
PHYSICAL REVIEW A VOLUME 46, NUMBER 1 1 JULY 1992

Multiplicity distribution of electron-positron pairs created by strong external fields
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We discuss the multiplicity distribution of electron-positron pairs created in the strong electromagnet-
ic fields of ultrarelativistic heavy-ion transits. Based on nonperturbative expressions for the N-pair

creation amplitudes, the Poisson distribution is derived by neglecting interference terms. The source of
unitarity violation is identified in the vacuum-to-vacuum amplitude, and a perturbative expression for
the mean number of pairs is given.

PACS number(s): 34.90.+q, 34.10.+x

I. INTRODUCTION

While nearly all QED processes can be successfully
computed in perturbation theory, it was recently ob-
served by Baur [l] that pair creation in the electromag-
netic fields of two ultrarelativistic heavy ions in an almost
central collision explicitly violates unitarity in lowest-
order perturbation theory, i.e., yields probabilities
exceeding unity. This indicates that production of multi-
ple pairs could be dominant over single-pair production.
A similar effect was noted by Lippert et al. [2] in pair
creation by Bremsstrahlung. It was demonstrated by
Baur [3] using the sudden and quasiboson approximation
that the resulting multiplicity distribution is a Poisson
distribution, and that the average number of pairs in this
approximation can be identified with the single-pair
creation amplitude in second-order perturbation theory.
A similar result was derived by Rhoades-Brown and
Weneser [4] based on a resummation of the perturbation
expansion.

We present here a general treatment of the pair-
production multiplicity in external-field problems based
on the solutions of the Dirac equation in an external field.
We first analyze the role of quantization using the path-
integral formulation of QED and derive an expression for
the generating functional in terms of solutions of the
Dirac equation. We then show that this generating func-
tional is identical to the generating functional of a many-
particle theory of noninteracting fermions governed by
the external-field Dirac equation. From this Dirac sea
theory we derive expressions for the pair multiplicity and
the N-pair creation probabilities in terms of S-matrix ele-
ments of the Dirac equation. We show that the source of
the unitarity violation is not the perturbative solution of
the Dirac equation, but the neglect of the vacuum-to-
vacuum amplitude which enters into the nonperturbative
N-pair amplitude as a multiplicative factor and is, in per-
turbation theory, assumed to be approximately unity. By
neglecting interference terms the multiplicity distribution
is then shown to be of Poisson form. An analysis of per-
turbation theory finally gives an expression for the (per-

turbative) average multiplicity which coincides with the
lowest-order perturbative single-pair creation probability.

J (y, a„y)=J,(q, a„q)+J,„,(q, a„y),

Lo(g, t)„g)=Q(i8 —m)l(,

&;.«0 ~„4)= e4r"I~„—.

The symbol 8 indicates the symmetric derivative

8=-,'8 —
—,'8 .

(2)

(3)

Variation of the action and the resulting Euler-Lagrange
equations

az
a@ ~ a(a„@)

lead to the classical equation of motion

(i' eA —m)$=—0,
P(i 8+eg +m) =0,

(6)

II. QUANTIZATION IN A TIME-DEPENDENT BASIS

The explicit unitarity violation in second order requires
either to sum higher-order contributions in perturbation
theory or to seek for a nonperturbative treatment. The
latter has become feasible with numerical coupled-
channel computations of the Dirac equation [5]. Since
pair creation is an effect of quantum-field theory we first
investigate the role of field quantization in an external-
field problem in order to reduce the problem to the solu-
tion of the Dirac equation. While this has been accom-
plished before by employing operator calculus [6], we
here present a treatment based on the path-integral for-
malism.

