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We present differential and total cross sections for charge transfer in proton-hydrogen collisions at 5,
2.8, and 1 MeV, derived from extensive nonperturbative coupled-channel calculations. We use expan-
sions of target and projectile bound and continuum states of angular momenta up to /=2 in terms of
Gaussian-type orbitals. Satisfactory convergence is reached. Good agreement is achieved with the ex-

perimental data at 5 MeV but not at 2.8 MeV.
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I. INTRODUCTION

The theory of electron capture has been discussed ex-
tensively in the past decade. There are two main lines of
approach to this problem. One of them is the coupled-
channel method [1,2], which is usually applied when the
velocity of the active electron is smaller than, or compa-
rable to, the projectile velocity. In this method, the
time-dependent Schrodinger equation for an electron sub-
ject to the potentials produced by nuclei moving along
classical trajectories is approximately solved by expand-
ing the total wave function in terms of a truncated set of
suitably chosen basis functions. Subsequently, the time-
dependent expansion coefficients are determined. This
nonperturbative procedure finds its limitation at higher
projectile velocities when the interaction matrix elements
and their integrands assume an increasingly oscillatory
behavior (caused by the translation factor [3]) which
renders their numerical evaluation difficult, if not impos-
sible. However, at lower energy, the coupled-channel ap-
proach is exceedingly successful [2] in predicting excita-
tion, ionization, and capture cross sections.

The second line of approach, which in a way is comple-
mentary, is based on some kind of perturbative treatment
and is applicable only when the projectile velocity consid-
erably exceeds the electron velocity. In particular, at
asymptotically high, yet nonrelativistic velocities, charge
transfer is dominated by a double-scattering mechanism
named after Thomas [4], who, as early as 1927, proposed
a classical description for electron capture. In the first
step of this process, the initially bound electron is scat-
tered off the projectile by 60°, thereby acquiring a speed
equal to the projectile velocity. In a second step, the elec-
tron is elastically rescattered off the target nucleus by
again 60°, so that it travels along with the projectile. The
momentum transfer leads to a small deflection of the pro-
jectile by the classical Thomas angle [4,5] Oy
=(V'3/2)m,/Mp, where m, and M are electron and
projectile mass, respectively. Recent classical-trajectory
Monte Carlo calculations [6] in which the classical equa-
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tions of motion are solved rigorously have confirmed the
existence of this mechanism.

In 1955, Drisko [7] established the connection of this
process with a quantum-mechanical description in a
second Born approximation. Since that time, the process
has been reconsidered in various degrees of approxima-
tions [8-12,14,15] and, above all, has been identified ex-
perimentally as a peak in the differential cross section for
electron capture [16,17]. This “Thomas peak” indeed
occurs at the angle O, (in the laboratory frame) in ap-
proximate agreement with theoretical predictions.

Theoretical treatments so far have remained within the
framework of second-order perturbation theory, some-
times including higher-order corrections in an approxi-
mate fashion. It is implied in the second-order Born ap-
proximation [8,9,15] or boundary-corrected Born approx-
imations [10,11,14] that the intermediate state in which
the electron propagates between the two collisions is
represented by a plane wave or phase-distorted plane
waves, respectively. This has the advantage that there is
only a single continuum belonging both to the target and
to the projectile. However, such a treatment disregards
the Coulomb distortion of the electron wave function due
to the interaction with each of the nuclei in the reaction
zone, which, in principle, might wash out the Thomas
peak predicted by perturbation theory. A variety of
higher-order theories that take account of the Coulomb
distortion of intermediate states have been proposed
[12,13], but they are obliged to employ further approxi-
mations for evaluating the transition-matrix elements.
The accuracy of these secondary approximations is
difficult to assess quantitatively. It is therefore desirable
to investigate the effect of the Coulomb interactions in a
rigorous manner.

