time actually interrogating
the resonance and this is a poor approach to maximizing
the signal-to-noise ratio.

A less destructive method of continuously interrogat-
ing the cyclotron resonance was therefore developed.
This method takes advantage of the long coherence time
1/y, of the cyclotron Brownian motion (due to a thermal
white noise drive) by beating this motion at co', against
that due to a slightly off-resonant coherent drive at
cod =co,'+hco. The beauty of this technique is that E, os-
cillates continuously at this difference frequency hm.
This in turn induces a modulation in the axial-lock volt-
age via the C4 perturbation as described in Eq. (3.4) and
the previous discussion on anharmonic detection. Know-
ing the drive frequency and monitoring the beat frequen-
cy then gives a continuous monitor of co', .

An analogous way to visualize the process is to treat
the harmonic cyclotron motion as a narrow-band filter
centered at co,

' with a linewidth of y, . This "filter" then
picks out of the thermal white noise drive a signal cen-
tered at co,

' with a width of y, or a coherence time of
1/y, . This signal then beats against the off-resonant
coherent drive signal, which comes through the "filter"
at some level.

This technique is demonstrated in Fig. 7 which shows a
small 4-minute section of beating observed in the axial-
lock voltage that was continuously monitored for =—,

' h.
The frequency resolution of this 4-min section, obtained
by measuring the separation between successive peaks,
approaches 10 " relative to m,'. An electronic Fourier
transform will give a more precise measure of the reso-
nant frequency. Also, a reference oscillator can be locked

~~c Pa Ec+ 2 Ez+E~
4 c 2 z (3.17)

Since the quadrature invariance equation is not altered by
changes in the trapping potential, this result also holds
for the unlocked case as well. Here we have assumed
that E„E„and E are unchanged for the measurement
of co,

' and co . This larger magnetron energy can, howev-
er, affect co,

'
through other perturbations, in particular,

that of a magnetic gradient; however, these perturbations
are not fundamental to the detection schemes discussed
here and thus will be ignored.

Energy adsorbed during excitation of the cyclotron
motion is damped out via a weak coupling of the ion's
image currents to a resistor at 4 K (see Fig. 5). The value
of the resistor has been chosen to produce radiative
linewidths of approximately 0.1 ppb in relative width. As
a result, it typically takes more than 20 minutes for the
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FIG. 7. The feedback voltage in the axial lock is observed to
beat continuously at the difference frequency between a
coherent off-resonant drive and the resonant frequency of the
cyclotron motion of a single ' C + ion. The feedback voltage is
a monitor of the cyclotron energy via the C4 perturbation. This
beat signal is resolved to within 0.01 ppb relative to the cyclo-
tron frequency.
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to the beat or vice versa in order to determine the reso-
nant frequency.

A discussion of the inherent systematic in this tech-
nique requires an understanding of the actual amplitude
of the oscillating cyclotron energy in addition to the aver-
age cyclotron energy. This will be calculated in the next
section. We would like however, to stress that we have
demonstrated a technique that continuously monitors co,

'

with the phenomenal resolution of 10

IV. BEATING THE NOISE —THEORY

The cyclotron velocity is the sum of two parts. One
part is the velocity u(t) which describes the Brownian
motion brought about by the weak coupling of the
charged particle with its thermal environment at temper-
ature T. Since this coupling to an effective thermal bath
is very feeble, the corresponding relaxation rate y, is very
small in comparison to the cyclotron frequency co,',
y, «co,'. Over times that are short in comparison to
1/y„ the thermal velocity u(t) goes about a circle at fre-

quency co,'. Over times on the order of 1/y„ the magni-
tude and phase of u(t) vary in a random fashion. Thus
the thermal or noise energy

on the order of 1/y, as does E~(t) .However, the
thermal coupling is so weak that y, « hen, and the beats
described by Ez(t) are prominent.

