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%e calculate double-differential cross sections for the impact ionization of He targets by 1.5-MeV H
and 28.5-MeV F + ions using the distorted-wave strong-potential Born approximation. The theory is

compared with the experimental electron spectrum. Both theory and experiment show the low-energy

electron distribution, the electron capture to the continuum cusp, and the binary-encounter peak.

PACS number(s): 34.50.Fa

I. Im RODUCTIOX

The energy and angular distribution of electrons eject-
ed from atoms by ion impact [doubly differential cross
sections (DDCS)] have long been used to probe ionization
mechanism in ion-atom collisions [1,2]. Some of these
mechanisms, for example, autoionization, explicitly in-
volve multielectron interactions but important single-
electron mechanisms have also emerged. The simplest
mechanism is the direct ejection of an atomic electron by
a binary projectile-electron collision. This mechanism is
characterized by a vanishing value for the momentum
and energy of the recoiling target ion in the final state.
When the recoil momentum vanishes, the DDCS for the
ejected electron shows a peak, called the binary-
encounter (BE) peak, at a specific electron momentum
and energy. Because the electron is initially bound, this
peak is broadened by the Compton profile of the initial
state, but the details of target dynamics play no essential
role. This BE peak is readily identified and compared
with standard direction ionization theory.

A second mechanism, direct ejection of slow electrons,
is also well studied [3]. Here the field of the fast charged
particle at impact parameters outside of the range of the
initial ls wave function perturbs the atom so that in the
final state the atom is excited or ionized. Here the low-
energy electron spectrum is seen as a continuation of ex-
citation across the ionization threshold. For initial 1s
states the ejected electron spectrum in the low-energy re-
gion decreases monotonically from a maximum value at
zero energy. The corresponding zero-energy peak is well
understood in terms of the first Born theory for direct
ionization [4] (DI).

The two peaks just mentioned have long been under-
stood for fast ions of low charge. In contrast, a third
peak due to the capture of electrons to continuum state
(ECC) mechanisms was identified much later [5—7]. This
mechanism is characterized by a cusp at an electron ve-
locity which matches the ion velocity in the final state.
Because the cusp represents a rearrangement process, the
theory of this effect requires a higher-order approxima-
tion for the amplitude. Initial computations employing
the lowest-order Brinkman-Kramers amplitude are quan-
titatively inaccurate [7] and a higher-order theory must

be used [8].
The three mechanisms, binary encounter, direct ejec-

tion of slow electrons, and continuum electron capture,
are known experimentally even for collisions involving
highly charged ions. In this case, as efnphasized by
Briggs [9] in connection with electron capture, it is natu-
ral to employ an expansion in powers of the smaller
charge of target ZT rather than the charge of the projec-
tile Zz as done in standard first Born theories of ioniza-
tion. Then one obtains quite naturally the distorted-wave
strong-potential Born theory (DSPB) of ionization by
highly charged ions. With the formulation given by Ma-
cek [10] expansions in powers of charge are free of diver-
gences noted by Dewangan and Eichler [11]. Our objec-
tive in this paper is to apply the DSPB theory of
Taulbjerg, Barrachina, and Macek [12] to the ionization
of He by 1.5 MeV/amu H+ and F9+ impact, , where mea-
surements are available [13].

It is clear that the DSPB theory includes the ECC
cusp, but it is less clear that the binary-encounter peak
and the slow electrons are well described in this theory.
For that reason we compute the DDCS for electrons
ejected at 0' and electron energies which include the slow
electrons, cusp electrons, and binary-encounter electrons.
The notation is described in Sec. II and the general
theory in Sec. III. Results are discussed in Sec. IV and
Sec. V presents some concluding remarks.

For more asymmetric collision systems Jakubassa-
Amundsen [14]uses the semiclassical impulse approxima-
tion (SCIA) and a peaking approximation to evaluate the
SCIA matrix element. This theory is similar to the
present DSPB theory. It uses a more restrictive peaking
approximation than is used in our DSPB calculations, but
less restrictive than used in the peaked-DSPB calcula-
tions.

Three other higher-order theories, namely, the exact
impulse approximation (IA) of Miraglia and Macek [15],
the continuum-distorted-wave (CDW-CDW) calculations
of Belkic [16], and the continuum-distorted-
wave —eikonal-initial-state (CDW-EIS) theory of Fain-
stein, Ponce, and Rivarola [17], have been used to com-
pute ejected electron spectra for highly charged ions. We
show that these theories are all very similar and give ion-
ization amplitudes which are quite similar in form.
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There are important differences, however, in that the
CDW-CDW amplitude diverges while the CDW-EIS am-
plitude lacks the Thomas peak. The IA amplitude of
Miraglia and Macek [15] is convergent everywhere and
includes the Thomas peak. This theory differs from the
present theory in that our DSPB theory is much less
computer intensive. In addition, a peaked form of the
DSPB amplitude (PDSPB} is available which is readily
compared with other theories. The CDW-CDW theory
is described in Appendix C for comparison with the
DSPB amplitude, but because it is divergent no numeri-
cal results are given here. The form of the CDW-EIS am-
plitude is also compared with our peaked DSPB ampli-
tude in Sec. III. The reader is referred to the paper of
Crothers and McCann [18] for quantitative calculations
using the CDW-EIS theory.