In a recent Letter [18], we have presented the first non-
perturbative quantum-mechanical calculations of the
Thomas mechanism as an application of a general
method to treat energetic ion-atom collisions. This
method adopts the coupled-channel formalism; however,
it avoids the numerical difficulties mentioned above by
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using Gaussian-type orbitals (GTO), which allow for an
analytical evaluation of the single-center as well as of the
two-center matrix elements. While Gaussian basis expan-
sions have been successfully used for a very long time in
quantum chemistry [19] and recently for electron-
molecule scattering [20] and positron formation [21], the
application to ion-atom collisions has hardly been tried.
The reason is that the extension to traveling orbitals
needed for charge transfer entails the continuation of the
standard methods to complex variables. Formulas for
the matrix elements have been given by Errea, Mendez,
and Riera [22], but only one practical application [23] is
known to us. In this work, the interest is mainly focused
on two-electron effects, namely, in He?t +He and
He' +He™ collisions for energies up to 100 keV/u. Cor-
respondingly, the number of GTO’s per electron had to
be kept rather small.

In Ref. [18] we have considered p +H collisions at 5
MeV. Adopting the impact-parameter treatment with
classical rectilinear trajectories for the projectile motion,
we have performed two-center, coupled-channel calcula-
tions with a GTO basis, confining ourselves to s states. In
this paper we investigate in more detail the dependence
on the basis states and extend our calculations to larger
basis sets including p and d states. In addition to p +H
collisions at 5 MeV, we also consider bombarding ener-
gies of 2.8 and 1 MeV.

In Sec. IT we give a brief outline of the method and in
Sec. III we present and discuss the results and compare
them with other theoretical and with experimental
differential cross sections. In Sec. IV we add some con-
cluding remarks. Atomic units are used unless explicitly
stated otherwise.

II. METHOD

We consider a process in which the target nucleus is lo-
cated at a fixed origin and the projectile is moving along a
classical trajectory R=b+v¢, where b is the impact pa-
rameter and v a constant velocity pointing in the positive
z direction. We wish to solve the time-dependent
Schrodinger equation,

H—i2

3 Y(r,1)=0 (1)

by introducing an expansion

NT N
V(r,)= 3 a(tWlrp,0)+ 3 a()¢f(rp,1) )

i=1 i=Np+1

in terms of the target functions

—ieT,
Wl 00=¢l(rp)e ' 3)
and the projectile functions

—iEPt iy
Et VT —it1/2w%

Yrrp, t)=@f(1p)e 4)

Here, ry,rp are the electron coordinates measured from

the target and projectile nuclei, respectively, and ¢/, ¢’

are the eigenfunctions of the target and projectile Hamil-
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tonians with eigenvalues E; and EF. In Eq. (4), the last
two exponentials are the translation factors for the origin
chosen. The Schrodinger equation (1) is equivalent to a
set of coupled equations which read in matrix form

iNa=Va , (5)

where N is the overlap matrix, a the vector of expansion
coefficients, a its time derivative, and ¥V the interaction
matrix with the elements

Nik=<¢i|¢k) )
V= v, |[H—id/3t1, ) .

(6)

The labels may belong to the same center or to different
centers T,P. The atomic eigenfunctions of each center
are now expanded in Gaussian basis functions as

2
@i (1= c"e YRy, (7

where the solid harmonics r'Y/"(T) are written in Carte-
sian coordinates. Within this representation, the single-
center matrix elements of each atomic Hamiltonian are
calculated analytically and, subsequently, the atomic
eigenfunctions and eigenenergies are obtained by numeri-
cal diagonalization.

Before performing the latter task, a choice has to be
made for the Gaussian width parameters a,. As has been
discussed by Gramlich, Grun, and Scheid [23], it is
economical for computations to choose the width param-
eters in a geometrical progression, that is, a, ;=pa,.
However, if one wishes to achieve a good representation
of continuum states, one may adopt a factor of p which
slowly varies with v in such a way that large widths
(small «,) are emphasized. For typical calculations, the
range parameter 7, =(a,)” !/? varies between 7, =0.005
and 7, =20 a.u.