Both the classical equations of motion for a Dirac field
as well as their quantization can be derived from the La-
grangian density X of the Dirac field f in an external
electromagnetic field A „,which is given by
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which is the Dirac equation and its conjugate.
The path integral offers a suitable mathematical tool to

discuss differences between a classical and a quantized
theory (i.e., quantum corrections) since the classical
motion plays a central role in it. In the path-integral for-
malism the two-point function G (x,x'), which is the vac-
uum expectation value of the time-ordered field opera-
tors, is computed by a path integral according to

G(x,x ) = &ol Tg(x)g(x')IO)

x x'e' t~' ~

This is a functional integral over a11 classical paths that
the field can take, weighed with a complex measure given
by the action functional

S [q]=f d'xr(q(x), a„1i(x)) . (8)

The propagator can be expressed as a functional deriva-
tive of the normalized generating functional

~[re ril
W[0]

which originates from the unnormalized generating func-
tional

8'[rt, ri]= f&$2)/exp iS [g,g]+i f d x[ri(x)1((x)+g(x)ri(x)] (10)

f d x g„(x,t)f„(x,t)=5« (12)

for all n, n' (in a box normalization this can also be used
for continuum states). Since time evolution is unitary,
these two equations do not contradict each other. The
integration variable g of the path integral can now be ex-
panded in this basis,

The external currents ri(x), ri(x) serve as dummy vari-
ables; the normalization is chosen in such a way that the
generating functional without external currents is unity.
Since the field is fermionic, the classical fields f are to be
considered anticommuting Grassmann variables, and the
appropriate formulas for executing the Gaussian integra-
tion must be used. All results of perturbation theory can
be derived from path integrals in a similar way as they
can be deduced from operator quantization, but, as we
will see, the path integral allows one to utilize the classi-
cal solutions of the field equations as a basis.

In particular it is possible to use the set of classical
solutions of the equations of motion (for difFerent initial
conditions) as a basis. Let therefore [g„(x)] be a time-
dependent, complete, at all times orthonormal set of solu-
tions of the Dirac equation in a given time-dependent
external field A„, i.e., for every n

(i 8 eA —m )$—„=0
holds, and at all times t

(i8 m) =
—,
'—(i8—m ) —,'(i 8+—m) . (15)

Since the basis functions f„s atisfy

(i 8 m) f—„=e A P„,
f„(i8+m)= —eg„A,

the Lagrangian density in terms of the a„reads

+i[a„'(t)B,a„(t)](g„y P„)] .

The interaction contribution to the Lagrangian density is

X;„,= —e g 'a(t)Q„A f„a„.(t)
n, n'

and the total Lagrangian density therefore becomes

X= g i[a„'(t)B,a„(t)](g„y g„,) .
n, n'

(18)

(19)

L(t)= f d x X(g(x},B„Q(x)}=gi (at)B, (at) . (20)

Due to the orthogonality properties of the basis functions
the Lagrange function takes the following simple form
after integration over spatial coordinates:

g(x, t)= ga„(t)P„(x,t) . (13)
The Lagrange function describes the behavior of the
dynamical system constituted by the a„(t ). By variation
of the action the classical equations of motion are

The amplitudes a„(t) can be substituted for the field vari-
ables p(x) in the path integral; in order that the li( tt}x

resulting from (13) are Grassmann numbers, the a„must
anticommute. The Lagrangian density Xo of the free
field is now after substituting (13),

Xo= g [a„*(t)[f„(i8—m)g„. ] (ta)
n, n'

+i[a„'(t)B,a„.(t)](f„y g„,)] . (14)

The differential operator can be rewritten according to its
definition as

(3L 8 BL =0 ~ ia„(t)=0 .Ba„ot ga„

The amplitudes a„(t) are therefore constant in time; this
is what we expect since the basis functions are fu11 solu-
tions of the equation of motion (unlike the coupled-
channe1 formalism in which the basis functions satisfy
only a part of the equations of motion). Quantum correc-
tions to these equations manifest themselves by a spon-
taneous (not externally induced) leap of the system from
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one classical solution into another ("tunneling" ).
Since the transformation of field variables to ampli-

tudes a„ is [due to the normalization (12}] unitary, the
basis transformation

2)$2)/=2)a, 2)a„2)a
&

2)a„' (22)

can be performed in the path integral and the generating
functional can be cast in the following simple form:

W[g, g]= f2)a& 2)a„Xla f 2)a„*.. . exp i g fdt fdt'a„*(t')B(t', t)a„(t)

+fdt [ri„'(t)a„(t)+a„'(t)g„(t)] (23)

where the integral kernel is

B (t ', t ) =i 8,5(t' t) . —

The quantities ri„(t) replace the current g(x) according to

rt„(t)= f d x f„(x,t)ri(x, t) .