Our quantitative calculations employ the model of
Bates and Grifting for the two-electron helium atom. Be-
cause this model was initially employed only for first
Born calculations of direct ionization we show that the
model derives generally from the independent-particle
approximation with specific choices for independent-
particle wave functions. The form used in the present
work employs further approximation described in Appen-
dix B.

with

a=Mr/(Mr+m); P=M~/(M~+m), (4)

K, is the relative momentum of P and (T,e) before the
scattering, and Kf =Kp. The total energy E is expressed
as

E =E,=E (5)

K
+~&E;=

2Pp

K
E f
f 2Pr, pe

k
+

2P pe
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+Ff
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where e; is the binding energy (T,e) in the initial state
and the reduced masses

M;(Mk+Mi ) MkMI

M+M +M I k~ M +Mi k I k I

are employed. The velocity vector v is defined according
to

II. NOTATION

We consider ionization of a neutral atom (T,e) com-
posed of a nucleus T and an electron e by impact of a
projectile I';

P+(T,e)~P+T+e .

Charges of the projectile and target nuclei are Zp and

Z~, respectively. Let rp and r~ represent the position of
the electron with respect to I' and T, respectively. The
position of the center of mass of the system (P, e) relative
to T is Rp and Rz describes the position of P relative to
the center of mass of (T,e) (Fig. 1). After the scattering
the momenta corresponding to rp, rz, Rp, and Rz are

kp ky Kp and K&. The masses of projectile, nucleus,
and electron are Mp, Mz-, and m. Atomic units are used

throughout this work but m is retained in some equations
for clarity.

The momentum transfer vectors K and J of Shakeshaft
[19]are employed. They are defined as

To order O(m/Mr, m/M ) we have

K+J+mv=0 (10)

and

K2+2g. ——J2+2E

The differential cross section is given by

=(2n. ) I '
ITI 5(Ef E, }dKP, —

p I

(12)

with

kr f dK K J dq„l Tl, (13)
e e min

U2+Z2 +k2
min

2U
(14)

which can be transformed into an integral over the
momentum transfer K =

I
K I.

K =PKf —K;,
J=o.K, —Kf,

(2) Here d 0, and E, are the solid angle and energy of the
ionized electron in the target frame and dye is the az-

imuthal angle of K relative to a plane. For electrons
ejected in the forward direction I Tl is independent of cp~

and we use

dO

dE, dO,
",' k, J" dKKITI'.

min

(15)

In general the T matrix is written as (postform)

(17)

FIG. 1. The set of Jacobi coordinates. where G is the full Green's operator, V, ( Vf ) the poten-
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tial in the initial (final) channel, and U; (Uf ) are distor-
tion potentials used to compute 4',. f'. These later poten-
tials are chosen so that Vf —Uf and V,-

—U; vanish faster
than 1/R as R ~ac, but are otherwise arbitrary. They
ensure that all integrals in the definition T are well
defined.

III. THEORY

A. The DSPB theory for ionization

Briggs [9] has emphasized the utility of expansions of T
in powers of ZT. This expansion has been developed fur-
ther by many workers [20—23]. Following Taulbjerg,
Barrachina, and Macek [12] we expand Eq. (17) in
powers of ZT to obtain the distorted-wave strong-
potential Born amplitude

TDSPB —( @ ~(
p' U )~@DsPB(+')

+Z, (C,"-)
~ V, l~(, +'), (18)

where 4f and 4f' ' are the zeroth- and first-order terms
in the expansion of 4f ' in powers of ZT and 4, '+' is

given by

iq)DSPB(+ ) ) —G I/ i(P(i+) )

For ionization of two-electron helium atoms we use the
Bates-6riffin independent-electron model [24] which

employs Zr=( —2c, ,
)'/ =1.345. Since this model was

initially proposed for first-order Born amplitudes and its
extension to higher-order theories is not obvious, we dis-
cuss the justification of this model for highly charged ions
in Appendix B.

The final-state wave function 4f is the production of a
plane wave of relative motion and a Coulomb wave of the
projectile-electron system;

4f =(2n ) e gI, '(r ),
'(r ) =(2n ) e I (1+iP )e

P

X (F)( iP—p, 1; i [kp—rp+kp'rp]),

(24)

(25)

with the Sommerfeld parameter

Zp
P

kp
(26)

An approximate DSPB amplitude derives from Eq. (18)
using several peaking approximations [12]. We use

TDSPB(+ ) —(2~)
—3/2

X ds & 'rp 'e %s—Y rp
with

Zr
V =—

T
T

Zp

rp

(20)

(21)

X Vr(s+ J)y„(s)y(s), (27)

where y(s) is a modified off-shell factor given by
Taulbjerg, Barrachina, and Macek [12], y„(s) is the
Fourier transform of g)„P,'+„' is the Coulomb wave func-
tion

The potential Ur(RT) goes to Zr/Rr as —Rr~ao but
is otherwise arbitrary. Note that the strong potential Vp

(Zp))Zr) is retained to all orders in the Coulomb
Green function Gp.