Since all basis functions are square integrable, so are
the eigenstates. By diagonalizing the atomic Hamiltoni-
an for each center, we obtain bound states as well as a
large number of states with positive eigenvalues. These
states are interpreted as pseudostates which approximate
the oscillating continuum wave functions up to a max-
imum range 7.,, and then fall off. The positive-energy
states hence represent wave packets produced by a super-
position of adjacent continuum states in a certain energy
interval. Among the eigenstates obtained from the ma-
trix diagonalization, we usually keep only the lowest
bound states. The eigenvalues for the two lowest princi-
pal shells are calculated with a precision of 10~ '* or
better, while the remaining bound-state eigenenergies
have at least an accuracy of 10~ 2. We found that this
level of precision is important, because even a small con-
tamination with continuum states gives rise to spurious
contributions to bound-state capture. In addition to the
high-lying bound states, we also discard those continuum
states whose energies are too high above the resonant en-
ergy E,, =7mv2 and, consequently, do not contribute to
charge transfer. The numbers Ny and Np (with
N7+ Np=N) of eigenstates included in the expansion (2)
is much smaller than the number of Gaussian basis states
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at each center.

When a basis of atomic eigenstates 17 has been
specified, the two-center matrix elements within the set of
Eq. (6) are calculated for each value of b and of vt. At
this point, the translation factor exp(iv-r;) enters in the
determination of the matrix elements, and an analytical
evaluation in terms of elementary functions is no longer
possible. As has been pointed out by Errea, Mendez, and
Riera [22], it is necessary to introduce a complex auxili-
ary function,

F,(z)= lg2mg s gg =1, —m =172 (m++4,z), (8
o 2 4 2

where z is a complex variable, m a non-negative integer,
and y(m +1,z) is the incomplete y function [24]. This
function has to be evaluated with a very high accuracy.
All matrix elements are expressed as multiple sums over
either elementary expressions or expressions involving
the function F, (z). The occurrence of multiple summa-
tions again requires a high numerical precision.

The matrix elements oscillate very rapidly as a func-
tion of z=vt. We therefore use 500 points (and for
checks of convergence, 1000 points) in the half-space
vt <0. By symmetry and interpolation, all additional
values can be obtained. The number of basic points is
much larger than needed for lower energies.

The coupled equations (5) are solved for the initial con-
dition that at t— — o, the occupation amplitude for the
target ground state is ap;, =1, while all other amplitudes
are zero. Once we are in possession of the occupation
amplitudes a,(b,t) for all states k, we can calculate the
differential cross section in the center-of-mass system for
capture from an initial state with magnetic quantum
number m into a final projectile state k with magnetic
quantum number m’ as [25]

dUk .

«© iv 2
e~ ‘i,uvfg b2+ g, (byt— 0)J |, _i(nb)db | -

9)

Here uy=M Mp/(M;+Mp) is the reduced mass of tar-
get and projectile; v=Z;Zp /v; n=2uv sin(6/2); where 0
is the scattering angle in the center-of-mass frame; and
J|m—m denotes the Bessel function of the first kind. In
the particular case of p +H scattering with M;=Mp, the
cross section in the laboratory system is

UL(OL)=4COSQL0(9=29L) .

In order to examine the numerical procedure,
numerous checks have been applied: (a) We compared
the single-center and two-center matrix elements for ls,
2s, 2p, 3s, 3p, and 3d states with those calculated by one-
dimensional integration according to the standard pro-
cedure, (see e.g., [26]). The results agree with each other
for all digits valid for the computer program of Ref. [26].
(b) We compared the orientation parameters and dipole
moments for He'(n =2) states in He’* +H collisions
with those of Ref. [27]. The agreement includes phases
and is almost perfect. (c) We also compared with the re-
sults of Ref. [28]. (d) Finally, we checked the validity of
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unitarity, detailed balancing, and symmetry with respect
to the interchange between projectile and target states.