The beating never ceases. But the phase and amplitude
coherence between beats that are separated by a long
time interval t, , t, ) 1/y„ is destroyed by the slow ran-
dom fluctuations of the thermal motion. Therefore, the
beat frequency b,co (and from it the cyclotron frequency
co,') can be measured with a linewidth on the order of y, .
To place this linewidth problem in quantitative terms, let
us suppose that the Fourier transform of the signal is
constructed from measurements made over a very long
interval 2to &&1/y, . Subtracting out the average back-
ground, this Fourier transform is given by

(4.8)

where

F(t) =E~(t) ks T +—Es(t) . (4.9)

The average over many experimental runs is the same as
the thermodynamic ensemble average. This average of
F(t) vanishes and so

E~( t) =
—,
' m u( t) (4. 1) (4.10)

varies slowly; it varies significantly only in a time set by
the scale 1/y, . On the average,

(E~(t)) =ksT, (4.2)

in accord with the equipartition theorem. It is con-
venient to think of this average as a thermal ensemble
average —an average over many identical copies of the
system, but the average is also the average over times
that are long in comparison with 1/y, . The other part of
the cyclotron motion has the velocity v(t) brought about
by an external, coherent drive. This velocity goes about a
circle with the drive frequency cod with its magnitude
fixed (as long as the drive is continued). Thus the energy

The proper measure of the linewidth is given by the aver-
age of the absolute square of the Fourier transform
IE(co) I

. The detailed calculation in the Appendix shows
that

+ (k~ T)ED
(co —b,co) +y, /4

~c

( co+ hco ) +y, /4

ED =
—,'mv(t) (4.3) (4.11)

in which

=E~ ( t ) +ED +E~ ( t ), (4.4)

Es(t) =m u(t). v(t) . (4.5)

Basically, u(t) and v(t) go about circles with a frequency
difference

ACO —
COd COc (4.6)

This basic motion is altered by the fluctuations in the
thermal velocity u(t) and so

Es(t)=2")/E~Ev(t)cos[hcot+0(t)] . (4.7)

The relative phase 8(t) varies significantly during times

is constant. The experiment measures the total energy
E(t) in the cyclotron motion,

E (t) =
—,
' m [u(t)+ v(t) ]

The first term on the right-hand side of this result simply
describes the noise in the nondriven cyclotron motion;
the second set of terms describe the beating signal —a
Lorentzian line shape peaked at co=hco with a full width
at half maximum given by y, . Taking a drive amplitude
to give a coherent excitation on the order of the thermal
noise ED =k~ T and evaluating the Fourier transform at
the peak co=Aco, we see that the leve1 of the background
noise of the nondriven cyclotron motion relative to the
beating signal is on the order of (y, /b, co), the same or-
der as the contribution of the counter-rotating beat signal
(the last Lorentzian peaked at co= —b.co). These are very
small backgrounds.

We have now explained the essential aspects of the beat
signal. However, since the technique is a novel one —it is

unusual to perform a precise experiment by beating a
coherent drive with thermal noise —a more detailed sta-
tistical description is warranted. This we do now.

Since the relaxation time 1/y, of the cyclotron motion
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P„(u, t) =
2m.k~ T

-y, ~/2
m [u —e '

uo{t) 1
Xexp

2k~ T

(4.12)

Here uo(t) is the velocity that an undamped particle
would have at time t if it had the initial velocity up at
time t =0. The velocity uo(t) is just the original velocity
Up rotated at the cyclotron frequency co,

' . In the limit
t ~0, the Gaussian form produces a representation of the
5 function,

P„(u, t)~ 5( u—uo(t)), t ~0 .
0

(4.13)