The initial state 4,. is the product of a hydrogenic 1s
state and a plane wave describing the motion of the pro-
jectile,

P,'+„'(rp)=(2') ' e I (1 ivp)e—

X,F) (ivp, 1;i[~s v~rp (s v—) rp——]),
with the Sommerfeld parameter

Zp
Vp=

V

(28)

(29)

(22)

(23)

and VT is the fourier transform of VT. We also set
y(s)=1. With this approximation the DSPB amplitude
equals the IA amplitude of Briggs [9]. Equation (27) is
then written in the momentum representation for the ini-
tial state,

(30)

(31)

I

T ""+'=— Z (@(-)(r )(e
' P)li(+)(r ))-

(2 ) ~J+s~

This expression is very similar to the semiclassical impulse approximation used by Jakubassa-Amundsen [14]. We write

(s) 23/2Z5/2
lim

~
J+s~ 2, — 2A, ()A, T (J+s) ( +/(, )

and use the Feynman integral [25]
1 & dt

o [at+b(1 —t))
to obtain

Z 5/2

lim f ' fds(PI, '(rp)~e
' '+"

~g', +„' (rp))((()), (s,p),
(2~)2 2.,-z, ())(,r o )M'/2 12p P s Y P 1s

(32)

(33)
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with

p =(A,T+J t)(l t—),
J, =J—Jt,
v, =v+Jt ~

(34)

(35)

(36)

1 1

~

J+s~' J'+Z' (48)

It is easy to show that now the T matrix is given by

approximations. For J large compared with ZT we may
employ the peaked-DSPB approximation which takes

Here y;(s, (M) is the Fourier transform of a hydrogenic ls
wave function for nuclear charge p.

The matrix element

Zr' N(vp )N(I3p )

V 2~ J +ZT 2& 0(}A,O g PB P

M=(1P~ '(r }~e
' ' '

~1(),(+„'(r )& (37)

lVp+1Pp ].

M = (2') —N(vp )N(13p ) lim 4vr'
~, Oazp lPp l Vp

where

X2F((i vp, igp , 1;z)', (38)

is recognized as a Nordsieck integral with the expression

X 2F) (ivp iPp 1 z )

where

A
' = ( (,)o ikp

—
) +K

B'=(7(,0 iu )
—+ (J+kp) 2iZ—T ~i 7(,ov+kp —K~,

C'=A, +(K—k )

D'=B' —2kp iko+kp+v+kp'J

(49)

(50)

(51)

(52)

N(a)=e P 1 —ia),
A =(10—ikp) +K

B(s)=AD—2i)(o~s —v, ~+(Jt+kp)
—u, —2(K —kp) s,

C=A, +(K—k }

D(s)=(A,O
—ikp) 2(i7(,o+—kp) ~s

—v, ~

+J, —v, —2K.s2 2

CDz=1—
AB

(39)

(41)

(42)

(43)

(44)

(45)

where A and C are given above but B and D now no
longer depend upon s;

B =(Ao —iu, ) +(J,+k ) —2i}(t~iiov, +kp —K~,

D =B —2kp lAp+kp+v7+kp J7

(46)

i A,ov7+kp —K
+ip (v, —kp)

}iAovt+kp —Kf
(47)

Equation (45) requires a single numerical integral and
its form is thus difficult to compare with closed-form ex-
pressions of other theories such as the CDW and Born

Equation (33) involves a four-dimensional integral, but
with fairly weak approximations the integral over s may
be done in closed form. Details are given in Appendix A.

Substituting Eq. (A27} into Eq. (33) using Eq. (31) gives

Z5/2 a2
T s '+'= — N(vp)N(13p) lim lim

0& Z

l Vp+ lPp
&dt C

X — . . ~F, (ivp, iPp, 1;z),
0 P

C'D'
A 'B'

l kpv+ kp K
+iZT (v —kp)'

Ii&ov+kp —KI
(53)

(54)

This closed form expression is compared with the CDW-
CDW amplitude in Sec. III B.

Near the binary-encounter peak where kp ——v, we must
have J=0 and K= —v. Then the argument z' of the hy-
pergeometric function in Eq. (49) is much larger than uni-
ty and an asymptotic form [see Eq. (C22)] can be used.
Upon taking the derivative with respect to A,o and retain-
ing only terms of lowest order in ZT/v we have

(2Z5 ))/2

7T3

1 1

[J +z ] ~K —kp~

X
(k +u)' ' ' l (1 iv )—P

l (1+iv, )

T(Ruth)(k K)+ ( J)

TPDsPB ZP

(55)

where T'""'"'(kp, K) is the Rutherford scattering ampli-
tude for the collision of an electron of momentum
K= —v with a nucleus of charge Zp. This shows that
the DSPB amplitude approaches the intuitive binary col-
lision model near the binary-encounter peak, as one
would expect from a correct theory for sufficiently high v.