II1. RESULTS AND DISCUSSION

The Thomas mechanism is usually visualized within
second-order perturbation theory which, in turn, carries
a close connection to the original classical picture [4].
Accordingly, the electron propagates freely in the inter-
mediate state between the two collisions and, as a free
continuum state, belongs equally to target and projectile.
In contrast to this, in a two-center, coupled-channel
treatment, one distinguishes two portions of the continu-
um: one centered around the target, the other centered
around the projectile. Both of these continua are
represented by a finite number of discretized states. Be-
cause of the limitation in their number, an overcomplete-
ness cannot occur but, to some extent, the straightfor-
ward interpretability gets lost in a three-body Coulomb
problem.

In Ref. [18] we have shown that in two-step transfer
processes, we may identify two reaction sequences which
carry most of the weight in the Thomas mechanism. In
sequence A, the target electron is excited into a high-
lying state of the target Coulomb continuum with energy
E, ——‘%mevz corresponding to a free electron traveling
with the same speed v as the projectile. From there, the
electron is resonantly transferred into the projectile
ground state. In the alternative sequence B, the electron
is first transferred resonantly into a high-lying state (with
energy E,,) of the projectile continuum and subsequently
deexcited into the projectile ground state.

In our partial-wave treatment, the resonance occurs in
energy and does not permit us to draw conclusions re-
garding the momentum transfer. Nevertheless, one may
expect that in the target resonant state of sequence A4,
longitudinal momentum components prevail which point
in the direction of the projectile motion, while in the pro-
jectile resonant state of sequence B, longitudinal momen-
tum components dominate which point opposite to the
direction of motion.

In Ref. [18] we have examined the Thomas mechanism
for 5-MeV p+H collisions in coupled-channel calcula-
tions with 25 / =0 eigenstates built from 40 GTO’s at
each target and projectile. In the present paper, we con-
siderably increase the number of s states, also include p
and d states, and furthermore extend calculations to 2.8-
and 1-MeV projectile energy.

A. Collisions of 5-MeV protons with hydrogen

We have chosen the energy of S MeV for the most de-
tailed calculations because experimental data and various
theoretical calculations are available. The resonant ener-
gy is E,, =%mev2= 100.8 a.u. The mesh of Gaussian
scale parameters @; in our calculations is chosen so that
one of the eigenvalues is close to E,,. Similarly as in the
earlier calculations [18], we find that this state carries
considerable weight in the target as well as in the projec-
tile. In Fig. 1 we show the weighted impact-parameter-
dependent transfer probability
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FIG. 1. Weighted impact-parameter dependence of the

transfer probability for p +H collisions at 5 MeV described by a
basis set (7T34s /P34s). Solid line, capture into the 1s, 2s, and 3s
bound states; dotted line, capture into the 1s state only.

P(b)b=|a(b,t — )%

for a basis set, denoted by (T34s /P34s), consisting of 34
s states at each of target and projectile. This set of eigen-
states is constructed from 85 GTO’s and comprises ls, 2s,
and 3s bound states and 31 continuum states, the highest
of which has an energy of 131 a.u. The scale parameters
of the GTO basis vary in a modified geometric progres-
sion so that the corresponding radii 7 range from
Fnin=1.1X107* to Fmax —20 a.u. The dotted curve in
the figure denotes 1s-1s transitions, while the solid curve
indicates capture into all bound states. The calculations
are converged within the subspace of s states. Neither
the addition of further s states nor the choice of a
different set of GTO’s changes the results.