We assume that the following formula for complex Gaussian path integrals over Grassmann variables holds [7]:

(24)

(25}

f2)a 2)a exp i f dt' fdt a'(t')B(t', t)a(t)+i fdt[g'(t) (at)+ 'a(t)g(t)] .

=A'exp i f dt' fdt ri'—(t')B '(t', t)ri(t) (26)

The symbol A stands for an arbitrary, not necessarily the same in every equation, constant factor. With this formula
the path integral can be performed and reduces to

8'[ri, ri]=JVexp, i g f—dt fdt'ri„'(t')B '(t', t}ri„(t} (27)

B ( ',co)t=o—to(2n )5(to —co') (28)

The transition to the normalized generating functional is
simply accomplished by dropping the constant factor JV.
The inverse of the operator kernel B(t', t) can be found
by a Fourier transform; it is

I

l(„describes an electron or a positron. The normalized
generating functional finally becomes

~'

W[g, ri]=exp. —g fdt fCt'ri„'(t')S„(t' t)ri„(t)—
n

and therefore

B '(t', t) =(2m ) f dao'dao B (to', to)e'

= —(2m )
' f da) —e'""

CO

(29)

(31)
where the one-dimensional propagator S„(t' t} takes-
one of the following two forms depending on whether n
lies above or below the Fermi level F, i.e., the highest
state occupied in the Dirac vacuum:

This integral is a representation of the step function
8(t t'} Depend—ing .on how the integration contour
around the singularity at co=0 in the integrand is chosen,
its value is

8(t' t), n )F-
S (t' t)=——8(t t'), n &F —. (32)

The propagator (i.e., the 2-point function) is now found
as a functional derivative of the generating functional

B '(t', t)= —(2m. )
' de . e' "1

CO+l E
(30)

1 5$'S(x',x)=-
i 5q(x')5q(x)

(33)

i 8(t' t) positive si—gn-
t8(t t'} negative sign . —

This choice fixes the boundary conditions of the propaga-
tor derived from the generating functional; it can be
made separately for each state and determines whether

It is

5~(-) =&'" 5,„()
5 5„(x,t)

5g(x) „5g„'(t)
(34}
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and therefore

S(x',x)= g P„.(x', t') g„(x, t)
6 W

i 5rt„* ( t')i 5g„(t)
= g P„(x',t')S„(t' —t)P„(x,t) .

n

(35)

a(n)=(n lp)e

which satisfy the coupled-channel equations

i = g V„(t)a(m)
. Ba (n)

at
m

(38)

(39)

This expression for the propagator is identical to the rep-
resentation of the Feynman propagator in an external
field by the solutions of the Dirac equation. Therefore,
path-integral quantization has not changed the propaga-
tor; this was not to be expected since the Lagrangian den-
sity of the Dirac equation in an external field is still
quadratic in the Dirac fields. The use of the Dirac equa-
tion in an external field is thus justified. It can be shown
that the true quantum effects in perturbation theory can
be identified with those Feynman diagrams that contain
loops while the tree diagrams constitute the limit A'~0
[8].

with the time-dependent channel couplings

V„(t)=(n lH;„, lm )e (40)

which vanish at t —++(x). Accordingly, the wave func-
tion of a system consisting of Xparticles is

a(n], . . . , n~); (41)

it gives the amplitude that particle 1 is in state n, , parti-
cle 2 in n2, and so on. Since the particles are identical,
we can introduce a Fock space spanned by the algebra
of creation and destruction operators &„,8„, satisfying
anticommutation relations

III. FORMALISM Ia„, tt I=8„8 +& &„=5„ (42)

A. Many-particle theory and Fock space

Pair creation is a process that cannot be described in
the framework of a single-particle theory. In canonical
quantization the many-particle interpretation arises natu-
rally since the canonical field operators satisfy just those
commutation relations that generate the (anti-)symmetric
subspace in the space of many-particle wave functions.
In path-integral quantization we can show that the gen-
erating functional derived above coincides with the gen-
erating functional of a system of many noninteracting
particles, each of which obeys the Dirac equation.

