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Scaling laws governing the multiple scattering of diatomic molecules under Coulomb explosion

Peter Sigmund
Physics Division, Argonne National Laboratory, Argonne, Illinois 60439

and Physics Department, Odense University, * DK-5230 Odense M, Denmark
(Received 27 April 1992)

The trajectories of fast molecules during and after penetration through foils are governed by Coulomb
explosion and distorted by multiple scattering and other penetration phenomena. A scattering event

may cause the energy available for Coulomb explosion to increase or decrease, and angular momentum

may be transferred to the molecule. Because of continuing Coulomb explosion inside and outside the
target foil, the transmission pattern recorded at a detector far away from the target is not just a linear su-

perposition of Coulomb explosion and multiple scattering. The velocity distribution of an initially
monochromatic and well-collimated, but randomly oriented, beam of molecular ions is governed by a
generalization of the standard Bothe-Landau integral that governs the multiple scattering of atomic ions.
Emphasis has been laid on the distribution in relative velocity and, in particular, relative energy. The
statistical distributions governing the longitudinal motion (i.e., the relative motion along the molecular
axis) and the rotational motion can be scaled into standard multiple-scattering distributions of atomic
ions. The two scaling laws are very different. For thin target foils, the significance of rotational energy
transfer is enhanced by an order of magnitude compared to switched-off Coulomb explosion. A distribu-
tion for the total relative energy (i.e., longitudinal plus rotational motion) has also been found, but its
scaling behavior is more complex. Explicit examples given for all three distributions refer to power-law
scattering. As a first approximation, scattering events undergone by the two atoms in the molecule were
assumed uncorrelated. A separate section has been devoted to an estimate of the effect of impact-
parameter correlation on the multiple scattering of penetrating molecules. That effect is by and large un-

related to Coulomb explosion, but some attention is indicated since it is an unavoidable feature in all

scattering phenomena involving molecular ions.

PACS number(s): 34.40.+n, 34.50.Ez, 34.20.Gj

I. INTRODUCTION

Experiments with molecular-ion beams penetrating
solids at energies in the upper-keV and MeV range may
provide rich information but also present considerable
challenges in the interpretation [1]. The interest in such
experiments was stimulated originally by the discovery
that diatomic molecules can be transmitted intact
through foils of thicknesses exceeding the mean free path
for dissociation by several orders of magnitude [2]. A
systematic effort went into probing wake fields of
penetrating ions via the mutual interaction between the
atoms in a molecule [3,4]. More recently, interest turned
to determining molecular structures by detecting the
fragments of dissociated molecules in coincidence [5]. In
the past few years, a considerable potential has shown up
to image the internal nuclear motion of small molecular
ions in high-resolution coincidence experiments [6].

Coulomb explosion is a central feature in all pene-
tration phenomena involving swift molecular ions.
Transmission patterns, i.e., recorded distributions in en-

ergy loss and scattering angle of diatomic molecules after
penetration through thin foils, show a characteristic ring
structure as a result of Coulomb explosion [7]. This effect
governs the motion of the fragments during penetration
through the material and, notably, in the vacuum be-
tween the target and the detection device. It has become
evident gradually that observable effects of the medium

on molecule penetration, such as those of wake forces,
stopping, and multiple scattering, get strongly distorted
by Coulomb explosion [8—13].

A recent study of the dynamics of diatomic molecules
under Coulomb explosion [12] showed that the effect of a
force acting on a molecule parallel to its axis is heavily
suppressed in the Coulomb image. Conversely, the effect
of a torque is always enhanced. Thus, strong anisotropies
must be expected to affect the Coulomb images of all
common penetration phenomena. Little general know-
ledge is available about the magnitude of these effects,
and qualitative insight is blurred by geometrical compli-
cations: There are two natural frames of reference, one
related to the beam and another one to the molecular
axis. Scattering events are best described in terms of
beam-oriented coordinates, but the dynamics of a
Coulomb-exploding molecule emerges most readily in a
frame of reference aligned with the molecular axis. That
axis is oriented at random in typical experiments.

A theoretical scheme for a comprehensive treatment
was outlined in Ref. [12]. That treatment was based on
the assumption that Coulomb explosion dominates, and
that all other ongoing processes act as small perturba-
tions. That assumption is amply justified in many
molecular-ion experiments, as can be seen, e.g. , by inspec-
tion of a measured ring pattern [1,7]. A relationship was
established between the velocity changes experienced by a
molecule during penetration and the ultimate velocity
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change recorded at a detector far away from the
penetrated foil. That transformation is linear but de-

pends on the orientation and configuration of the mole-
cule. The treatment covered the dynamics comprehen-
sively but was only very sketchy with regard to the statis-
tics of collision events.

The present study is a follow-up on the statistical as-
pects of the problem. The aim has been to establish scal-
ing laws that relate statistical distributions governing
molecules under Coulomb explosion to the corresponding
distributions with the Coulomb explosion switched off. A
numerical simulation of the effect of multiple scattering
on Coulomb-exploding rnolecules for a particular system
has been published recently [14].