For times that are short in comparison with the damp-
ing time j. /y„ the probability is sharply peaked about
the classical trajectory uo(t). At longer times, the fluc-
tuations brought about by the interaction of the cyclo-
tron motion with the thermal bath come into play, and
the probability of finding a velocity u broadens. Finally,
for long times, the probability distribution relaxes to the
Maxwell-Boltzmann form, and the particular initial ve-
locity is forgotten,

to its thermal environment at temperature T is so long,
an initial measurement of this motion can be made, and
this is effectively performed in the experiment. This mea-
surement picks out the particular state of the thermal en-
semble which the motion happens to be in at the initial
time. To see what this implies, we first consider the non-
driven motion. Then, as shown in the Appendix, the con-
ditional probability density for observing the velocity u at
a later time t given that the initial velocity at time t =0 is
Qp is given by

2

P„(u, t) = exp, t »1/y, . (4.14)
2mk~ T 2k~ T

The observed energy is given by

E(t)=
—,'m [v(t)+u] (4.15)

For small times P„(u, t) =5[u —uo(t)], and so

P„(E,t)=5(E —
—,'m [v(t)+uo(t)] ), t~O .

(4.16)

(4.17)

Since, at least in principle, v(t) is known, this initial ener-

gy distribution with the measurement of the energy at
t =0 and a short while later determines the particular
starting velocity up. Then, armed with this initial infor-
mation, P„(E,t) gives the distribution of energies that

0

will be observed at later times. [To simplify this discus-
sion, we assume that up is precisely known. In fact, there
is an error in determining up because the distribution
spreads a little at the short, later time =1/A~ needed to
fix both the magnitude and phase of up. In view of Eq.
(4 28), with ED =E&=k& T, b u /u =b E /E =Qy, /he@ ]

It is not difficult to explicitly compute the energy dis-
tribution at all times. This is accomplished by first
changing integration variables to u'=v(t)+u, integrating
with polar coordinates in the new variables, and using
formula (4.12) for P„(u, t),

0

This is the case for a particular thermal velocity u. If
this velocity is measured to be up at time t =0, then its
probable value is distributed over a range of velocities at
a later time t given by P„(u, t). Hence the probability

0

density for observing the energy E at time t is expressed
as

P„(E,t)= f (d u)5{E—
—,'m [v(t)+u] )P„(u, t) .

, f dP f u'du'5(E —
—,'mu' )exp2~k~ T i ~ ~.' p p

m u' +w —2u'w cosP
2k~ T i, -~cr (4.18)

Here

w(t)=v(t)+e ' uo(t), (4.19)

6'(t) =
—,'mw(t) (4.20)

and the polar angle P has been chosen to be the angle be-
tween the two vectors u' and w. The radial u' integral is
trivial because of the 5 function. The angular P integral
defines the imaginary Bessel function Io(z). To put the
result in a neat form, we define

P„(E,t) = [4mks T(1—e ' )VE6'(t)]

1 [v'E —&8(t)]'X exp
kgT ] ~c

(4.22)

I

This expression may be simplified if the argument of the
Bessel function is large, which happens for very small
times t «1/y„or if the excitation energy is large
8(t)»ksT. In this case, one may use the asymptotic
form of the Bessel function to obtain

Then

1 1P„(E,t) = exp

2v'EC(t)
p t

k&T(1 —e '
)

1 E+8(t)
k~ T i ~t.'~

(4.21)

For small t this distribution is sharply peaked about
E =C(t) and in the limit t~O it becomes a representa-
tion of 5{E—@(t)).

In terms of the drive and initial "noise" energies,

@(t)=ED+Eze ' +2(/E~E&e ' cos(Deut+8),
(4.23)
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dEE —E u ~u Et (4.25)
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Up

(4.26)
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(E) =kttT(l —e ' )+l(t),"o

arid

(4.27)

bE =k&T(1—e ' )[k&T(l —e—e ' )+26(t)] . (4.28)
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Leo', ( C~, Es )

roc

a z[a k&T, (1+D)+E,] . (5.2)

Using Eq. (5.1), we rewrite this in terms of the amplitude
of an observable beat signal ( =R, ),

he@,'(C4, E& ) R, (1+D) E, a R,a +
co', & &D ks T,&D 4

(5.3)