As in canonical quantization, antiparticles are intro-
duced by redefining a negative-energy electron destruc-
tion operator to be a new positron creation operator, and
accordingly for negative-energy electron creation opera-
tors. The Dirac vacuum is annihilated by both electron
and positron destruction operators, which can be imple-
mented formally by filling all negative-energy electron
states of the Dirac vacuum. As long as the particles do
not interact with each other, this picture is consistent,
since —by virtue of the redefinition of creation and de-
struction operators —the Dirac sea does not inAuence
measurable quantities. If interactions between particles
are considered, the normal-ordering procedure excludes
Dirac sea electrons from being measured, so that only
holes in the Dirac sea, i.e., positrons, are physical ~

We write the external-field Dirac equation in Hamil-
tonian form

and a basis given by the occupation number representa-
tion

(43)

a„lo& =o . (45)

The relationship of a many-particle wave function and
the corresponding Fock space vector is given by the fol-
lowing relations:

l%)=, g pa(n„. . . , n~)a„. &„ lo), (46)
I

a(n, , . . . , n )=(ola„&„l+) . (47)

The factor 1/X! accounts for the fact that the sum runs
over all N! permutations of the n, that designate the
same Hilbert space vector. The dynamics of l%) is
governed by

whose quantum numbers k„specify how many particles
are in the single-particle state n; the action of creation
and destruction operators is then

aflk), k~, . . . &=V'k„+Ilk), . . . , k„+I,. . . ),
(44)

&„Ik„k„.. . &=Vk. lk„. . . , k„—1, . . . & .

The state in which no particles are present is designated
by lo); it satisfies

le&=Hip&
Bt

(36)
. ale& =HF..k I

+ &at (48)

and decompose the Hamilton operator H(t) =Ho
+H;„,(t) into an unperturbed time-independent part Ho
and a time-dependent interaction part H;„, which van-
ishes for t ~+~. If I l

n ) J is the set of eigenstates of Ho

with the Hamiltonian

H„„„=g V„„&„&„
n, n'

(49)

Ho I
n & =E„In &,

then channel amplitudes can be introduced by

(37)
Antiparticle operators are introduced in the framework
of Fock space by defining
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b„, n &0

(0 (50)

where n )0 is to be read symbolically that the energy of
the state n is positive (or, more general, lies above the
Fermi level). The operators b„,d„can be interpreted as
destruction operators for electrons and positrons, respec-
tively. The Dirac vacuum is then the state which is an-
nihilated by all (electron and positron) destruction opera-
tors, i.e., it satisfies

where the index i is now replaced by an antiparticle index

q &0. To solve then the many-particle problem of the
Dirac sea, knowledge of the time development of any
Dirac sea state is required.

This knowledge can be expressed by introducing
Heisenberg operators into the formalism. Applying a
time-dependent Heisenberg operator a „(t) to the vacuum
state just creates that state which would have resulted
from time development of the asymptotic state 8„~0).
Heisenberg and Schrodinger operators are related by a
unitary transformation whose coeScients are the single-
particle amplitudes

b, iO) =d", iO) =0. (51)

The particle and antiparticle operators have the same
commutation relations as the &„. To derive measurable
quantities like charge density, or to include interactions
with an electromagnetic field, the normal-ordering pro-
cedure accounts for the fact that only positive-energy
electrons and positrons, but not negative-energy Dirac
sea electrons, are physical.

I„=g a~'„(t)a ~(t) .

The state at a time t is therefore

~(pp) =,a p (t) a (t)~0),

(54)

(55)

B. Computation of many-particle amplitudes
from single-particle theory

If the particles of the Dirac sea do not interact with
each other, then the many-particle state vector can be
computed from single-particle wave functions by factori-
zation and appropriate symmetrization: With the single-
particle amplitudes given as a;(n), where i designates a
particle and n a state, the (anti-)symmetrical many-
particle state is

(56)

Especially the relations

a „(t)~%,) =0, if n E Ip&, . . . , p]vj (57)

where the state p; of the ith particle at t~ —00 now
enters explicitly. Since the transformation is unitary the
Heisenberg operators satisfy the same commutation rela-
tions as the Schrodinger operators, i.e., for fermions

1
~'p) =, g ga](n, ). . an't(nN).

n&

and

a „(t ) ~ 4, ) =0 if n 8 Ip „.. . ,p]v j (58)

Xa (n]). . .t (n~)~0) . (52) hold, and the Heisenberg number operator is

A system whose asymptotical initial state is the Dirac
vacuum consists of as many particles as the Dirac sea
contains, and the single-particle amplitudes for t~ —ao

are

1 if n E [p[, . . . , p]()(j

0 otherwise .