Note here that the DSPB amplitude approaches the
binary-encounter amplitude when ZT/v « 1. In contrast
the Brinkman-Kramers amplitude, discussed below, ap-
proaches the binary collision model only when

Zp/v « 1, a much more restrictive condition.
In this paper we compute cross sections for electrons

ejected in the forward direction using Eqs. (45) and (13)
multiplied by a factor of 2 (see Appendix B} to account
for the two electrons on He. These cross sections are
compared with the data of Lee et al. [13].
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B. Other theories

=
& t}'h, I 1'~INK &0't. ( (56)

Superficially, this expression appears to agree with the in-
tuitive binary-encounter model, since the matrix element
( Pt, I Vz I Pz ) is often replaced by the Rutherford scatter-

P

ing amplitude [4]. This replacement is incorrect and
direct evaluation of the matrix element yields

At high velocities the Coulomb wave gI+„'(r~) ap-
proaches a plane wave P, „(r~). When t(itI+'(r~) is re-

placed by tI), „(rz) the DSPB amplitude becomes the
first-order Brinkman-Kramers amplitude for electron
capture to the continuum. Note that this way of deriving
the first-order amplitude omits the potential UT as
correctly surmised by Brinkman and Kramers [4,27] and
by later authors. The omission of UT occurs naturally
here owing to effects of higher-order terms in ZP, i.e.,
f,'+„' is orthogonal to QI,

+' but P, „(rz) is not. Standard
P

derivations omit UT at the outset thus the omission of UT
has been controversial. Here we have shown that such
omission derives from first principles.

The electron capture to the continuum amplitude in
the Brinkman-Kramers approximation is

(2Z5 )1/2
TEcc

P
773

1 N(Pp )

[J+Z ] (K—k )

P

(K—kp)

which includes the additional factor

'~p

e r(1+iP )
4kP

This factor is recognized as the off-shell factor of
Taulbjerg, Barrachina, and Macek [12] and cannot sim-

ply be omitted as in some derivations (Mott and Massey
[4], p. 338) since then the ECC cusp is not represented.
We retain the form Eq. (57) in our calculations.

The standard first Born approximation for direct ion-
ization uses a target Coulomb eigenstate as a final state.
Since this a standard approximation widely employed in
theories of charged particle interactions with rnatter, we
compare our calculations with the Born approximation
for DI. The first Born approximation for DI of one-
electron ions [28] is well known. When written in terms
of the momentum transfer vectors J and K we have

TD'= (ef I v, I e, )

where

(J+kT) +(ZT ik—r)
J2+Z 2

(2Zr) e (1 iv )—

217 [J +Z ] IK —kpI

ZT(1 ivr)[(J+—kr) +(Zr ikr) ]+vr(kT+iZT)[J'+ZT2]
(J+kr) (ZT ik—r)

(58)

VT—
kT

Introducing the mornenturn vector q,

q=K kp (J+kT)

give the standard expression [4]

Z~ Zr exp[ (2ZTlkz. )t—an '[2Z&kTI(q kr+ZT)]]—
~' q kr [1—exp( 2nZTIkr))f(q —kr+Zr) +(2Z—rkr) ]

Z2
x (q +q kr) +, (q kr)' Iqtt, (q+k&)I' .

kT

(59)

(60)

(61)

Near the binary-encounter peak we have ZTlkT &&1
and q=K —kz-——kT and Eq. (61) becomes

1

4 ' IK—k, I'

—IT(Ruth)(k K)I I+ ( J)I2 (62)

This expression agrees with the intuitive binary-
encounter model. It must be emphasized that only the
magnitude agrees, whereas for the PDSPB amplitude

TcDw —cDw (g I
tt7 P Ig )

g'; =@;N(v&) &F&(ivy, 1;i [vr&+v. rp]),

gf 0 fN(vT)* &F&( ivT , 1; —i [—vrT+'v rT]).
(63)

(64)

(65)

where @,. and 4f are given by Eqs. (22) and (24), respec-

I

both amplitude and phase agree with the intuitive model.
Belkic [16] employed the CDW-CDW theory for ion-

ization of atomic targets by ion impact. He gives
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CDW-CDW PY
y(a+p)

cDw-EIs —PY

pDspB 3 'B' —C'D'
A 'B'

where

(66)

(67)

(68)

q
2

'

P= —
—,'(kr+Zr~),

y= —,'[(q+kr) +Z7 ]=—,'[J +Zz. ],
t}=kp v —k v+P .

(69)

(70)

(71)

(72)

The divergencies of the CDW-CDW theory occur
when the factor

a+P= —,'[K —v +2k', J—Zz]= —,'[(J+kI, )
—v ]

(73)

in the denominator of Eq. (66) vanishes. Because the cor-
responding factor of the CDW-EIS theory, Eq. (67),

tively. This T-matrix element is convergent and well
defined for bound-state capture, where it has been exten-
sively used, but for ionization (and excitation) the phase
of the matrix element diverges [29] for particular values
of kp and J. In some cases the magnitude also diverges.
Since a valid expression for the scattering amplitude must
converge in phase as well as magnitude [30] the CDW-
CDW theory is not applicable for ionization. These
divergencies are described in Appendix C.