The scaling laws derived in this paper become useful in
practice provided that multiple-scattering distributions
for rnolecules that are unaffected by Coulomb explosion
are available. As a first approximation, those may be
constructed by convoluting distributions of independent-

ly scattered atomic fragments [9—11,13—14]. However,
at least for molecules approximately aligned with the
beam, impact parameters and hence scattering angles
must be more or less correlated. That effect has been dis-
cussed in a slightly different context [15],but information
on the overall importance of impact-parameter correla-
tion appears unavailable. At least a qualitative estimate
is needed.

II. RECAPITULATION

This section serves to summarize and supplement the
main results on the dynamics of Coulomb-exploding mol-
ecules reported in Ref. [12]. Consider a diatomic mole-
cule with atomic masses M„,M~. The atoms A and 8
move initially with a laboratory velocity vo and are
separated by a vector distance D. At time t =0, the mol-
ecule is thought to enter a material medium (gaseous or
solid) and to be rapidly stripped of a number of electrons.
The molecule will dissociate, and thereafter the two frag-
ments will repel each other via their mutual Coulomb
force. If the internal motion of the molecule in its initial
state could be neglected, and if nothing else were happen-
ing, their relative speed v „would be determined by

Only increments hv much smaller than U „will be of in-

terest throughout this paper. Therefore, Eq. (3) may be
linearized to

u ( oo ) = u „+hu ( oo ), (4)

with hu( oo ) = [v(t)/v „]Av.
The relative speed v at time t may be expressed by the

Coulomb-exploded distance r =r(t). In terms of this
variable, bv( oo ) reduces to

bv( oo )=P(r/D)b, v,
with

P(r/D) =(1 D/r)'—
for unscreened Coulomb interaction. For straight super-
position of Coulomb explosion and multiple scattering,
one would have expected that P—:1. Figure 1 shows that
P is always less than 1 and approaches zero for r ap-
proaching D, i.e., t approaching 0. For t =0, the quadra-
tic term in Eq. (3) prevents b.v( oo ) from going literally to
zero. However, the conclusion prevails that a kick given
to a molecule parallel to its axis in the initial stage of
Coulomb explosion will not significantly affect the rela-
tive motion asymptotically. On this basis, it was conclud-
ed in Ref. [12] that the vibrational motion of a molecule

2.0

1.2— n~ Q

velocity is not the vector sum of hv and the unperturbed
Coulomb velocity v„. Indeed, take first hv parallel to
the molecular axis. Let the relative speed at time t = ~
be v( oo ), and let u (t) be the relative speed at the time of
the event. Energy is conserved in the time intervals (0, t)
and (t, oo ), whereas a jump occurs at time t. This yields

v( oo ) = [u „+2v(t)b,v+ 6,u ]'

Mo qqq~
2 D

0.8— P~
PI

kv=kv„—Av~ (2)

Most often, molecular fragments are not recorded in situ
but far away from the target. Then, the recorded relative

where Mo is the reduced mass and qz and qz are ionic
charges. The quantity U „will be called the unperturbed
Coulomb speed.

The action of the medium on the penetrating molecule
is assumed to come in small increments in the velocities
v~ v~ of the two atoms. Such changes in velocity are
caused by elastic and inelastic collisions or perhaps by
the action of an electric field over a small time interval.
Let one of these velocity increments occur at some
specified time t ( ~0) and let it lead to a change in rela-
tive velocity,

f/ D

FIG. 1. Factors P and Q governing the Coulomb image
hv( Oo ) of a velocity increment hv according to Eqs. (5) and (6)
and (9) and (10). D is the initial internuclear distance of the
impinging molecule, and r =r(t) is the internuclear distance at
the time of the event that gives rise to the velocity increment.
Also shown is an effective value P' as defined by Eq. (18), and
the corresponding quantity Q'. For those two curves, r =rlrl is
the internuclear distance at the exit from the foil. Thin-foil ex-

periments typically cover the range of r/D 5 1. A graph show-

ing that regime on a bigger scale may be found in Ref. [12].
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in its initial state may safely be neglected as a factor dis-
torting the Coulomb image. The same does not neces-
sarily apply to the rotational motion. Moreover, even
though the vibrational velocity may be ignored, the fact
that the internuclear distance D is distributed in accor-
dance with the vibrational state of the incident molecule
is crucial and needs to be allowed for.

An analogous consideration, based on angular momen-
tum conservation, was applied in Ref. [12] to determine
the effect of a kick perpendicular to the molecular axis.
Such a kick will get the molecule to rotate, but while an-
gular momentum is conserved, the moment of inertia in-
creases gradually due to Coulomb explosion. Therefore,
the angular velocity will decrease, and the angle of rota-
tion will approach some asymptotic value. The Coulomb
explosion will be unaffected by rotational motion up to
first order in hv since it is governed by energy conserva-
tion. Altogether, this results in an angle of rotation given
by

(7)

where r(t') is governed by the difFerential equation for
unperturbed Coulomb explosion,

b v( ~ ) =QT(t ).bv = $T(r, /D). bv (15)

For continuous action, (15) leads to

bv(~ )=f dt T(t) [F„(t)/M„Fti(—t)/Ms],
0

(16)

where F~ and F~ are forces on A and B, respectively,
and ~ is the time interval during which these forces are
acting, i.e., typically the dwell time in a foil.