(59)

a (n)=5„ (53)
The generating functional of this many-particle theory

is defined in terms of the Heisenberg operators as

r

)v[t), t)]=(0 Texp. i f dt's [t)r'(t)ttr(t)t T)r(t)itr(t)] 0), (60)

where the currents rj, rI are dummy variables to extract n-point functions. Substituting (54) and introducing new
currents [which we later will identify with the currents (25)]

(61)

this can be rewritten as

IV[0,t)]=(0 Texp, i f

dt's

[0„'(t)0„(t)+0„(t)0„(t)],0) .
n

(62)

Though the Schrodinger operators are time independent, we must keep the time argument to perform the time ordering
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correctly. Wick's theorem [8] enables us to rewrite the last expression as

lv[q, q]=(o:exp. ifdtx[q„"[&)a„+q (t„]a ]„:0)
n

Xexp, —f f dt dt' g q„*.(t')(OiT &„(t'}8„(t)i0)q„(t). .
n, n'

(63}

The normal-ordered term on the right-hand side drops
out, and the time-ordered product is

(OiTa„(t'}a„(t)~0)=5„„.8(t' —t) . (64)

%'e thus find

W[ri, rI]=exp, —g f dt fdt'r)„'(t')e(t' t)g„—(t)
n

From these expressions pair creation amplitudes can be

computed. Using the fact that b„and d„annihilate the
vacuum, the amplitude for the presence of exactly one
pair (p, q) at a given time then is

S =(Oid b i%)

g a„*,a„., (O~d„d „~e)
n &On'&0

(65)

which is identical to expression (31) when the forward
propagator is chosen. This is correct since we have not
yet made use of antiparticles.

The preceding relations can be utilized to reduce any
matrix element of the Schrodinger operators to an ex-
pression in terms of the single-particle amplitudes. The
number operator, e.g., for a particle in state n is accord-
ing to (54)

8'„=b„b„=tl„d„=g a'„(t)a „(t)&
pq

and therefore its expectation value at a time t reads

(66)

p

p&0
(67)

This is the well-known result [6]. For antiparticles n (0
it is

(68)

and its expectation value accordingly

(e, /8'„ie, ) =1—y ia,„(t)/'. (69)
p&0

If the theory contains antiparticles, creation and de-
struction operators in the Heisenberg picture have to be
introduced corresponding to those in the Schrodinger
picture,

n &0 n'&0

By virtue of the commutation relations, this is

(72)

S~~= g a„*qa„~(0 [P)+ g g a„'a„~(O~b „d „.i%) .
n&0 n &On &0

(73)

IV. RESULTS

The second term cannot be further simplified but it can
be argued that its contribution is small. The vacuum ex-

pectation value (O~b td t i%') represents the amplitude
that a state containing initially a pair (n, n ) becomes the
vacuum, i.e., an annihilation amplitude. This is to be
compared to the vacuum-to-vacuum amplitude (Oi+)
and will therefore be of higher order. Furthermore, the
coefficients a„*a„. in front of the second term both fall
into the nondiagonal quadrants of the single-particle
scattering matrix while one of the coefficients a„*a„ in

front of the other term is in the diagonal quadrant. In
fact, the perturbative expansion of the coefficients in the
first term will be

(74)
n&0 n&0

and is therefore of first order while the coefficient in the
second term will be of second order.

