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Electron-positron pair creation with capture and ionization in relativistic heavy-ion
collisions by the finite-difference method
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The probabilities of electron-positron pair creation with K-shell capture, of ionization, and of
excitation are nonperturbatively calculated with a finite-di6'erence method. Calculations for a col-
lision of U + on U '+ at Ei,b= 10 GeV/nucleon at small impact parameters are presented. The
results show an enhancement of the probability for pair creation with capture of about two orders
of magnitude in comparison to the outcome of a calculation in first-order perturbation theory. This
proves the expected strong nonperturbative character of such relativistic collisions for very heavy
ions.
PACS number(s): 34.50.Fa, 14.60.Cd, 02.70.+d

I. INTRODUCTION

Lepton pair production in relativistic heavy-ion colli-
sions has been studied in the past years with increasing
interest. The electron-positron pair creation with cap-
ture of the electron into a bound state leads to a change
of the charge of the beam ions and is therefore of partic-
ular interest for the design of superrelativistic heavy-ion
colliders, because the recharged ions get lost from the
beam [1].

In the high-energy limit the electron-positron pair cre-
ation can be calculated by the equivalent-photon method
[2, 3], which assumes the Lorentz-contracted electromag-
netic fields of the heavy ions as pulses of photons. The
cross section for the production of pairs is then given by
the elementary two-photon cross section for this process
multiplied by the number of photons in these pulses. In
the case of relativistic collisions of projectiles with lower
charge numbers (Zp = 1) and larger impact parame-
ters, perturbation theory is applicable to the calculation
of pair creation [4—7]. The various perturbative calcu-
lations are different with respect to the wave functions
of the initial and final states. Also nonperturbative cal-
culations were made with the help of B-spline methods
[8] and in the framework of coupled-channel calculations
which were applied to ionization, excitation, and charge
transfer [9—14]. The coupled-channel calculations showed
an enhancement of about two orders of magnitude in the
pair creation probability compared with the results of
the perturbation theory for relativistic collisions of very
heavy ions (Au+Au, U+U) at small impact parameters.
A reason for this enhancement is the large value of Z~ci
which for a uranium projectile amounts to 0.67. Since
this coupling is large for very heavy systems like U+U
and small impact parameters, perturbative treatments
might fail and higher-order eKects and multiple pair cre-
ation could become important [4, 15—20].

The aim of this paper is the calculation of pair produc-
tion with capture by solving the time-dependent Dirac
equation with the Bnite-difference method. This method

was first applied by Becker et at. [21] to the process of
excitation and ionization in relativistic heavy-ion colli-
sions. To simplify the numerical procedure the method
is presently restricted to problems with rotational sym-
metry with respect to the internuclear axis, which can
be regarded as a very good approximation to nearly cen-
tral collisions. We compare our results with those of the
coupled-channel method which in turn has the deficiency
to be restricted in the number of channels taken into ac-
count.

In Sec. II we discuss the semiclassical treatment and
the numerical procedure for the calculation of the proba-
bilities of pair production with capture into the K shell.
Section III gives the results for ionization and pair pro-
duction with capture for collisions of Usz+ on Usi+ and
Us +, respectively, at Ei~b = 10 GeV/nucleon.

II. SEMICLASSICAL APPROACH AND
NUMERICAL METHOD

We make use of the semiclassical approximation, which
treats the motion of the nuclei classically and the electron
motion by quantum mechanics with the time-dependent
Dirac equation

N —@(r,t) = ( ca [p + (ejc)A(r, t)]

+Pmc —eV(r, t) j4'(r, t),

where 4(r, t) denotes the four-component Dirac spinor
and cr and P the Dirac matrices; 4(r, t) can be inter-
preted as the electron-positron 6eld. The classical 6elds
A(r, t) and V(r, t) contain the electromagnetic potentials
of the target and projectile nucleus. We assume that the
projectile nucleus moves with constant velocity v along
the z axis and the target nucleus is fixed at z = 0. Then
in the case of extended spherical target and projectile
charges with homogeneous charge densities, charge num-
bers ZT and Z~, and radii RT and Rp, respectively, the
potentials are given by
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V(r, t) = eZT fl (r) + eZpp fp(r'),
A(r, t) = eZp(v/c)pfp(r')e„

(2)
(3)

for E & moc,

where p = 1/(1 —v /e ) ~z is the Lorentz factor, r' =
[xz + y + p (z —vt)z]ii, and f„ is given by (n = T, P) for E & —moc

(6)

1/r, r &R„
(3 r'/—Z„')/2a„, r & R„. pex

'C

dPex
dE,

m„2 dE
(7)

The impact parameter b is set equal to zero. Thus, we
have to solve a rotationally symmetric problem with the
finite-difference method. The rotational symmetry allows
the reduction of the numerical solution of Eq. (1) to a
two-dimensional grid. The numerical method and tests
of the accuracy are published by Becker et aL [21) and
will not be repeated here.