If the forces are independent of time, Eq. (16) takes on
the particularly appealing form

b, v( ~ ) =rT' (F„/M„—Fs/Mti ), (17)

where T' is a matrix of the same form as (14), but with
P(t) and Q(t) replaced by

f dr(1 D/r) '—~ P(r/D)P= — Ptdt= „() (18)f dr(1 D/r)'—
D

mation applies to the change hV in the center-of-mass
velocity which is unaffected by Coulomb explosion.

Superposition of the effects caused by a sequence of
events, each governed by Eq. (13) and happening at times
t leads to a total change in relative velocity,

dr'/dt =u „(1 D/r'—)'

After integration of (7) one finds

bu( ~ ) =u„P( ~ )=Q(r/D)du,

with

Q(r/D) =2(r/D)[1 —(1 D/r)'~ ] .—

(9)

(10)

and correspondingly for Q'. These effective P' and Q'
values are also shown in Fig. 1. They are relevant when-
ever the effective force, be it deterministic or stochastic,
does not vary significantly across the target. Note how
slowly these functions approach the asymptotic behavior.

III. STATISTICS

As in Eq. (5), the time dependence has been expressed in
terms of the Coulomb-exploded distance r =r(t). Figure
1 shows that the dependence of Q on r/D is opposite to
that of P Indeed, .Q is always greater than 1, i.e.,
Coulomb explosion enhances the effect of a lateral kick.
The reason for this behavior is obvious: The Coulomb
velocity follows the rotation of the molecular axis and
hence receives a component perpendicular to the initial
axis.

Consider now a small velocity increment Av in an arbi-
trary direction. In view of the linear dependence of Eqs.
(5) and (9) on bu, its effect can be split into components
parallel and perpendicular to the axis. Hence,

bv(oo )=P(bv Q)Q+Q[bv (bv Q)Q)—
where

For collision-induced events, Eq. (15) remains valid,
but both the total number of events and their time se-
quence are distributed stochastically. Therefore, Eqs.
(16) and (17) can only be satisfied in the average. The dis-
tribution in the accumulated velocity change can be con-
structed if the probabilities for individual events are
given as functions of time. For collision events, those
probabilities are governed by the pertinent cross sections.
The statistical description of particle penetration has
been reviewed in a recent series of lectures [16]. Only a
few central results and input assumptions will be rnen-

tioned here.
For simplicity, consider first the center-of-mass motion

which is only indirectly affected by Coulomb explosion.
The distribution in the center-of-mass velocity V of scat-
tered molecules is given by the Bothe-Landau integral

Q=D/D (12)
F(V)= fd ke(2')'

is a unit vector parallel to the molecular axis. Equation
(11)can be cast into a more compact form,

Xexp —Nvp dtov k t
0

(19)

bv( ~ )=T(r).bv,

where T is a tensor with the elements

(13)
with the transport cross section

o v(k, t)= fdo(bV, t)(1 —e ' '
) . (20)

T; =Q5; +(P —Q)Q;Q for i,j =1,2, 3 . (14)

In the absence of Coulomb explosion, one has P =Q = 1,
and T reduces to the unit matrix. This identity transfor-

Here vo is the initial beam velocity, do (hV, t) the

differential cross section, and N the number density of
scattering centers. Nuodt do (b V, t) is the probability for
a collision event leading to an increment in center-of-
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mass velocity (EV,d(EV)) in the time interval (t, dt).
F(V) is normalized to 1 and reduces to a Dirac function
when there are no collisions. Equation (19}is valid under
the assumption of statistical independence of the indivi-
dual collision events. In addition, it is assumed that the
total change in beam velocity is so small that any varia-
tion of the cross section with speed can be neglected.
However, a dependence of the cross section on time has
been allowed for since the molecular geometry undergoes
changes due to ongoing Coulomb explosion.

Equation (19) is three dimensional: The Landau in-
tegral for the energy-loss spectrum emerges by integra-
tion over the lateral velocity, and vice versa for the Bothe
integral that governs the angular distribution.

Consider now the corresponding relations for the rela-
tive motion. In the absence of collisions, we have

v v~Q vy =0, (21)

where v is the relative velocity at the detector position,
v „Q the unperturbed Coulomb velocity, and v& any oth-
er deterministic velocity change expressed by Eq. (16).
The initial internal motion of the molecule may be in-
cluded in this term too: Even though that velocity is sta-
tistically distributed, the pertinent average is independent
of what happens during penetration and can hence be
carried out separately.

When collisions are allowed for, the left-hand side of
Eq. (21) will be distributed around zero and governed by
the transport cross section

o„(k,t)= fder(bv, t)(1—e '"' '"' ") (22)

Equation (22) differs from (20) by the appearance of the
matrix T in the exponent. This originates in the fact that
we are looking for a change in the observable velocity at
t = ~, [cf. Eq. (15)]. The matrix does not enter the argu-
ment of der since the cross section determines the statis-
tics of the velocity change at the time of the event.