Figure 2 shows the differential cross section obtained

do/dQ (cm?/sr)

2 |
0.0 0.1

0.2 0.3 0.4 0.5 0.6 0.7
0, (mrad)

FIG. 2. Differential cross section for electron capture in
p+H collisions at 5 MeV using the basis set (734s /P34s) of
Fig. 1. Solid line, capture into the 1s, 2s, and 3s bound states;
dotted line, capture into the ls state only; dashed line, only 1s,
2s, and 3s bound states are included in the expansion (2) for the
coupled-channel calculations.
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from Eq. (9) for the basis set of Fig. 1. For comparison,
we also include the experimental data of Vogt et al. [17]
and, as a dashed line, the coupled-channel calculations in
which only 1s, 25, and 3s bound states at target and pro-
jectile are included. We see that the coupled-channel cal-
culations without continuum states completely fail to
yield a structure resembling a Thomas peak. Further-
more, the cross section at forward angles, i.e., the total
cross section, is largely overestimated. These results are
not unexpected. It has been shown by Toshima, Ishihara,
and Eichler [29] that the results of two-state, coupled-
channel calculations tend to those of a first-order
distorted-wave approximation (denoted by DWBA1) as
the energy increases, and both converge to those of the
Oppenheimer-Brinkmann-Kramers (OBK) approxima-
tion. Since the addition of further bound states does not
change the situation, it was concluded [29] that solutions
of close-coupling calculations always ‘“‘converge to the
OBK value unless the basis includes continuum states
through which the Thomas double-scattering process
may occur.” Indeed, with the inclusion of continuum
states, the dotted and the solid curves for the 1s-1s and
the summed differential cross sections show a clear Tho-
mas peak structure, although the height of the peak is
somewhat underestimated compared to the experimental
data. When comparing with the experimental data, we
have to take into consideration the finite angular resolu-
tion of the detector. The theoretical results actually
should be folded with the experimental resolution, as we
have done in Ref. [18]. In the present paper, we only
present unfolded theoretical results in order to preserve
the full theoretical information.

At first sight, it may appear surprising that the Tho-
mas mechanism, which is classically associated with
severe geometrical restrictions, should be reproduced by
target and projectile s states alone. However, since the
classical electron-projectile impact parameter b, is relat-
ed to the electron scattering angle 6 by b,
=(Zp/v?)cot(8/2), the classical electron-projectile an-
gular momentum may be estimated as

I=vb,=(Zp/v)cot(0/2)=V3Z, /v (10)

for the Thomas mechanism. In the present case, with
Zp=1 and v=14.1, we have a classical angular momen-
tum of /=0.12. The same argument holds for the
electron-target interaction. This suggests that the lowest
partial waves at target and projectile should be sufficient
to represent the effect.

In the calculations leading to Fig. 3, we have augment-
ed the basis set by 57 p states (a number which includes
the magnetic substates) at the target, expanded in terms
of 75 GTO’s. We hence have a basis of 91 eigenstates at
the target and 34 at the projectile, in our notation
(T'34s,57p /P34s). At the target, 9 bound states are in-
cluded, namely, 1s, 2s, 2p, 3s, and 3p, while at the projec-
tile we have bound 1s, 2s and 3s states. As resonant
states with energy close to E,, =100.8 a.u., we have s and
D states at the target and s states at the projectile. If con-
tinuum p states are included at both centers, difficulties
arise to reach a satisfactory convergence. These prob-
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FIG. 3. Differential cross section for electron capture in
p +H collisions at 5 MeV using the basis set (T34s,57p /P34s).
Solid line, capture into the 1s, 2s, and 3s bound states; dotted
line, capture into the 1s state only.

lems are now being investigated. With only one p contin-
uum, however, we find that our calculations are essential-
ly converged. Figure 3 shows that the inclusion of p
states does not drastically change the picture in compar-
ison to Fig. 2. The height of the Thomas peak is in-
creased, while the forward cross section is decreased,
both effects bringing the theoretical results into closer
agreement with the experimental data.