The factor (0~%) is the amplitude that the vacuum
remains unchanged and is therefore not accessible to per-
turbation theory where it is assumed to be near to unity.

and

b (t)= g a'„(t)d„+ g a*„(t)b„,
n&0 n&0

8 (t)= g a „(t)d„+ g a „(t)b„
n&0 n &0

b = g a„(t)d„(t)+ g a„(t)b„(t),

(70)
A. The multiplicity distribution

Amplitudes for the creation of several pairs can be
computed similarly. It is useful to introduce reduced
one-pair amplitudes which do not contain the vacuum-
to-vacuum amplitude

n &0 n &0
(71) n(O

n &0n&0
d = g a„*(t)d „(t)+ g a„' (t)b„(t) .

With this definition and the above approximation the
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two-pair amplitude becomes

s, , =
& ole &(s„s,, —s„,s, , ) . (76)

The two terms correspond to the two possible exchange
graphs in Feynrnan perturbation theory. The probability
for the production of two pairs with arbitrary energies is
then the sum over the absolute squares of the amplitudes,

2

ing that the sum of all probabilities is unity, one finds
1

l&ole&l'=
0 n!

The mean number of created pairs n finally becomes
n

n=e ' g, =P, = g Q ls
n=0 p&Oq &0

(84)

g & g g I&01+&I'[I&„l'ls,, l'
p &Oq &Op &Oq'&0

+ Is„ I'Is, , I' —2 Re(s,',s,', s„s„)].
The factor (1/2!) accounts for the double summation
over identical states in (pp') and (qq'). The first two
terms inside the summation yield just the one-pair proba-
bility P, whereas the third term is an interference term
which cannot be reduced further,

P„=e „-nn

n!
(86)

This is understandable as neglecting interferences corre-
sponds to the independence of creation processes.

In the next section we will evaluate this number in per-
turbation theory.

The distribution has the shape of a Poisson distribution

p, = y y l&ole&l'Is„l'=l&ole&l'p&,
p &Oq &0

p2=
2,

1&01+&I'p', ——', l&ol+&I'

XReg g g g (S'S' S S ),
p &Oq &Op'&Oq'&0

where the reduced single-pair creation probability

(78)

(79)

(i)
anp anp

i=0
(87)

B. Perturbation theory

In perturbation theory the one-particle amplitudes
(which are needed only at t~~ and are therefore S-
matrix elements) are approximated as a series in the elec-
tromagnetic coupling constant

I,= y y s„l'=
p &Oq &0

(80) This series is computed using Green's functions satisfying

p &Op'&0 q &0 q'&0

g S S ~ . (81)

has been introduced. The summation in this last term,
e.g., can be grouped in this way,

y s,',s, ,
'

y s,', s„.'

i—G(r, r') =5(r r')—
at

by the recursive expression

a„",+"=fdr'G, (r, r') g V .(r')a„',".(r')
P

with the zeroth-order term

(88)

(89)

p &Op'&0 q &0

The innermost summation contains the S-matrix ele-
ments that link p and p' to q, the state over which is
summed. If the phase of these S-matrix elements varies
suSciently fast in the course of the q summation, the
terms cancel out and can be neglected compared to the
other terms which do not depend on the phase.

In this approximation the integrated two-pair probabil-
ity results as

a(o) —g
np ~np (90)

G(r, r') = i B(r r') —. — (91)

The reduced one-pair amplitude up to second order is
(since q (0 and p )0 for an electron-positron pair)

Since the boundary conditions are given at t~ —ao, the
propagator chosen is the forward propagator

p =
I & oI+ & I'2, ps (82) n&0

One can find similarly by neglecting all interference terms
that the probability for the production of n pairs is

=a'"+a' '+ ~ a'"*a'"+ .
qp qp ~ nq np

n&0
(92)

„p=l&ole&l',P ", .
n'! (83)

Since the probability for producing no pairs is just
I &ol@& I, this formula holds also for n =0. By demand-

I

where the ellipsis represents higher-order terms. The
second-order contribution here consists of the true
second-order term a' ' and of the sum over the product
of two first-order terms. Writing explicitly the integra-
tions in these second-order terms

&~ =( i) f dr'f— dr" g V „(r')V„(r"),
n

g ~„","a„'~ =(—i)(+i)f +"dr f +"dr- y V „(r')V ( ")
n&0 00 oo 0

(93)