With this, the distribution in relative velocity v reads

F(v)=, f d'I(: e
(2m')

The following approximation will prove very useful:

f 7

dr o(P(r), Q(r}, . . . )=r(r(P', Q', ) .
0

(28)

Here, 0. indicates any of the transport cross sections con-
sidered above, and P' and Q' are the quantities intro-
duced in and after Eq. (18), respectively. Equation (28) is
inspired by Eq. (18), which was exact for a constant force.
Equation (28) is very accurate in the limit of thin foils
where Q(t) varies only slowly with t and where P(t) is
unimportant in comparison with Q(t). The relation is
also valid in the limit of very thick foils when P and Q ap-
proach 1. Minor errors may be expected at intermediate
thicknesses.

As they stand, all distributions refer to a fixed initial
orientation Q of the penetrating molecule as well as a
given internuclear distance D.

IV. CROSS SECTIONS

Further evaluation requires a closer look at the trans-
port cross sections. For swift, dissociated molecules, we
may operate with individual scattering events between
the atoms of the molecule and the constituents of the tar-
get. For the soft interactions that are of interest in this
context, this implies that the outcome of a collision be-
tween one atom of the molecule and a target atom is in-
dependent of whether or not the other atom collides with
the same target atom. This, however, does not preclude
some geometric correlation through correlated impact
parameters. The latter must be allowed for, at least for
molecules well aligned with the beam (Fig. 2).

Differential cross sections are conveniently expressed
in terms of the velocity increments Av ~, Eve experienced
by the individual atoms. By addition and subtraction of
appropriate terms, Eq. (27) can be recast in the form

where

&(K k r) —fd(r(gV gv r )(1 e
—iK ()v —ik.T(t) hv) (27)

where

X exp Nv() f dt (—r„(k, t)
0

(23) Mq M~
(r(K, k, t)=(r„K+k T +os K —k T

vq =v~Q+vg (24)
The joint distribution of v and V could be found by the
same argument but will not be discussed explicitly. For
completeness, the distribution in laboratory velocity vz
of just one of the atoms in the molecule will be mentioned
since it refers to an experimentally important quantity
[1]. From

where

—bo „s(K,k, ~),

V0

(29)

M~
v~ =V+ v,M

one readily finds

f d31 ik [vA vo (M&™~)——

(2m )

M~
X exp Nvo f dt(r k, —k, t

0

(25)

(26)

P„

FIG. 2. Impact-parameter-correlated scattering: 2 is a target
atom, A and 8 are atoms making up a diatomic molecule mov-
ing with velocity vo, and p& and p& are impact parameters (Sec.
VII).
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o „(k)=f der(bv~)(1 —e ")

and correspondingly for o e(k ). Moreover,

ho„tl. (K., k, t)

(30)

—i [(M~ /M ).K —k- T j -hv~
X(1—e (31)

and

The transport cross sections o „(k) and crz(k) refer to
penetrating atomic ions and thus do not depend on time.
A~ ~~ accounts for the correlation between the scattering
events undergone by atoms A and B. A similar decom-
position proved useful in the theory of the penetration of
atomic projectiles through molecular targets [17,18].

With (31), Eqs. (20) and (22) reduce to

Mz M&
crv(k, t)=o.„k +crtt k hcr—„tt(k,O, t)

For ions of several MeV/u, the quantity I.„ is typically of
the order of 20. Even for low-Z2 targets, the ratio (36)
lies far enough below 1 to make energy-loss straggling a
small perturbation in comparison with multiple scatter-
ing. Note that the ratio (36} depends only weakly on the
beam velocity except through the logarithm.

At this point it may be appropriate to pay attention to
the initial rotational motion of the molecule compared to
the rotational motion induced by multiple scattering. In
a small-angle elastic-scattering event, the projectile
scattering angle g and the energy transferred to a target
atom 2 are related by hE =(M l /M2 )@ Eo, where
EO=M&uol/2 is the energy of a beam atom (2 or B).
With an angular resolution of 1 mrad, a beam energy of 1

MeV, and a mass ratio M, /M2=1, hE becomes 1 eV,
which is three orders of magnitude above typical rota-
tional energies. Hence, rotational zero-point motion is a
very minor disturbance for this set of parameters. It may
become more important in experiments with much higher
resolution at lower beam energies, but only under drasti-
cally different circumstances will it be dominating.

V. RELATIVE MOTION
cr, (k, t)=cr~(k T)+ott( —k T)—Ao'~ a( 0, kt) . (33)

( gE2) 4lrNuorZ, Zze
(b,u,') =

Mv MV2
1 0 1 0

(34)

where Bohr's value [16,19] has been inserted for the
straggling. The index 1 denotes a projectile atom A or B,
and 2 a target atom. The Z; are atomic numbers, and e

denotes the elementary charge.
The velocity component v perpendicular to the beam

may be estimated from multiple-scattering theory [16,19]:

The correlation term will initially be neglected. An esti-
mate of its significance will be given in Sec. VII.