Crothers and McCann [18] developed a continuum-
distorted-wave —eikonal-initial-state theory. Here the
final state is chosen as in the CDW-CDW theory whereas
the hypergeometric function (64) in the initial state is re-
placed by its asymptotic value. As discussed in Appendix
C the CDW-EIS theory is free of the divergences charac-
teristic of the CD%-CD% theory.

The three approximations for the T-matrix element,
namely, the CD%-CD%, CDW-EIS, and PDSPB, are
quite similar in form since the amplitudes can be written
in terms of identical hypergeometric functions; compare
Eqs. (49) and (C4), for example. The main differences be-
tween them are the expressions for the argument z of the
hypegeometric functions

peak. While the presence of the Thomas peak is impor-
tant conceptually it is not great practical importance for
highly charged ions. Thus we will see that the DSPB and
the CDW-EIS theories agree moderately well.

The main difference of PDSPB theory and the CDW-
CDW theory is the appearance of the terms with the fac-
tors iZz in B' and D' [Eqs. (51) and (53)]. These imagi-
nary terms prevent the PDSPB theory from diverging. If
we neglect these terms we are able to write

3'=2y,
8' =2(a+P),
C'=2+,

D'=2(P+y) .

(76}

(78}

(79)

With this approximation it is easy to see that the variable
z of the CDW-CDW theory [Eq. (66}] and the PDSPB
theory [Eq. (68)] are identical for

kp'v kpv =0 . (80)

This is the case in the forward direction or in any direc-
tion at the ECC cusp (k =0}. Also when terms of order
vr are neglected and Eq. (80) holds then the PDSPB and
CDW-CDW are identical. This shows the close relation
between CDW-CD% and PDSPB. The main difference
between the approximations is that the CDW neglects
2iZru compared with a+p. This latter approximation is
invalid when a+P vanishes.

IV. RESULTS

Lee et al. [13]measured the electron spectra in the for-
ward direction ejected by 1.5 MeV/amu H+ and F + im-

pact. The experimental results for H+ and F + are com-
pared with standard DI in Figs. 2(a) and 2(b), respective-
ly. The experimental electron spectra show an enhance-
ment of the cross section at low electron energies, the
ECC cusp at kz=v, and the binary-encounter peak at
k&=2v. The DI theory agrees with experiment only near
the binary-encounter peak. It lacks the ECC cusp and
greatly underestimates the number of low-energy elec-
trons, even for proton impact.

It is well known [7] that the cusp at v, = u is ascribed to
the Coulomb factor around the projectile

27Tv p
~X(v~)~ = ~2nvp~~ as .k~~0.

1 —exp( —2m.vp )

P= —,'[ —u —kp —2kp v —Zr] (0 (74)
(81)

8'=(J+k )' —u' —2iZ7 ~kp
—K~, (75)

also never vanishes, although it becomes small near the
Thomas double-collision peak. Only the DSPB ampli-
tude in both finite everywhere and shows the Thomas

never vanishes, the CDW-EIS theory is free of divergent
terms, but since P is independent of K the CDW-EIS
theory does not describe the Thomas double-collision
peak [31]. For comparison the factor in the denominator
of the peaked DSPB theory,

The Brinkman-Kramers approximations (BK) contains
this factor and thus reproduces the cusp feature. Our BK
calculations [Figs. 3(a} and 3(b)] show that this approxi-
mation greatly overestimates the cross section, especially
for F +.

The PDSPB approximation also describes both the
ECC cusp and the binary peak. Figures 4(a) and 4(b)
compare the peaked DSPB theory Eq. (48) with experi-
ment. The PDSPB approximation overestimates the
binary-encounter peak, especially for F +. This is ex-
pected since J=0 near the binary-encounter peak and the
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peaking approximation Eq. (48) is not valid here.
The DSPB amplitude of Eq. (45) does not require

J))ZT. Correspondingly, Figs. 5(a) and 5(b), which

compare the DSPB cross sections with experiment,
reproduce the region from kT=U to kT=ZU quite well,
especially at the binary-encounter peak. Fainstein,
Ponce, and Rivarola [17] obtained results similar to the
DPSB curve using the CDW-EIS approximation. The
calculations are not directly comparable since Fainstein
Ponce, and Rivarola use a different wave function for the
He initial state than does the Bates Griffing model em-

ployed here. For that reason their DI calculations
disagree with experiment even at the binary-encounter
peak, while our DI agree with experiment at kT=2U.
Since experiment is normalized at the peak to a binary-
encounter calculation the data do not distinguish between
the DSPB and CDW-EIS theories.