(94)
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one finds for the second-order contribution to pair creation

S,',"=—f dt' g f dt" V, (t')V„,(t") —g f dt" V,„(t')V„,(t")
n &0 n&0

(95)

This is exactly the expression one obtains from a pertur-
bation theory with the Feynman propagator

B(t —t') for p )0
—B(t' —t) for p &0 . (96)

j(Oje) j'=e-", (97)

where the average number of pairs n is just the reduced
single-pair creation probability

n=P, = y y ls„l'.
q &Op &0

The lowest-order perturbation expansion of Spq is

S„= g (S„,+a„',"*)(S„,+a„',")
n &0

(98)

The Feynman propagator yields the reduced amplitudes

S~~ which are correct if (Ol'0) is unity. This reflects that
the ordinary perturbative vacuum is assumed to be stable.

In the presence of a strong external field the Dirac vac-
uum becomes unstable. This leads to an additional factor
j(0l+)j in front of the n-pair creation probability.
While this factor cannot be computed in ordinary pertur-
bation theory, the above reasoning shows that it can be
identified —in the approximations made —with

S~ =a"'
pq qp

and the probability to create exactly one pair

(103)

pF y y ja(2)l&

p &Oq &0

(104)

This expression is identical to the expression found above
for the mean number of pairs created and therefore ex-

plicitly violates unitarity, i.e., becomes larger than one.
But from this alone it cannot be concluded that the one-

particle amplitudes aqp are wrong; the violation might
also be caused by neglecting the factor (Ol+). If more
than one particle is produced, P, must —for it is to
second order identical to n —explicitly violate unitarity,
eUen when perturbation theory is still applicable. In this
case the unitarity violation stems solely from the neglect
of the factor

j(0jql) j
=e (105)

never lies on the mass shell. The S-matrix elements are
therefore the same whether the Feynman or the forward
propagator is used. The pair-creation amplitude to
second order is then from Feynman rules

n&0
(99)

q &Op&0 q &Op &0

The expectation value of the electron number operator
can be computed without introducing the

j(0l%') j factor, since both d„and b„annihilate the
time-evolved state

l
4 ),

t+l&, b, j'P)= g g a„*a (,old„d je)
n &Om &0

since p & 0, and therefore yields as a lowest-order expres-
sion for the average number of created pairs

(100)

Therefore, we can use the unitarity violating lowest-order
pair creation probability as a lowest-order approximation
of the mean number of pairs created; this calculation has
been done by several well-known methods, especially by
Monte Carlo integration of the Feynman graph [9], by
the Weizsacker-Williams method [10,1], by distorted-
wave calculations [11],or nonperturbatively in coupled-
channel calculations [5], or by direct solutions of the
Dirac equation [12]. To get perturbative higher-order re-
sults, the S-matrix elements a of the Dirac equation
must be evaluated to higher orders using the forward
propagator, which differs from the Feynman propagator
in how the integration contour at the mass shell singular-
ity is chosen.

n&0

and gives therefore the same expression as for n,

(101)

V. CONCLVSIONS

(ej8je)= g g la
q &Op &0

(102)

So the assumption of a Poisson approximation is con-
sistent, and the average number of created pairs is indeed
given by summing over the absolute squares of the
single-particle scattering matrix.

In the case of pair creation by the electromagnetic
fields of heavy ions the S-matrix elements a of zeroth
and first order vanish for q (0 and p &0. This implies
that the intermediate state of the second-order process

We have shown from a general nonperturbative treat-
ment that the pair multiplicity distribution is of Poisson
form when interference terms are neglected, and that the
average number of pairs can be identified with the (uni-
tarity violating) probability in second-order perturbation
theory. The unitarity violation is identified to be not in
the perturbative solution of the Dirac equation but in the
vacuum-to-vacuum amplitude (Ol+) = (OjSjO), which is
neglected in perturbative calculations. Moreover, we
have derived expressions that enable us to compute the
multiplicity distribution directly when (perturbative or
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nonperturbative) solutions of the Dirac equation are
known. Though they involve considerably more integra-
tions than the elementary Feynman graph, it should be
possible to compute corrections to the Poisson law nu-
merically when needed.
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