For swift ions, momentum is exchanged between the
projectile atoms and the target via screened-Coulomb
scattering on the target nuclei and via electronic stop-
ping. Electronic stopping changes the velocity com-
ponent along the beam direction, while screened-
Coulomb scattering affects the lateral velocity com-
ponent. It is of interest to estimate the magnitudes of the
respective contributions to the momentum transfer. In
either case, it is the fluctuation that is of interest.

Consider first the component parallel to the beam. The
pertinent quantity in penetration theory is the energy-loss
straggling (b,E ). It is related to the fluctuation in the
beam velocity vb by

F(v)= f d k e ' exp[ Nuoro(k—T')],
(2m. )

(37)

with

o (k) =cr „(k)+oq( —k), (38)

insofar as impact-parameter correlations are negligible.
Equation (37) suggests introduction of a new integra-

tion variable [12],

K=k T' (39)

by means of which Eq. (37) reduces to

F(v)=, FO[(T') '
~ (v —v, )], (40)

The distribution in relative velocity v is determined by
Eqs. (23) and (33). In the following, the approximation
(28) will be applied. This sets an upper limit to the foil
thickness such that r/D 8 1 and implies that most of the
Coulomb explosion takes place outside the target. This is
the standard situation in Coulomb imaging [5,6]. Figure
1 shows that this is also the regime in which deviations
from "normal" dynamics are most pronounced.

Then, Eq. (23) reads

z 2 z
4~NV0~Z &Zze

M iv0
(35) wltll

Fo(v)= f1 k e' '"exp[ —Nuorcr(k)] .1

(2lr)

The inverse tensor has the form

1 0;0(T') '=, 5,, +

where a denotes the laboratory scattering angle and
L„=ln(T, „/T;„). Here, T,„and T;„are effective
bounds on the energy transfer in screened-Coulomb col-
lisions with the target nuclei.

From (34) and (35) one finds a ratio (42)

«.,')
(jul ZlL„

(36) as is easily verified by multiplication with (14}.
In view of Eq. (38), the distribution (41) has the sym-
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metry properties of a multiple-scattering distribution for
atomic projectiles. On the basis of the estimates present-
ed in the end of Sec. IV, we may ignore energy-loss strag-
gling and write Fp in the form

F()(v) =5(v„)fo(vp) . (43)

Here, the x axis has been chosen along the beam, and v
denotes the component of v perpendicular to the beam.
The function

f()(v )= f d a e ~exp[ —NUDGE(r(x)] (44)
(2n. )2

is a two-dimensional multiple-scattering distribution with
cylindrical symmetry, i.e., f()(v ):—fo(v ). Apart from a
scaling factor, this is the type of distribution analyzed in
Ref. [20], with v related to the scattering angle a by
v =vpa for small angles.P

Consider first the distribution in longitudinal velocity,
v„=(v Q), i.e., the relative motion parallel to the molec-
ular axis. Take into account only Coulomb explosion and
multiple scattering, i.e., set vd =0 in Eq. (24) since the ini-

tial rotation is negligible. Then, we have

F(vn)= f d v 5[Un —(v.Q)]F(v) (45)

and

F(vn)= f v dvplgl2

fo
1/2

v —v„(v„—v„)
QI2 pl2

U Un (Un V~)2 2 2 1/2

QI2 pl2

(48)

The square root may be introduced as the integration
variable. With this, Eq. (48) reduces to the appealing
form

F(vn)=,f,dv'f()(v') . (49)

where 0 is the angle between the molecular axis and the
beam direction. The bounds on the integral over v are
determined by the requirement that both square roots be
real.

Equation (47) demonstrates the obvious fact that a
molecule aligned with the beam ((9=0) cannot pick up a
longitudinal velocity component v& by multiple scatter-
ing. Equation (47) needs in general to be averaged over
cos0, i.e., over all orientations of the molecular axis. For
a uniform distribution, one finds

(T') ' ~ (v —v, )=,+,—,(Q v)Q —,Q .

(46)

After integration over the angular part of v by use of
spherical coordinates, one finds

F(vn)= 2 f v dv
2

27TV dV p V =1
p

(50)

Equation (49) is a scaling law relating the multiple-
scattering distribution including Coulomb explosion to a
distribution of uncharged pairs of atoms. Note that fo is
normalized according to

x f()

1/2
U Vn (Vn U~)

QI2 pl2

(v —vn)
X sin 8

Consider next the distribution in rotational energy,

(51)

(v„—v„)
cos 0

p&2

—1/2

(47)
I

In view of the occurrence of vn in (51), it is possible to
start the evaluation from Eq. (48). After introduction of
suitable variables and integration, one finds

0(v')
F(E„,)= dU

QI2~ (2E /g 2~ )(/2 (UI2 2E /IQI2M ))/2
(52)

Finally, the distribution in total internal energy,
E =Mov l2, can likewise be found starting from Eq. (48)
and reads

v„Q'
Vg

=
QI2 pl2 V 1 pi V2= pl (54)

fo(v')dv'
F(E)=

V P V V' 1/2

(53)
f'+f ' dv, (55)

with

For v &V„V' is bounded by v, &v'&v2, while for v) v„
the integral in (53) stands for

The limits on the integration over dv' are given as fol-
lows. Introduce parameters v„v, , and v2 by

V
2

V mill
g

2

QI2 pl2

' 1/2

(56)
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Note that the distribution (53) cannot be found just by
convolution of (52) with the energy distribution corre-
sponding to (49), since (49) and (52) have been averaged
separately over all orientations of the projectile molecule.