In the calculation for Fig. 4 , we have augmented the
basis set of Fig. 3 by 30 d states, so that we have the set
(T'34s,57p,30d /P34s). The s, p, and d states are expand-
ed on 85, 75, and 66 GTO’s, respectively. The target
bound states now include all hydrogenic bound states up

T T T T T T T
10'!8 | i
R
e
i
[
= 20
) 10
2
©
©
-21
10
10-22 1 i 1 | ! 1 1
0.0 0.1 0.2 0.3 0.4 0.5 06 0.7
0, (mrad)

FIG. 4. Differential cross section for electron capture in
p+H collisions at 5 MeV using the basis set
(T'34s,57p,30d /P34s). Solid line, capture into the 1s, 25, and 3s
bound states; dotted line, capture into the s state only; dashed
line; second-order Born approximation calculations [11]. The
experimental data are from Vogt et al. [17].
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to the n =3 shell, while the highest continuum state
reaches to the energy of 135 a.u. The accuracy of the cal-
culated eigenenergies for n =3 is 10~ !* and better by one
or two orders of magnitude for the lower shells. As has
been pointed out before, this accuracy is important in or-
der to avoid contamination with continuum states. It is
seen that the differential cross sections do not change too
much compared to Fig. 3. The dip in the cross section
has become shallower but, on the whole, the comparison
reveals that a certain convergence has been reached. In
Fig. 4 we also show results from B2BO0 calculations
(dashed curve) [11,14] in which Coulomb boundary con-
ditions are satisfied. It should be pointed out that the cal-
culated Thomas peak occurs at an angle slightly below
the classical Thomas angle ©,=0.47 mrad in the labo-
ratory system. This small shift is mainly due to the fact
that continuum states are attached to both centers. If
only one-center continuum states are used, the peak posi-
tion comes closer to the classical Thomas angle O, [18].
The superposition onto a strongly sloping first-order
curve is another cause of the shift.

It is instructive for coupled-channel calculations to fol-
low the time development of the system for a given im-
pact parameter by plotting P, (b,1)=a,(b,t)|? as a func-
tion of z=wt. For our present purpose, we have chosen
b =0.28 a.u., which is close to the maximum of P(b), (see
Fig. 1). In order to limit the number of states, we have
selected the basis set (734s /P34s) of Figs. 1 and 2. Fig-
ure 5 displays the occupation probability of the target
states (upper diagram) and of the projectile states (lower
diagram). When interpreting the curves, it should be
kept in mind that the basis states belonging to different

10’ = — - .
(a)
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z=vt (a.u.)

FIG. 5. Time evolution of the occupation probabilities of (a)
target states and (b) projectile states in p +H collisions at 5
MeV. Solid curves, bound states; dashed curves, resonant con-
tinuum states; dotted curves, other continuum states.
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centers are not strictly orthogonal to each other. Never-
theless, the probability interpretation holds to a good ap-
proximation. For example, the overlap between the reso-
nant target state and a projectile bound state is a few
1072 (both for the real and the imaginary part) at vt =1
and a few 10~ at vz =5.

In Fig. 5 bound states, both at target and at projectile,
are indicated by solid lines, the resonant continuum state
by a dashed line, and all other continuum states by dotted
lines. Looking at the excited target states first, we ob-
serve that the low-lying (2s and 3s) target states are most
strongly populated, followed by the low-lying continuum
states. The accumulation of lines for the low continuum
is related to the fact that the density of continuum states
is much higher for the low-lying states than for the high-
lying states. Thus, for low positive energies, each line
represents a small piece of the continuum, while at high
energies, each state represents a larger energy interval.
In any case, it is seen that target ionization mainly occurs
into the low-energy portion of the continuum.