Because of the uncertainties in the bound-state wave
functions for He we compute the cross sections for ion
impact on atomic hydrogen targets. Figure 6 compares
our DSPB calculations with the DI theory for F +. We
see that the DI and DSPB calculations agree at the
binary-encounter peak. Because the binary-encounter
peak is used for normalization, we show an expanded
view of the binary-encounter region in Fig. 6(b). Note
that the present DSPB theory differs from the erst Born
DI cross section by 8%. The DSPB peak is also shifted
to an electron energy slightly below 4(u /2). This shift
appears to agree with experiment in the case of H2 targets
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FIG. 4. The double-differential cross section for ejection of
electrons of (a) E; =1.5-MeV protons and (b) 28.5-MeV F +

ions on He atoms. The points are the experimental data of Lee
et al. [13]. The solid line is the peaked distorted strong-
potential Born approximation (PDSPB).
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FIG. 6. (a) The double-di8'erential cross section for ejection
of electrons of E; =28.5-MeV F + ions on H atoms; solid line:
the distorted strong-potential Born approximation without
peaking (DSPB); broken line: first Born for direct ionization.
(b) Same as (a), but only the binary-encounter peak is shown.

[13]. In contrast the calculations of Miraglia and Macek
[15] employing a CDW final state and exact evaluation of
the integral over s obtain a peak position that is shifted
forward of the peak given by the DI theory. Again the
calculations are not directly comparable because Ref. (14)
considers H2 targets instead of helium.

None of the theories accurately describe the low-

energy electron cross sections. This may indicate an
inadequacy of the Bates-Griffing model for these elec-
trons, or it may indicate that two-electron processes play
a role.

V. CONCLUSIONS

We have formulated the DSPB theory of impact ion-
ization of atoms by highly charged projectiles. Compar-
ison of computed doubly differential cross sections at 0'
with the measurements of Lee et al. [13] indicates that
the DSPB theory gives a good account of the electron
spectra in the region between the binary-encounter peak
at electron energies of 4(v /2) and the continuum cap-
ture cusp at v /2. The cross section for electron energies
less than u /2 lies below experiment by a factor of the or-
der of 4. This discrepancy may be due to our use of the
Bates-Griffing model. We therefore show how the Bates-
Griffing model derives from the independent-particle ap-
proximation. It is possible to employ slightly different
independent-particle models which may change the cross
sections perhaps giving better agreement with experi-

ment. This is an aspect of the DSPB theory that war-
rants further investigation.

For H-atom targets the initial-state wave function is
known exactly and the independent-electron model is also
exact, thus we present calculation for H-atom targets
even though experimental data are not available. Corn-

parison of the DSPB theory for H-atom targets with the
standard direct ionization theory shows good agreement
near the binary-encounter peak, but also indicates that
the peak shifts toward lower energy in the DSPB theory.

Finally, a peaked version of the DSPB theory is de-

rived which can be compared with the CDW-CDW
theory and the CDW-EIS theory. We find that, in the
forward direction, the CDW-CDW and PDSPB ampli-

tudes have almost the same form. The main difference
between the two amplitudes is a logarithmic divergence
of the CDW-CDW amplitude near the binary-encounter
peak which is absent from the PDSPB amplitude. The
CDW-EIS amplitude is also similar in form to our
PDSPB amplitude, but lacks the Thomas peak. In con-
trast to the CDW-CDW amplitude, the CDW-EIS arnpli-
tude is convergent. CDW-EIS calculations [17] for
F ++He collisions agree with the available data to the
same degree as our DSPB calculations. The calculations
are not directly comparable owing to the use of different
wave functions for the ground state of helium. For that
reason we compute the, as-yet-unobserved, cross sections
for F ++H. A shift of the binary-encounter peak to an
energy below 4(v /2) is a noteworthy feature of the
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DSPB calculations for this system. A Taylor-series expansion of is —v, i
for small s gives
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APPENDIX A: EVALUATION OF AN INTEGRAL

In this appendix we evaluate the integral over s of Eq.
(33) approximately. All of the approximations used are
consistent with the peaking approximations [32] used to
derive our starting Eq. (30). Together with Eq. (38) one
sees that Eq. (33}has the form

4~Z,'"TDSPB(+ j— T ~( )~(p )
(2m )'

is vt i
—vi vi 's

so that s dependence of 8 (s) and D(s) is linear,

B =Bo+B,.s,
8u =Au —2iAuv, +(J, +kr ) —u,

B,=2iA ou,
—2(K —kr },

D =Do+De s,
Dv=(A. v ikr )—2(—i A,0+kp)v, +J, —v, ,

D|=2(iku+kp)v, —2K .