The task remains to scale the unperturbed molecular
distribution fo as defined by (44) and (38) into the corre-
sponding distributions for atomic ions. Note first that for
small-angle multiple scattering, elastic-scattenng cross
sections may be well approximated by power laws [19].
Then, the transport cross section for an atomic ion
reduces to [20]

In the transition from longitudinal velocity to longitudi-
nal energy, only first-order terms were kept, in accor-
dance with the step leading from Eq. (3) to Eq. (4).

The corresponding relation for the total internal ener-

gy reads

7T dc f„(a)da
gt i(c)dc=

2gi(gi2 p 2)1/2 f
[

2 (c )/g 2]1/2

(65)

with the bounds following from Eqs. (54) and (56),

2 2m
2Z& Z2e

cro(~) =C'a
Ea

2m (57)
(66)

cr(k) =o „(p~),
with

(58)

= 1+
a„

'2 ' 2m 1/2m
Z~ Mq aq

Z„Mq ag
(59)

From Eq. (58) one finds

1 v'
fo

(p )2
fA

p
(60)

where f„(a) is the tabulated multiple-scattering profile

for A atoms as a function of scattering angle a [20] and

vo the beam velocity.
From (52) and (60) one obtains the dimensionless ener-

gy variable

2E, ,

Mo(pvo )

vrot

pvo

'2

(61)

where a is the screening radius characterizing the interac-
tion potential, E the energy, and m an exponent charac-
terizing the screened Coulomb interaction (O~m ~1).
The e6'ective value of m varies slowly with target thick-
ness as well as the atomic numbers and masses of the col-
lision partners [19—21]. The parameter C' is independent
of the elements involved. Hence, except for very
heteronuclear molecules, the molecular cross section will
take on the form of a scaled atomic cross section,

a,=, (v'c+Qc„),

1a,„=,[c—c, ]'" .

VI. EXAMPLE: POWER-LAW SCATTERING

The familiar picture of a Gaussian multiple-scattering
profile is rarely applicable to molecule penetration. For
the thin targets utilized frequently, a better approxima-
tion is a simple analytic formula that originates in the
scattering on a powerlike interaction potential ~ 8 be-
tween colliding atoms [22], which can be written in the
form [20]

aof„(a)=
2~ (ax+ 2)3/2

(67)

with

Equations (62)—(65) make the scaling very explicit: a is
the scattering angle in the laboratory system and f„(a)
could be a measured multiple-scattering profile for an
atomic ion A at the beam velocity vo and the target
thickness vo~. However, theoretical multiple-scattering
profiles reported in Ref. [20] are known to agree well

with measured profiles in solid and gaseous target materi-
als. Their scaling properties in terms of mass, atomic
number, target thickness, and beam energy have been
tested thoroughly.

and hence the scaling relation

F„,(E)dE =g„,(c)dc

4mka„Z&Z2e N~
ao

M~vo
(68)

7T dc f~(a)
dc'

gi fv () (2 . / g i2 )1/2

and similarly for the longitudinal distribution (49),

(62)
and A, =0.327. More important than Eq. (68) in the
present context is the fact that F0=1.305m, &2, where o. , &2

is the half-angle (in radians) for multiple scattering of
atom A. Then, the longitudinal spectrum, Eq. (63), reads

F„„(E)dE=g„„(c)dc

da f„(a),
2P +c l.—.„~n~p'&.„)

(63)

g&,„,(c)

1
1 — 1+

4P'aoQc „
2P'ao+c„

(69)
where

c„=(v„/pvo) (64)
This relation is shown in Fig. 3. Note that (69) represents
a Dirac function for I"=0.
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which is characteristic of the single-scattering limit.
Finally, the spectrum (65) reads

dE,
glop(s )d s =

4 Ql(gz2 P&2)1/2

(71)

C:

C3)

0.1—

d t
(r2+ 1 )3/2[r2 (s e )/gi2a2]1/2

(72)

0
-3

I

-2

The rotational spectrum, Eq. (62), can be written in the
form

g„,(e)= f dg I+(s/'g' a0) cosh g2Q' ail

' —3/2

(70)

and has been integrated numerically. This relation has
been plotted in Fig. 4. At large e, (70) approaches the

E, -E,
2P'u, ~e„

FIG. 3. Distribution of internal energy of a molecule at the
detector. Component in the direction of the molecular axis
only, Eq. (69). The quantity E is a dimensionless energy vari-
able, s = 2E /(M0p u02 ), and s „reflects the unperturbed
Coulomb energy. The angle ao is, apart from a numerical fac-
tor, the half-width of the angular multiple-scattering profile of
one of the atoms, P a scaling factor converting an atomic into a
molecular multiple-scattering profile [cf. Eq. (59)], and u0 the
beam velocity. This curve was evaluated for the m =

—,
' scatter-

ing law [Eq. (67)].

with the bounds specified by (66). Here, the integrand de-
pends on the scaled energy variable characterizing the ro-
tational distribution (70), but that simple scaling property
is lost due to the bounds on the integral, Eq. (66), which
reflect the scaling of the longitudinal spectrum (69).
Therefore, this spectrum cannot be expressed by one
universal curve. An example is shown in Fig. 5.