We start the numerical calculation with the analyti-
cally given exact lsi~z bound-state solution of the target
Hamiltonian for a point charge ZTe located at z = 0.
After the time evolution of this wave function with Eq.
(1) we project the result on the analytically given eigen-
states of the target Hamiltonian with the target point
charge. By projecting on excited bound states we get
the probability for excitation and by projecting on the
positive and negative continuum states the probability
for ionization and pair production with capture in the
1siy2 bound state, respectively. In the latter case we

apply time-reversal symmetry.
The use of eigenfunctions of a Hamiltonian for a point

charge for the initial and Anal states on the one hand
and potentials of extended charges for the time evolu-
tion on the other hand is somewhat inconsistent, but the
latter extension of the charges ean be understood as a
regularization of the potentials at r = 0 and r' = 0, re-
spectively. As test calculations for the time evolution of
the 1siyz bound-state wave function without distortion
by a projectile potential have shown, this regularization
helps to hold the solution stable on the grid.

In order to obtain the probabilities for excitation P„
ionization P, , and pair production with capture in the
1si~z bound state P„, we have to project the time devel-

oped wave function after the collision on the final states.
In the case of excitation we use exact analytic solutions

ln, K& of the target Hamiltonian for a point charge [22],
which are classified by the quantum numbers n and r.
Because of the assumed cylindrical symmetry of the prob-
lem the j, value remains constant in time and all func-
tions (initial and final) are taken for j, = 2. The excita-
tion probability is calculated as

pex
p

—tApc dP8X

dE

(Pl~ Pl lpz& P2& ~(pl P2)(pl P2)~pypg

We obtain in the case of Sommerfeld-Maue functions

d3pSMF

d p

1/2

l(p s I
f&l'

p= —1/2

In the following we restrict the representation of the
formulas to the ionization probability. Similar formu-
las hold for the pair-production probability. As we will
show later on, the exact target eigenfunctions with the
quantum numbers K, are not the optimum basis states to
describe ionization with a high linear momentum of the
ionized electron in the forward direction. In this case
projection probabilities of many high r. values (I&el ) 10)
have to be summed up. These projection probabilities
are calculated with continuum functions of high energy,
which are difficult to compute with sufficient accuracy.
Therefore, we decided to project with Sommerfeld-Maue
functions (SMF's) [22—24]. These functions are approx-
imate solutions of the target Hamiltonian, which in the
form used here contain an incoming spherical wave and
a plane wave with linear momentum p and helicity p.
As shown by Bethe and Maximon [25], the shortcoming
of the Sommerfeld-Maue functions compared with the
exact solutions is of the order O((Zn) /l). Therefore,
these functions can be used to describe ionization and
pair production at high linear momentum values of the
ionized electron or created positron, respectively. How-

ever these wave functions are not orthogonal, since two
functions Ipi pi) Ip2 p2& pi 8 p2, pi W p2 fulfil the
relation (pi, pil Ei + Ez + 2Ze /r Ipz, pz& = 0, with
E, = [p,ze2+ (nioez)z]i~2, i = 1, 2. Nevertheless we as-
sume that these functions form an orthonormal set nor-
malized as

P = ). ). I(« I f&l —l(»1/& I
f&l'

K=+& ~=~min
(5)

Because of the cylindrical symmetry of the problem we

can write

with n;„(~) = IKI+ (~+ I~l)/2K and
I f) =

I
@(t ~

oo) ). The ionization and pair-production probability ean
be obtained by projecting with exact continuum eigen-
functions IE, K& of the Coulomb problem for the charge
ZTe ("ex" means exact target eigenfunctions):

d2pSMF 1/2

=» pi ) l(pi, pi, v I
f)l',

dp)dpi'
(10)

where p~ and pq are the longitudinal and transversal mo-

menta, respectively. This can be rewritten in the form
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d3PSMF(+gp2 p2 p)
dpi'

J'
ut

v'p'- p'
p=(E' (m-pc')')'"