The second inequality, the minimum of this systematic,
is obtained when the perturbation due to the cyclotron
energy dominates [a k&T, (1+D)&E,] and when the
off-resonant drive is adjusted in this limit to give D =1.
Under these conditions the systematic again scales as
a R, and can be reduced by reducing a or improving the
resolution in the axial lock by the methods discussed ear-
lier. The values of R, =10 and a=0.2 limit our
current accuracies to no better than 0.1 ppb which is
about an order of magnitude worse than the resolution of
0.01 ppb already demonstrated in Fig. 7. It should be
noted that for protons, with the same axial frequency but
three times the cyclotron frequency, this systematic limit
becomes 0.01 ppb.

Two parameters must be controlled to realize this
minimum systematic. Again we must validate the as-
sumption that the cyclotron energy dominates in Eq.
(5.2). With our typical value of a=0.2 and a 4-K axial
temperature, setting D equal to its optimum value of 1

determines the minimum temperature of the heat reser-
voir coupled to the cyclotron motion. We find that

error ~
signot &&
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correction
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drl ve
synthesizer
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atten, ~
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of these two measurements would only have a residual
systematic associated with the inability to make sym-
metric changes in P around P=O and to maintain equal
average energies in the two measurements. A more so-
phisticated approach would be to modulate P about zero
(i.e., modulate the guard voltage about null), thereby
symmetrizing the systematics by moving them into FM
sidebands leaving an unshifted carrier. In addition, the
signal will now modulate coherently with the guard
modulation, and we should be able to see a smaller signal
by the use of phase-sensitive detection, possibly via the
scheme shown in Fig. 9.

The systematics left in this unshifted carrier will then
refiect the level to which P can be nulled out prior to the
symmetric modulation. As stated earlier we estimate
that our guard nulls typically reduce P to less than
4 X 10 (eV) '. Combining this with a =0.2,
E, =3 X 10 eV and using Eq. (3.10) gives an uncertain-
ty in this measure of the cyclotron frequency due to the

T.
T, & =50 K.

2Q
(5.4) tuned to

Vz

&00000»
Finally, this cyclotron temperature sets [via Eq. (5.1)] a
specific value of

nr

R,
P= =3X10 (eV)

k~T,
(5.5)

that is necessary for minimal detection of the beat signal
in the axial lock. If T, is increased, P must be reduced
accordingly to maintain the minimal systematic shown in
Eq. (5.3).

Experimentally setting D, P, and T, to specific values is
not easy, thus making it difficult to reach this minimum
systematic. Unfortunately, this idealized case was not
realized in the beats shown in Fig. 7 primarily because
the cyclotron motion was coupled to a 4-K thermal bath
rather than this minimum 50-K thermal drive. A good
estimate of the systematic in this case can only be calcu-
lated if P is known, thereby determining D via Eq. (5.1).
For this demonstration we deliberately increased P to
=10 eV ' and the peak-to-peak signal in Fig. 7 is
about 3XR„which puts the C4 induced systematic at
=2X10 '.

One solution to the systematics associated with anhar-
monic detection is to take advantage of the fact that they
are linear in P. The straight forward way to do this is to
alternately take data with +P and then —P. The average

superconducting
solenoid

soa
=~hhA

FIG. 9. A schematic representation of a possible experiment
using anharmonic detection and a modulation of C4 about zero.
The guard voltage, and therefore P, is modulated. This pro-
duces sidebands on the axial motion whose modulation index is
sensitive to Ec via Eq. (3.4). The axial-detection scheme is then
virtually identical to that currently used (see Fig. 2) except that
the drive will now be shifted to this new sideband, adding a
slight complication in the mix back to dc. The dispersion quad-
rature is again used to lock the axial frequency while the ampli-
tude quadrature is monitored to observe changes in the modula-
tion index (and therefore the effective drive strengths) due to
changes in the cyclotron energy (beats). In principle, we can
reduce the modulation of P while increasing the strength of the
axial drive to maintain signal levels until perturbations due to
pondermotive forces come into play.
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C4 perturbation of about 0.01 ppb, which is comparable
to the current resolution shown in Fig. 7.