VII. CORRELATED MULTIPLE SCATTERING

It has been demonstrated experimentally and theoreti-
cally that correlations in impact parameter affect the
multiple-scattering profiles of atomic ions penetrating
thin molecular targets [17,23]. Similar effects must be ob-
servable for molecular ions penetrating atomic targets.
Qualitative estimates may be based upon considering the
range of impact parameters that governs the multiple-
scattering distribution in a given experimental situation.
The thinner the target, the smaller the representative
scattering angles, and, hence, the larger the representa-
tive impact parameters. Impact-parameter correlations
are most pronounced for distant collisions because of the
slow variation of the momentum transfer with impact pa-
rameter in that limit [15-18].

A comprehensive estimate on the basis of Eqs. (23) and
(33) is a major task on its own. The estimate to be given
here will be based on the variance

Al
o

o
C7l

0.5
'l

0.4

0.3—

0.2—

I
'

I

ROTATIONAL

(~u') =Xuor f da(/3. v„~v, )'. (73)

g tot

0.10

/Q' at0 =100
P' = 0.5
Q' 15

0.05

In terms of vectorial impact parameters p„,ps (Fig. 1),

0.1—

0
0

I

3

(Q uo)

I I I

4 5

FICx. 4. Distribution of internal energy of a molecule at the
detector. Component perpendicular to the direction of the
molecular axis only, Eq. (70). Notation as in Fig. 3.

0.00
90 100

E, /Q' Ot.o

110

FIG. 5. Distribution of internal energy (longitudinal plus ro-
tational) of a molecule at the detector. Notations as in Fig. 3.
As explained in the text, this distribution is not a convolution of
two curves of the type shown in Figs. 3 and 4.
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provided that the individual scattering events undergone
by projectile atoms exhibit cylindrical symmetry.
Impact-parameter correlations can be expressed in terms
of a double-differential cross section [16—18],

d~=d Pad Pa~(p~ Pa (75)

where b is the projection of the molecular axis on the im-
pact plane perpendicular to the beam.

Consider the unique case of a homonuclear molecule
where, for perfect alignment parallel to the beam, the ex-
pression (73) must vanish. For power-law scattering,

Av„(p)= (76)

the velocity increments imparted to atoms A and 8 read

~vA PA PA )~vA(PA )~ ~vB (PB ~PB )~vB(PB )

(74)

the integrals containing b, vz and Eve in (73) need to be
truncated at some lower limit p* according to some max-
imum allowed scattering angle. The precise definition of
that angle is immaterial to what follows.

The cross term in Eq. (73) can be evaluated in Fourier
space by means of Eqs. (74) and (75). After carrying out
the angular integrations, one finds

f do hv„Eve =2' f a d~ Jo(tabb )

X f „pwdpw~va(pw)J&(~ps)
p

X f „pgdpskvg(pg )Ji(/cpg ),
p

(77)

where J0 and J& are Bessel functions.
After insertion of (77) into (73) and integration of the

square terms, one finds

2 2$ —2
m.Cq

(bv ) =Nvodr „2 1 —2(s —1)
( —1)p*' b f du u ' Jv(u) f „dt t' 'J, (t)

0 up /b

'2
(78)

This quantity depends on the orientation through

b =r(t) sin6),

(79)

(8O)

where r =r(t) is the internuclear distance at the time of
the scattering event.

In view of the slight inconsistency in the above trunca-
tion procedure, Eq. (79) becomes invalid for small values
of b &p*, i.e., for molecules aligned with the beam. In
that limit, Taylor expansion of Eqs. (73)—(75) in powers
of b is straightforward [15]. The leading term reads

(av ) =~ Nv, rC„s+1 2 b
0 A e2$

Both (79) and (81) imply that multiple scattering is
strongly correlated for 0 & 00, with

sinO&-—p */r(t }=p
* /D .

For high-energy particles, p* will typically be of the or-
der of the screening radius of the atomic interaction.
Then, only a small fraction of the impinging molecules
undergoes correlated multiple scattering. The estimate

The integrations can be carried out analytically if p is
set equal to zero within the square brackets. This is
justified within the range of convergence of the integrals,
which happens to be 1 &s &7/4. Even though this does
not include the case s =2 considered in Sec. VI, the result
is worth considering:

mCq
2

( Av ) =Nvoi
2 —2s

I (s)[I ( —', —s/2)]
X 1 — ~

b I (2 —s)[l ( —,'+s/2)]

does not give an indication of which portion of a
multiple-scattering profile is affected by impact-
parameter correlation. Evidently, such an estimate can-
not emerge from consideration of the variance alone.