In the projectile frame, the resonant state (i.e., the en-
ergy interval it represents) has by far the highest occupa-
tion probability. Since, by momentum overlap, the
backward-directed momentum components within the
projectile resonant state are expected to carry a large
weight, the associated continuum electrons are interpret-
ed as resulting from target ionization. In contrast, the
low-lying projectile continuum states give rise to “elec-
tron capture into the continuum.” The projectile bound
states are populated by couplings among bound states (as
may be verified by a calculation with bound states only)
and by the strong coupling with the target resonant state
whose contribution reduces the occupation probability by
a factor of about 2. This is in accordance with the results
of Fig. 2. Qualitatively, we have predominantly excitation
of low-lying states in the target and capture into high-
lying states of the projectile.

The total transfer cross sections in 5-MeV p +H col-
lisions for the set (7°34s,57p,30d /P34s) corresponding to
Fig. 4 are

o(15)=2.23X10"% cm? ,
0(25)=3.14X10"% cm? ,

and
o(35)=8.66X10"2% cm? .

The sum is
O theor =2.63 X 10726 cm?

as compared to the experimental value [30] of
Oep=3.1X10726 cm?

for capture into all bound states.

B. Collisions of 2.8-MeV protons with hydrogen

We have also performed calculations for the collision
energy of 2.8 MeV for which experimental [17] and
theoretical [15] data are available. The resonant energy
is E,, =56.45 a.u. Because of the lower energy compared
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to the 5-MeV case, we expect an improved convergence
of the expansion. Indeed, we reach a satisfactory conver-
gence for the data set (7°33s,36p,25d /P33s), where the s
states are constructed from 85 GTO’s, the p states from
75 GTO’s, and the d states from 74 GTO’s with
Foin = 1.2X 107 (for s states) and 7, =20 a.u. This set
includes 1s, 2s, 2p, 3s, and 3p bound states at the target
and ls, 2s, and 3s bound states at the projectile, while the
highest continuum state has an energy of 96 a.u.

In Fig. 6 we present the calculated differential cross
section. The solid line again denotes capture into the
final 1s, 2s, and 3s states, while the dotted line describes
capture into the final 1s state only. For comparison, we
include the results from second Born calculations (dashed
line) by Toshima and Igarashi [15], which are ohtained by
multiplying the calculated 1s-1s cross section with a fac-
tor of 1.2 in order to account for contributions from
higher projectile states. The experimental data are from
Vogt et al. [17]. It is seen that the coupled-channel cal-
culations yield a Thomas peak which is less pronounced
than at 5-MeV proton energy. In the second Born calcu-
lation [15], the Thomas peak is still visible, while the pos-
sible peak structure of the experimental results depends
on a single data point at 0.38 mrad. If this point is disre-
garded, one observes at most a shoulder in the cross-
section curve. In any case, the theoretical curves of the
present coupled-channel calculation and the second-order
Born approximation seem to disagree consistently with
the experimental results [17]. On the other hand, the
strong potential Born (SPB) and the continuum-
distorted-wave (CDW) cross sections, both of which are

T T T T T T T
10"
™ -18
$ 10
£
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G .
3 1019
©
©
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10-21 L ! 1 1 1 1 L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

6, (mrad)

FIG. 6. Differential cross section for electron capture in
ptH collisions at 2.8 MeV using the basis set
(T33s,36p,25d /P33s). Solid line, capture into the 1s, 2s, and 3s
bound states; dotted line, capture into the s state only; dashed
line, the second-order Born approximation calculations [15];
short-dashed line, the strong potential Born approximation [13]
(folded with the experimental resolution) taken from [17]; dot-
dashed line, the continuum-distorted-wave approximation [12]
(folded with the experimental resolution) taken from [17]. The
experimental data are from Vogt et al. [17)].



2570

folded with the experimental resolution, yield a cross sec-
tion similar to the experimental one. Regarding the
coupled-channel calculations, we should mention that
one gets almost identical results if the d states are omit-
ted.

The total transfer cross sections in 2.8-MeV p +H col-
lisions for the set (733s,36p,25d /P33s) corresponding to
Fig. 6 are

o(15)=5.50X10"% cm?,

0(25)=7.24X10"% cm? ,
and

0(35)=1.86X10"2 cm? .