+E 2~
0

d3PSMF( Qp2 p2p)
d

"P'
p

pt
v'p' —

pg

dPsMF(E) p=(E —(mpc ) )''P
= E2vr

dE c

A further assumption is the completeness of the set

((E, r), )E) & Es)u((p, p), (E(p)( & Ecju()n, z)},where

Eo is the energy up to which exact solutions give us a
good description of the ionization and pair production.
Above this energy the Sommerfeld-Maue functions are a
good approximation to the exact solutions. The value of
this energy Es will be fixed later. Under this assumption
the ionization probability is finally given by

Similary the pair production probability is given by

—mpc apex —Ep gPSMF
P„= "dE+ dE,

-Ep —OO

(13)

where the difFerential probabilities are defined in analogy
to the difFerential ionization probabilities. In the follow-
ing we also use the quantities P, (t), P* (etx), and PsMF (t),
with z ' (i, p) and their differentials. These quantities
are defined by Eqs. (5), (12), and (13) if we replace the
final state

~ f) by the state
~
4'(t)). They give us infor-

mation about the behavior of the wave function during
the time evolution and allow comparisons with other pro-
cedures, i.e., with results of the perturbation theory and
coupled-channel calculations.

III. RESULTS

In this section we apply the finite-difference method to
a collision of U + on U + at an impact energy of 10
GeV/nucleon. The electron is bound in the lsiy2 state
of the target ion at the beginning of the calculation. The
projectile moves along the z axis with constant velocity v.
We used a grid of 600x300meshes with a spacing of Az =
Ap=5x10 4ao =26.5fm. Thelengthsofthetimesteps
were taken as b,t = 2 x 10 [units: 5/(mc ) = 1.288 x
10 2i sec). Then the projectile needs about 3.5 time steps
to move through one cell of the grid. The radii of the
nuclei are chosen as RT = Rp ——10 ao ——53 fm, which
is much larger than the physical radius of a U nucleus,
but, as mentioned before, guarantees a stable solution.
Three grid points are affected by this correction.

The analytic solution of the target Hamiltonian for the
lsiy2 bound state [22] is initialized on the grid and the
time evolution is calculated during the time from —8.5
to +11. Figure 1 shows the absolute square of the wave
function in the pz plane at times t = —8, 0, 6, and 11.
The projectile moves from the right- to the left-hand side
and is located at z = —3.1, 0, 2.3, and 4.2 x 103 fm, re-
spectively. The essentially undisturbed 18ggg bound state

is changed by the projectile potential during the time.
The graphs in Fig. l show that the wave function is con-
tained within the grid, because the whole size of the grid
is —7935 fm & z & 7935 fm, p & 7935 fm. A major part
of the wave function follows the projectile, which corre-
sponds to large ionization and pair production probabil-
ities with high linear momentum of the ionized electron
or created positron in the forward direction. This part
will be analyzed by Sommerfeld-Maue functions. The
outgoing spherical waves belong to ionization and pair
production at low energy and will be analyzed by exact
solutions of the target Hamiltonian with good angular
momenta.

If we calculate the sum of the probabilities for excita-
tion, ionization, and pair production with capture with
the exact solutions summed up to ~z~ = 10, the total
probability is 0.884 at t = 11. This means that states
with higher values of z are excited. In Fig. 2 the differen-
tial probabilities dPex(t)/dE and de (t)/dE are plotted
for t = 0 and ll as functions of energy. The summation
over the quantum number z runs up to ~r~ = 5 (solid
curves) and ~e~ = 10 (dotted curves), respectively. The
total probability is 0.986 at ~ = 0. This shows that we
can expand the wave function into the exact solutions
with ~r~ & 10 up to t =0. At times larger than zero an
increasing part of the probability goes to higher x values

(~z~ ) 10) and higher energies (up to several MeV).
As already mentioned, amore useful description of ion-

ization and pair production with high linear momenta
can be attained by projecting with Sommerfeld-Maue
functions. The difFerential probabilities obtained with
these functions and defined in Eq. (11) are also shown
in Fig. 2 by crosses connected by interpolating dashed
curves. Whereas the probabilities for t = 0 are similar
to those calculated with the exact wave functions, the
dashed and dotted curves for t = 11 difFer already for
electron energies around 1 MeV indicating that higher
angular momenta are involved.