It is worth noting that the phase of the beat signal,
shown in Fig. 7, is an indication of whether the off-
resonant drive is adding energy to the cyclotron motion
or conversely taking energy out of the cyclotron motion.
One should then be able to use this information in a feed-
back scheme to continuously cool the cyclotron motion,
or by turning the off-resonant drive off at the right phase
of the beat signal, one could prepare the cyclotron
motion in a cold state. It should also be emphasized that
the phase of this beat signal is a reasonably accurate rep-
resentation of the phase relationship between the drive
(which has a clean phase} and the actual cyclotron
motion. We therefore have a phase-coherent monitor of
the cyclotron motion without the use of a preamplifier at
the cyclotron frequency. This may be useful for monitor-
ing the cyclotron motion of the electron in a 6-T magnet-
ic field where building a sensitive preamplifier at 160
GHz is extremely dificult.

ability to set /3=0. The anharrnonic systematic under
these conditions would be reduced to 10 " or below
10 ' for a modest reduction in a. Modulating P, howev-
er, complicates the detection of E, through the axial
motion and necessitates changes in the axial-detection
electronics, possibly following the schematic shown in

Fig. 9.
In our quest to push the limits of resolution in our cy-

clotron measurements we have developed a second
scheme which has been referred to as "beating the noise. "
In addition to being able to obtain resonant information
through the use of a white noise source, this technique
also offers the advantages that come with a continuous,
phase-coherent, real-time monitor of the resonant fre-
quency, and as indicated in Eq. (4.11), the monitored beat
can be relatively noise free. We hope that the thorough
description given of the basic physics that produces the
energy beat can be used to make this powerful technique
accessible to a wider range of experiments.
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With these anharmonic-detection schemes we have
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resolution of our mass spectrometer. In this article we
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both the signal and the systematic are proportional to the
product PbE, . The systematic, under these conditions,
can therefore be expressed in terms of the axial resolution
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second method continuously monitors a beat in the cyclo-
tron energy as the cyclotron motion, in equilibrium with
a thermal drive, responds to an off-resonant coherent
drive. This method has a resolution of better than 10
but the inherent systematic limit of 10 ' can only be
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We have also pointed out that the inherent systematics
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inated by modulating P around zero (i.e., modulating the
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APPENDIX

In the absence of an external drive, the velocity u(t) of
the cyclotron orbit in a Penning trap obeys the equation
of motion

—+—y, u(t)+co,'z Xu(t) = f(t) .d 1

dt 2
(A 1)

This motion is coupled (by effective image charges in the
conducting trap surfaces) to an external environment

which acts as a heat bath at temperature T. The driving
force f(t) in Eq. (Al) accounts for this interaction; it is a
random, white noise force. The same coupling gives rise

to the damping described by the constant y, . In this Ap-

pendix we shall solve the equation of motion (Al) to
derive the probability distributions used in the text.

The solution can be obtained with the aid of the retard-

ed, tensor Careen's function G«(t —t') defined by

(A2)

where 5t &

=~22 1 ~12 0 ~12 ~21 ~11 22

and a summation over repeated indices is implied. The
motion is given in terms of this Green's function by

u„(t)= f dt'G„, (t —t')f (t'i} . (A3)

—+—y, 5„co',e„G t(t —t—')=5„,5(t t'}, —1
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The tensor Green's function Gki(t —t') may be reduced
to a scalar function Q(t —t') by writing

Let us first use the generating functional to construct
the probability density of finding the velocity u at time t,

Gki(t t')—= d 1+ }'d 5ki+~deki Q(t t'—) .
dt 2

(A4)