Experimental total transfer cross sections are not avail-
able at this energy.

C. Collisions of 1-MeV protons with hydrogen

We finally consider the case of 1-MeV collision energy,
corresponding to E,, =20.2 a.u. In Fig. 7, we present the
differential  cross  section for the data  set
(T24s,24p,20d /P24s) with 70 GTO’s for s states, 64
GTO’s for p states, and 60 GTO’s for d states, and
Fonin =9-8 X 107 a.u. (for s states) and ¥,,,, =20 a.u. This
set includes s, 2s, 2p, 3s, 3p, and 3d bound states at the
target and 1s, 25, and 3s states at the projectile, while the
highest continuum state has an energy of 28 a.u. At this
energy, the coupled-channel calculations yield a shoulder
in the differential cross section (the solid and dotted lines
stand for total and 1s capture, respectively), while the
second Born results [15] (dashed line) show a much weak-
er shoulder. Experimental data are not available at this
energy.

The total transfer cross sections in 1-MeV p+H col-
lisions for the set (724s,24p,20d /P24s) corresponding to

10
10 s
—_ -16
2 10
&
<
% 10—)7
©
-
0™k
i
[
10-19 | Il L 1

1
0.2 0.3 0.4 0.5 0.6 0.7
0, (mrad)

! )
0.0 0.1

FIG. 7. Differential cross section for electron capture in
p+H collisions at 1 MeV using the basis set
(T24s,24p,20d /P24s). Solid line, capture into the 1s, 2s, and 3s
bound states; dotted line, capture into the 1s state only; dashed
line, second-order Born approximation calculations [15].
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Fig. 7 are
o(15)=1.92X10"%2 cm?,
0(25)=2.42X10"3 cm? ,

and

0(35)=7.75X10"% cm? .

IV. CONCLUDING REMARKS

We have presented differential and total cross sections
derived from extensive and systematic coupled-channel
calculations for electron transfer in proton-hydrogen col-
lisions at 5, 2.8, and 1 MeV. It has been our aim to inves-
tigate the Thomas mechanism in an approach that takes
all Coulomb interactions among the three charges fully
into account. In doing so, we have demonstrated in de-
tail that the nonperturbative coupled-channel method
can be efficiently extended to high-lying continuum states
by expanding atomic eigenstates (in our case up to angu-
lar momenta / =2) in terms of a sufficiently large basis set
of Gaussian-type orbitals. Although these orbitals are lo-
calized in space, we are able to accurately represent the
oscillatory behavior of the continuum wave functions as
far away from the atomic centers as 20 K-shell radii.

The study of the time development of occupation prob-
abilities during the collision shows that among the target
states the bound and the low-lying continuum states are
most strongly excited, while at the projectile, it is the res-
onant (high-lying) continuum state that is dominantly
populated. Nevertheless, via coupling among states, both
the target and the projectile resonant continuum states
contribute equally to the charge transfer. In fact, we
have explicitly shown that the inclusion of continuum
states in the basis set is crucial for producing a Thomas
peak. The role of the resonant projectile state is in ac-
cord with the usual classical and second-order Born ap-
proximation picture of the Thomas mechanism. The
classical picture with its severe geometrical restrictions is
also consistent with the fact that already spherical s
states describe most of the effect, with p and d states giv-
ing rise only to modifications. This is so because the rela-
tive classical angular momenta between electron and pro-
jectile or target are very small for the specific kinematics
of the Thomas double-scattering mechanism. The results
of a large number of calculations show satisfactory con-
vergence and yield good agreement with experimental
data at S MeV but not at 2.8 MeV.

Although there are some features that need further in-
vestigation and extensions have to be made to asym-
metric collision systems, we believe that the method
presented here is suitable for providing further insight
into the dynamics of the three-body Coulomb problem
even at high collision energies.
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