In order to calculate the total probabilities we used
Eqs. (12) and (13) with Eo = 2 MeV and integrated
over the dashed curves in Fig. 2. We obtained P =
Pi, ,~, +P, +P;+P& ——1.011 and 1.106 for t = 0 and 11,
respectively, in comparison with 0.986 and 0.884 calcu-
lated with the exact wave functions. Values larger than1
arise from the nonorthogonality of the Sommerfeld-Maue
functions. This shows that we can describe ionization
and pair production only up to t = 0 with the exact
eigenfunctions with v values lower than 10 and that the
projection amplitudes for higher e values increase with
time. We get large probabilities for ionization and pair
production with high linear momenta (up to 10 MeV/c)
for the ionized electron and the positron. This situa-
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tion can satisfactorily be described by Sommerfeld-Maue
functions, although the nonorthogonality of these func-
tions results in a slight overestimation of the ionization
and pair production probabilities.

Figure 3 shows the probabilities for excitation, ioniza-
tion, and pair production with capture as a function of
time t. The solid curves represent the values obtained by
summing in Eq. (6) over

~

r
~

& 5. Values for the probabili-
ties obtained with Eqs. (12) and (13) were only calculated
for t = 0, 6, and 11 because of limited computer time.
They are shown by the full dots. All probabilities are
compared with those of a calculation using perturbation
theory (dashed curves) and of a coupled-channel calcu-
lation (dotted curves). These curves prove the strongly

nonperturbative character of pair production in relativis-
tic collisions of very heavy ions. We get a probability for
pair production which is about two orders of magnitude
larger than the value obtained vrith perturbation the-
ory. Further we have fair agreement with results of the
coupled-channel calculation, which is also nonperturba-
tive. A similar enhancement in the pair-production prob-
ability obtained by a nonperturbative B-spline method
was also found by Strayer and Bottcher [8].

The difFerence between our results and the results of
the coupled-channel calculation in the ionization proba-
bility is due to the restricted basis set which was taken
into account in the coupled-channel calculation. An ex-
tension of the basis set to higher excited bound states
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F1G. l. Probability density of the time developed wave function of the electron at times t = —8, 0, 6, and ll [units:
h/(mc ) = 1.288 x 10 sec] for a nearly central collision of U + on U + with an incident energy of EI b = 10 GeV/nucleon.
The projectile moves from the right- to the left-hand side and is located at z = —3.1, 0, 2.3, and 4.2 x 10 fm, respectively.
The density is given in units of ao (aII = 5.3 x 10 fm).
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FIG. 2. DifFerential probability dP, /dE for ionization and dP„/dE for pair production with capture at times t = 0 and
11 [units: 5/(mc ) = 1.288 x 10 sec] for a nearly central collision of U + on U + and U +, respectively. The solid and
dotted curves show the results obtained with Eq. (6) by projecting on exact eigenfunctions of the target Hamiltonian. The
partial probabilities are summed up to )e( = 5 (solid curves) and Its~ = 10 (dotted curves). Results calculated by projecting
with Sommerfeld-Maue functions are shown by crosses. The dashed lines are obtained by interpolating the crosses and are used
for the integration over the energy.
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FIG. 3. The probability for ionization (P;), pair production with capture (P„),excitation (P ), and occupation of the Is&~&
bound state (Pq, , ) for nearly central collisions of U +(10 Gev/nucleon) on U +(1sqy2) and U +, respectively, are shown as
functions of time. The unit of time is 1.288 x 10 sec. The solid curves are calculated by projecting with exact eigenfunctions
of the target Hsmiltonian up to IeI = 5. In the case of pair production and ionization also values are calculated by projecting
with Sommerfeld-Maue functions which are shown by full dots. The results are compared with those obtained by first-order
perturbation theory (dashed curves) and coupled-channel calculations (dotted curves).
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increases the ionization probability, whereas the proba-
bility for pair production remains essentially unchanged.
This increasing ionization probability is connected with
a decreasing probability of the bound states, especially
of the IsqI2 bound state, which confirmes the reasonable
agreement in the results of our and the coupled-channel
calculation.

IV. SUMMARY

turn. Our results are in good agreement with coupled-
channel calculations and predict a probability for pair
creation with capture of 0.16 for nearly central collisions
of U + on U + at an incident energy of E( b

——10
GeV/nucleon. This value is about two orders of mag-
nitude larger than the result of 6rst-order perturbation
theory, which shows the strongly nonperturbative charac-
ter of relativistic scattering of very heavy ions with small
impact parameters.

Ionization, excitation, and pair production with cap-
ture were calculated with a nonperturbative finite-
difference method. As result we have found a large
probability to create positrons with high linear momen-
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