P(u, t)=(5(u —u(t))) . (A13)

Writing the 5 function in terms of its Fourier transform
gives

Inserting Eq. (A4) into Eq. (A2) yields p( t) eik u( e
—ik u(t) )(d k)

(2m. )
(A14)

d d+y, +~,' Q(t —t') =5(t —t'),'dt (A5)

where we have neglected terms of order y, relative to co,',
as we shall always do. It is straightforward to establish
that

B(t t') -—],]i-i )i2 .
9( t t ') = — e ' sine)),'( t t '), —

e

This is just the special case of the generating functional
with P, (t)= k, 5(—t t, ), an—d so

P(u, t)= f e'™exp[
—

—,'k, (u, (t)u (t))k ] .(d k)

(A15)

Using Eqs. (A9}—(Al 1), we have

where B(t —t') is the usual unit step function.
We first apply this formulation to compute the thermal

averaged velocity correlation function

(u„(t)u, (t')) =f dt, dt2G„(t t, )—
(d 2k), ks T

P (u, t }= f e '"'"exp
(2~)~ 2m

exp( —
—,
' m u /ks T),

2m.k~ T
(A16)

XGi„(t'—tp)(f (t])f„(t,)) . (A7)

The thermal average of the fluctuating forces is given by

which is the proper, time-independent Maxwell-
Boltzmann distribution.

The probability density

y, k, T(f (t])f„(t&))= 5 5(t, —t2) .
2m

(A8) P (u, t;u', t') = (5(u —u(t) }5(u'—u(t')) ) (A17)

The appearance of the 5(t] t2) corres—ponds to a uni-
form distribution of frequencies —white noise. The
overall factor of y, k~ T/2m is required, as we shall see,
to give the proper thermal average m(u(t) )!2=k Ts.

After some calculation using the results above, one finds
that

(uk(t)ui(t')) =Nki= 5kiC(t t')+ekiS(t —t'), —

(A9)

for finding the velocity u at time t and the velocity u' at
time t' can be calculated in the same way. Again intro-
ducing Fourier transforms for the 5 functions and using
Eqs. (A9)—(A12), we have

(d k) (d k); ].ku+.k)uP u, t;u', t' = e
(2ir)' (2m)

kqT
Xexp — (k +k' )

2@i

where Xexp[ —ki(ui(t)u (t'))k' ] . (A18)
ka T —y, Ir —r'I~2

C (t t') = —e ' cosc)),'(t t'), —
m

(A10) The calculation is facilitated by combining the two 2-
vectors u, u' into a four-component vector
U =(u), u2, u ],u z ) and similarly writing E =(k„k2,
k', , k2) to achieve the matrix form

and

(Al 1)
(d4k) ki) T

p(u, t;u', t')= f e' exp — EMI)
2mClearly m ( u( t ) ) l2 =ks T.

Correlation functions of arbitrarily high order are
needed to construct the probability densities that we
need. They are given by a Gaussian factorization which
expresses them by the sum of products of all the possible
two-time correlations. This factorization is conveniently
expressed by the generating functional relation

(A19)

Here M is the matrix

(A20)

kg T -y, ir-r in .S(t t') = e—' sine))', (t t') . —
m

Z[d]=(exp i jdttdtt(tt )et(tt )

1=exp —— dt]dtzpk(t] )(u„(t, )ui(tz) )c){)i(tz)
2

(A12)

whose entries are 2 X 2 matrices with

Nk, = ( uk(t)u, (t') )
—y it —t'i /2=e ' [5&icosco,'(t —t')+ekisinco, '(t —t')]

(A21)
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(detM) ' =detM

=(1—e '
) detM,y, it —r'I 4

NN T NTN= c
—

y It —t'i
(A22)

which requires that

and N its matrix transpose. The calculation is essential-
ly trivial because

(A25)

Hence
detM =(1—e '