VIII. DISCUSSION

In the absence of multiple scattering as well as zero-
point motion, the distribution of internal energy of a
Coulomb-exploded molecule has a sharp peak at the un-
perturbed Coulomb energy. Figures 3 and 4 demonstrate
the effect of collisions, experienced during transmission
through a thin foil, on the internal energy spectrum
recorded far away from the target foil. The two graphs
illustrate separately the effects of collisions leading to lon-
gitudinal and rotational energy transfer, respectively.
While the longitudinal spectrum is symmetric, the rota-
tional spectrum is nonvanishing only for positive energy
transfers and has a sharp edge at c.=O This difference
stems from the different way scattering events affect the
dominating Coulomb explosion: Angular momentum
transfer is equivalent with a velocity component perpen-
dicular to the axis. The energy associated with it will be
positive and proportional to the square of the velocity in-
crement. Conversely, a kick along the axis can either in-
crease or diminish the Coulomb energy, and the change
will be linear in the velocity increment.

The widths Ac, of the two distributions are related to
the width 60. of the angular distribution. For a purely
rotational spectrum, Eq. (62) shows that

b,e„,=Q' ha (83)

apart from a numerical factor =1, the accurate value of
which depends on the detailed shape of the distribution

fo. Similarly, for a purely longitudinal spectrum, Eq.
(63) shows that
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FIG. 8. Universal relation between dwell time ~ and
Coulomb-exploded distance r(~). The quantity v „ is the unper-
turbed Coulomb speed and D the initial internuclear distance.

FIG. 6. Related values of P' and Q' extracted from the data
underlying Fig. 1.

b,e„„~2P'aoQe„,

and the ratio is

~erat Q'2 Paovo

EC)0~ P 2u

(84)

(85)

Consider first the "normal" case P' =Q' = 1. For
homonuclear molecules, Eq. (59) leads to P=2 for m =

—,'.
Then, Eq. (85) reduces to the ratio between the multiple-
scattering width uoa0 in the absence of Coulomb explo-
sion and the unperturbed Coulomb speed u„. This is,
roughly, the ratio between the width and the radius of a
ring pattern, a quantity that is ((1 in experiments on
thin targets where a clear ring pattern is visible. Thus,
for P'= Q'= 1, longitudinal energy transfer dominates.

This behavior changes dramatically when realistic
values are inserted for P' and Q'. Figure 6 is a con-
venient plot to show values of P' and Q' that belong to-
gether, and Fig. 7 shows the factor 5=P'/Q', the re-
ciprocal of which enters Eq. (85), as a function of r/D.
In the range where r/D 5 2, the presence of this factor in
Eq. (85) increases the ratio of the half-widths by more
than an order of magnitude. Thus, a significant fraction
of the energy transferred to the molecule by scattering
events goes into purely rotational motion. According to
Fig. 4, that part of the spectrum is asymmetric. Unless
there is a significant anharmonic component in the vibra-

tional state of an impinging molecule, any skewness in
the internal-energy spectrum must be ascribed to rota-
tional energy transfer. The schematic example shown in
Fig. 5 (with P'=0. 5 and Q'=1.5) is on the conservative
side. Measured as well as simulated spectra reported in
Ref. [14] indeed show a high degree of skewness.

Figure 8 shows a universal curve for the conversion of
Coulomb-exploded distance into target thickness or dwell
time. From this, one may construct the dependence of 5
on v, which is shown in Fig. 9. This dependence is seen
to be very close to linear in the thickness range corre-
sponding to r /D 5 2. Since ao goes as the 1/2mth power
of r [20], one concludes that the ratio (85) goes as
~ 'T '. For m =0.5, it becomes independent of v..

For thin targets, m can become smaller than 0.5.
When that thickness range is accessible, the ratio (85) will

go through a minimum at some thickness and then in-
creases when the thickness decreases further. From the
results of Ref. [21], one concludes that the turning point
should come at m.(a„+as )¹or-1, the accurate number
depending on the interatomic potential. This thickness
range is reached in Coulomb imaging experiments with
target foils with thicknesses below 100 A.

While the rotational energy is an important ingredient
in the half width, a comparison of Eqs. (69) and (70)
shows that it must even become dominant in the far tails:
For m =

—,', the rotational spectrum goes as c. accord-

0.2

0.2

0.1
0.1

1.5

FIG. 7. The factor 5=P'/Q' that enters the ratio between
the scaled energy variables [Eq. (82}].

Y~T
D

FIG. 9. The factor 8=P'/Q' vs dwell time r
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ing to Eq. (71), while the longitudinal spectrum goes as
(e —e„)

The rotational motion of a Coulomb-exploded mole-
cule is not of much interest in itself, but it broadens the
energy profile and thus diminishes the resolution in
Coulomb imaging. It appears difficult to separate the ro-
tational motion experimentally since all rotational veloci-
ties have become very small by the time the molecule ar-
rives at the detector. Therefore, deconvolution on the
basis of calculated spectra, like those reported here or

those simulated [14], appears to be the most feasible pro-
cedure at this point.
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