Defining

@=2kt,(v, —kt, )

we may write

(A12)

(A13)

(A 14)

(A15)

(A16)

(A17)

(A18)

(A19)

X lirn lirn 5y2
I

~,-o~,-z, BA, TBA,o o p'i' (A 1)
Di=Bi+e . (A20)

with

C&+b —iI= dsy;(s p} z 2F, a, b 1 1—
A B' (A2)

We note that e is a small quantity when kz ——0 and when

v, =kr. The integral I|(y),

I|(y)=f d sy&(s, p)[( 8z +Duy) +(B& +D&y) s]

8(s)=Ac —2ikuis —v, i+(J, +kp)
—u, —2(K —kp) s,

D(s) =(A,o—
ikp ) —2(iA,O+ kp ) is —v, i

(A3) is readily evaluated to give

I, (y) =(2m. )'i'p„(rr =O,p)

(A21)

+J, —v, —2Ks, (A4) X [(80+Day }—iPiB1+Dly I] ', (A22)

a =iv&,

b =iPt, ,

p =(AT+J t)(1 t) . —

(A5}

(A6)

(A7)

Note that we retain the approximation that v is indepen-
dent of s and t. We rewrite Eq. (A2) with the help of the
integral representation

r(c)
r(b) I (c b)—
X f dx x '(1+x)' '(1+zx)

0

(A8}

iB,+D,y i =8, +Diy . (A24}

This equation is also valid when e is a small quantity in
which case we have

I= 2n y&, rT=O p
1

1 (b)r(1 b)—
X f dyy" '[C+ Ay]'

X [(80+Day) i p i B,+D—|y i ]
' . (A23)

Our main concern here is to obtain an approximation val-
id when J=O where the peaking approximation of Eq.
(48) fails. When J =0 we have K= —v and kt, = v so that
B& and D& are parallel in the limit A,o

—+0 and we have

and use the substitution y =Cx /A. We obtain

Ca+b —1

2F& a, b;1;1—
A 'B' AB

1 00

r(b)r(1-b) dy y' '[C+ Ay] '[8-+Dy]-
(A9)

This expression is substituted into Eq. (A2) to give

iB&+D,y i =8&+(8&+B,.e)y =8&+D&y

to order e . Then we have

I=(2~)' 'q„(rr=O, p) r(b)r(1 —b)

X f dyy" '[C+ Ay]'

X [(80 i@8
&
)+(Do —ipD |)y ]

(A25)

(A26)

1 oo

r(b)(1 b)
dy y '[C+—Ay]' 'I, (y),

I,(y)= fds@;(s,p)[ 8(s) +D(s)y]

(A10)

(A 1 1)

Because Di in Eq. (A26) is multiplied by p, we see that
the error in I due to the approximation (A25) is of order
pe . This is smaller than the errors made in deriving Eq.2

(30) from Eq. (18). Finally Eq. (A26) together with Eq.
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(A9) result in

Ca+& —1

I=(2~) g„(rT=O,p)

where U is the time evolution operator.
As a first approximation we employ antisymmetrized

single-particle wave functions in the singlet state

XF& a, b;1;1—CD
(A27)

y;(r, , r~) =N[y„(r„zn, )y„(r2,Z„)
—iE t

+0'„(r~,z~, )V'„(r, ,z~ )]e (82)

8=8 —ipB,

=(ko iu—, ) +(J,+k ) —2iplilov, +kp —Kl, (A28)

D=DO ipD—, =Do i@(—B, +8, e)

=8 —2k' iko+kp+v, +kp J

ik.ov, +kp —K
+i@ (v, —kp) . (A29)

Ii Avo, +. k~ —Kl

APPENDIX 8:THE BATES-GRIFFING MODEL

We consider collisions of projectiles P with targets T.
The nucleus charges are Zz and ZT and the numbers of
electrons are Np and NT. The internucleus distance
R(b, t) is a function of the impact parameter b and the
time t F.urther r~, (i =1, . . . , Np) and rrk
(k = 1, . . . , NT ) are the electron coordinates with respect
to the projectile nucleus and the target nucleus, respec-
tively. The U-matrix element for inelastic collisions is

(81)
I

N =[2+21&y„(r Z~, )lyi, (r Z + ) & I ]
' = —,', (83)

1
0 f( I 2) ~ [Vk( 1)%f2 ~ +( 2)

(84)

Here q&l, (r) is a Coulomb wave function which describes
the ionized electron, and y +(r) is a hydrogenic wavef, He

function with nuclear charge Z + =2 for the He+ ion.
The latter function may represent any final state f. The
function p&, (r, Z) is a hydrogenic wave function with nu-

clear charge Z with the value

ZHe =1.345 (85)

or

Z + =2.000 . (86)

The initial and final energies E, and Ef are the exact en-

ergies of the initial and final states. Using the wave func-
tions (82)—(84) and the symmetry of U under electron ex-

change we have

N—&tt(rt)t, +(rz) I UIti. (ri Zve)'pcs(rz Z, + ) &

N+2 —&yl, (r, )p +(rz)IUlp„(r2, zn, )p„(r,, z ) & exp[i(Eft' E;t)] . — (87)

As a second approximation we assume that the operator U is separable (independent-particle approximation)

U= Ui U~

to write

Uf; = [&2N&(pk(r, )1 U, ly„(r, , Z~, ) & &p +(r2)1 Ugly„(rz, Z + ) &

+&2N&pz(r, )l U, I+&,(r„z~ + ) & &+f2 ~ +(r2)l U21+„(r2,Z~, ) & ]exp[i(Eft' E, t)] . —

(88)

(89)

and the definitions

E; =E,i+E;2,

+E

(811)

With the further approximations

& yk(r, ) I U, lq „(r,,z„~ ) & = & q„(r, ) I U, lq „(r„z~.) &,

(810)