)
—y, lf —t'I 2 (A26)

1 1

1 —e
—y, It —t'i (A23)

We may now use the standard evaluation of the Gauss-
ian integral in Eq. (A19} that is provided by cotnpleting
the square, namely

'2
Moreover, since

1 —N
det —NT 1

1 N
=det NT 1

(A24)

P(u, t;u', t')= det ' M
7T

X exp — UM 'U
2kB T

(A27)

the determinant of M is easily evaluated from Thus, with the aid of Eqs. (A26) and (A23), we have

P(u, t;u', t')= m

2mkB T

'2
1

—y, lt —&'I

1 —e

u +u' —2uI, Nk)u)

2kB T
1

—y, I&
—t'I (A28)

mP(u, t;u', t') = exp
2+kB T

(u +u' )
B

=P(u, t)P(U', t') . (A29)

At large times, the joint probability is the uncorrelated
product of the probabilities for finding the velocities u
and u'.

Although this probability density is symmetrical in
1

Since NkI is exponentially damped for large time
diFerences, in the limit

l
t t 'l ))1—/y„

'2

u, t;u', t', its significance is most clearly brought out by
an unsymmetrical treatment. To this end, we note that
the matrix Nkt(t t'}, excep—t for the overall exponential
decay factor, is simply the rotation matrix that carries
the undamped motion from u'(t') to u'(t). That is

Nkt(t t')uI =e ' — uk(t, t') (A30)

defines the velocity at time t, u'(t, t') which is obtained by
the free, undamped cyclotron motion starting out with
the velocity u' at time t'. Using this notation, we may
write

P(u, t;u', t')= m

2mkB T

'2
1 m

—y, l

—'I

—y, It —t'I/2
[u —e ' u'(t, t')] +—y, ft —s'I +u

1 —e
(A31}

The conditional probability density for finding the velocity u at time t given that the velocity at time to=0 was uo is

thus given by

P(u, t;u0, 0)
P„ ll, t

P (uG, 0)

m 1

I

)exp
2mkB T

1 — y, l

—y, ltl/'2
[u —e ' uG(t) ]

2kB T
1 ——y, I&I

(A32)

This is the formula (4.12) quoted in the text.
Finally, let us establish the result (4.11) for the line

shape

(lE(tG)l ) = dt dt'e' " ' '(F(t)F(t'}) .1

2to tp

(A33}

I

tion variables to r and t =(t+t')/2. The correlation
function vanishes for v »1/y„which are times v. that
are yet small in comparison with to, and so the ~ integra-
tion may be extended to an infinite range —~ «& ao.
The remaining t integration now simply produces a factor
of 2to. Thus

The correlation function (F(t)F(t') ) is a function only
of the time difference ~= t —t', and so we change integra-

(lE(tG)l ) =f dre'"'(F(r)F(0)) . (A34}
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In view of Eq. (4.9),

(F(r)F(0) ) = ( [Etv(r) k—e T][Etv(0) kg T] )

+ (E (~)E (0)) . (A35}

Since Ett (r } is linear in the fluctuating variable u(r) while

Ett(r) is even in this variable, the cross correlation
(Etv(r)Ett(0)) vanishes. The Gaussian nature of the
noise implies that the correlation function of u factorizes
as implied by the generating functional (A12). Hence,
since Ez=mu /2 with m(u )l2=kttT,

([Etv(r) k—
tt T][EN(0)—ktt T])

=
—,'m ( uk(r)ut(0) ) ( us(r)ut(0) )

,'(k—ttT) Nkt(r}Nkt(r),

=(k T)2e (A36)

The correlation function of the beating energy is given by

(E~(&)Ea(0))=rn (uk(~}ut(0)) "k(&)Ut(0)

=2(ks T)EDe ' cos(bros) . (A37)

Using these results for the correlation functions, the
Fourier transform (A33) gives the result (4.11) quoted in
the text.
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