& 'Ipf p n + ( r2 ) I U2 I
'p ]

I

where

(813)

(B14)

(815)

Eq=—,E;,=E; —E 2,2

Ef2= 2 & Ef
2n

and n is the principal quantum number we get the result

Uf; =2v 2N &yg(ri)l U| lq i, (ri, z~, ) &

Xexp[i(Ef, t ' E, , t )]—
X &yfz n +(rz)I U2 ly&, (rz, zz ) &

Xexp[i(Ef2r Ept)] .
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Because of unitarity, the sum over all unobserved final

states f2 of the He+ ion gives
Thus we see that the Bates-Griffing model applies even
for highly charged ions.

pl&sf „+(r,)IU, lq„(r„z„+))I'=I
f2

(B16) APPENDIX C:
THE CDW-CDW AND CDW-EIS APPROXIMATIONS

so that the probability for emission of one electron in-
dependently of the state of the unobserved electron be-
comes

In this appendix we examine the divergent behavior of
the CDW-CDW T matrix [16]. We set

P(b) = &IUf, I'=21 &q,(r, )IU, Iq „(.„z„,))I'. (»7)
fp

q=KT K) =qg 2
v

V

(C 1)

0 = P(b)db . (B18)

The factor 2 emerges automatically and represents the
fact that the helium atom consists of two electrons. The
cross section is given by the integral of P (b) over the im-

pact parameter b,

=K—kP, (C2)

where hc=E, —c; and E, and c.; are the electron energy
in the target frame and the binding energy of the (T,e)
system, respectively. The transverse component of the
momentum transfer is qi (qj v=0). The double-
differential cross section is given by

Following standard arguments we compute the cross sec-
tion using the time-independent version of the amplitude

&q&(r, )l U& lq &, (r„z„,) )exp[i(Ef fi E'ft )]

2kT dqllRcDw(qi) I

e e

where we have

(C3)

IRcDw(qi)l'=A(q, kT)IN(vT)N(vp)N(pp)I IRI I2F, (ivp, ipse, l;z) ivzco2—F, (1+iv~, l+ip~;2;z)I',
a 85+Cy
y 8(a+p)

(C4)

(C5)

for q
2 )k T2 +ZT2

A (q, kT)=
e forq &k +Z

(C6)

B =q +(1+ivT)q kT, (C7)

C= [q kr+kT(l+iuT)] — 1+ [q v+kr v(1+ivT)],
P kP

ZpZT exp[ 2vTtan [—2kTZTI(q kT+ZT)]][(q +q kT) +(q kT) ZT]
R

7T V q [(kT+q) +ZT] [(q kT) +ZT][(—q+kT) +ZT]
2a=q

2

P= ——'(k +Z )

y= &i[(q+kr) +ZT]= i [J +ZT]

5=k& v —k&u+P,

py —a5
y(a+p)

Note that 8 and C of this appendix are not related to the parameters 8 and C used elsewhere in this paper.
In Eq. (C4) the expression for co and z becomes infinite where (a+p) =0. We set

COp

a+p
Zp

a+p '

with

a+P= ,'[K +kp —2k' K——kT—Zz~. ]

=
—,'[(J+k~) —u ] .

(C8)

(C9)

(C 10)

(C 1 1)

(C12)

(C13)

(C14)

(C15)

(C16)

(C17)
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The analytical continuation [33] of the hypergeometric functions

I (c)I (b —a), 1
2F&(a, b;c;z) = ( —z) '2F, a, 1 —c +a; 1 b—+a;—

I(b)1(c —a} ' ' ' ' 'z

gives

I (a)I (c b—)
(C18)

I (2)I'(i/3p i—vp )

co zF, (1+ivp, 1+iPp,'2;z ) =too (a+/3) (
—zo )1(1+tP)'l (1 iv —)

a+/3
X~F) 1+tvp, tvp', 1+tvp i/3p',

Zp

r(2)l. (ivp —t/3p )

r(1+iv, )r(1 —iP, )

a+P
XqF) I +iPp, iPp, 1 i vp—+iPp

ZQ

(C19}

provided zo%0. Near a+P=O the expression (C19) has a divergent phase and oscillates rapidly in magnitude for

/3p/vp.
%hen

(C20)

which implies

kp —Ikr —vI —U

we use [33]

I (c)
2F, (a, a;c;z)= (

—z)
I aI'c —a

(a)„(1—c +a)„
X g z "[ln( —z)+2tt(n +1)—t/t(a +n) —ttt(c —a —n)].=o (n 1)'

(C21)

(C22)

for a+PrO and IzI ~ oo. Equation (C22) shows that the
T matrix diverges logarithmically when IJ+kpI =u and

k&=U. This occurs near the binary-encounter peak for

electron ejection angles greater than vT/2.
The CDW-EIS [18] amplitude differs from the CDW-

CD% amplitude only in the expression for co, A, and z,

a 85+Cy (C23)
} 8/3

A=e (C24}

Py —a5
/3y

(C25)

Because /3 is negative definite to and z never become
infinite.
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