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Calculations of generalized oscillator strength for electron-impact excitations of krypton and xenon
using a relativistic local-density potential
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The generalized oscillator strength {GOS)of an atom is an essential factor in the differential cross sec-
tion for inelastic scattering of fast charged particles. Recently, Takayanagi et al. [Phys. Rev. A 41, 5948
(1990)] have obtained the GOS for the excitation of atomic krypton to the 4p'( P, z, }Ssand 4p'(iP3/t)5s
states from inelastic-scattering measurements using electron-energy-loss spectroscopy. The present
study was undertaken with the twofold objective to determine the results of theoretical computations of
the scattering parameters of the above experiment and to examine the suitability of a recently developed
relativistic local-density-potential method [M. Vijayakumar, N. Vaidehi, and M. S. Gopinathan, Phys.
Rev. A 40, 6834 (1989)] to study atomic-collision processes. Calculations have been done to obtain GOS
for electron-krypton and electron-xenon collisions in the squared-momentum-transfer range of 0.01 to 10
atomic units. The well-known theory of Bethe has been used for the determination of the GOS in the
first-order Born approximation. The present results are in fair agreement with previous Hartree-Slater
and Hartree-Fock calculations and with the experimental data available in the literature. Furthermore,
results of the present calculations predict that the GOS goes through a minimum, similar to the "Cooper
minimum" in the photoabsorption cross section, as a function of the value of the momentum transfer.
Experiments at slightly higher values of momentum transfer are suggested to verify the position of this
minimum.

PACS number{s): 34.80.Dp

I. INTRODUCTION

Atomic-collision processes play an important role in
the modeling of high-temperature plasmas, design of
fusion reactors, and in pumping mechanisms in gas
lasers. There is substantial recent interest in atomic-
collision processes [1], and sophisticated experiments on
inelastic scattering of electron beams are being conduct-
ed. Recently, Takayanagi et al. [2] have obtained the
generalized oscillator strength (GOS) for excitation of
atomic krypton to the 4p ( P,&2)5s and 4p ( P3~~)5s
states from inelastic-scattering measurements using
electron-energy-loss spectroscopy. Most of the theoreti-
cal calculations of the GOS for many-electron atoms use
an independent-particle model [3]. Lack of sufficiently
accurate wave functions often limits the accuracy of the
results obtained. In the present calculations, a recently
developed relativistic local-density-potential method [4],
referred to as the RC:- method, has been employed for
generating the ground-state and the excited-state wave
functions. In this method, a local-density approximation
is made to the many-electron potential and furthermore a
part of the Coulomb correlation energy is accounted for
using the "Coulomb hole" [4—6]. This method has been
used with success for the calculation of the expectation
value of r" (n = —1, 1,2), spin-orbit paraineters, ioniza-
tion energy, and electron affinity for various atoms [4].
The present work has been undertaken with the following
two objectives:

(i) To test if the RC:- potential is suitable to describe
atomic-collision processes, since no prior study of col-
lision phenomena has been attempted using this poten-

tial; and (ii) to examine the outcome of theoretical calcu-
lations of electron-atom (Kr, Xe) GOS in the context of
the above-mentioned experiments [2].

For the sake of completeness, the RC:- potential
method has been described briefly in Sec. II. The well-
known theory of Bethe [7,8] has been used for the deter-
mination of the GOS in the first-order Born approxima-
tion. A computer code developed by Manson [9] has
been used to calculate these collision parameters. A brief
account of the various approximations employed in our
calculations of GOS is given in Sec. III. The results ob-
tained are presented and discussed in Sec. IV, which is
followed by concluding remarks in Sec. V.

II. THE RELATIVISTIC LOCAL-DENSITY METHOD

The Dirac Hartree-Fock (DHF) method developed by
Grant [10,11] and Desclaux [12] is based on a relativistic
reformulation of the Hartree-Fock self-consistent-field
(HF-SCF) method [13,14]. This method makes use of the
fully relativistic single-particle Dirac Hamiltonian and
treats exchange exactly. To simplify the relativistic
many-electron calculations, the exchange interaction may
be approximated as in the nonrelativistic case by using
Slater's local-density approximation [15]. Vaidehi and
Gopinathan [16] proposed a parameter-free model in
which the self-interaction is evaluated explicitly and a
local-density approximation is made to the residual
nonlocal-exchange term. The one-electron equations of
this method were derived from the Dirac Hartree-Fock
central field radial equations. The small components of
the Dirac spinor are neglected in comparison with the
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large components. The second-order differential equation
obtained for the large component has the following form
(in Rydberg units):

d 1(l + 1)+ +v(r)+H (r)+HD(r)
dT 1'

achieved analytically by introducing interelectronic vari-
ables. This method is well suited for the determination of
total energies. The total energy expression is written in
this method with additional terms to include the
Coulomb correlation effects:

(E ) =g f n; u (r)f&u;(r)dr+ ,' f—p(r)p(r')g„„.dr dr'

where

v(r)=—

+H, , (r) P„I (r) =e„& P„I (r. ), . (1)

2Z +v'(r)+v '(r)+v "'"(r),

+—,
'

p~ r U&" r dr+ —,
'

p& r U&" r dr

+ ,' f—pt(r)U&'"(r)dr+ ,' f—p&(r)U'&"'(r)dr . (2)

In the above equation,

v'(r) =g n f u "(r')u (r'), dr',2

J

v '(r) is the self-interaction potential

v '(r)= n; f u;"(r—')u;(r'), dr',2

/r —r'[

and v,'"'"(r) is the pure exchange potential, discussed
below. Also,

H (r)= —K[E—v(r)]

dv d 1
HD (r) = I(.'B—

dr dr r

K+1 dv

T dI'

CXK=, B= 1+ [e—v(r)]
4 ' 4

~= —(j+—,
' )a and a =+1, depending on j=i+—,', and a

is the fine structure constant.
The Fermi correlation between electrons of like spin

keeps them apart and hence the Coulomb correlation be-
tween electrons of like spin is much less important com-
pared to what it is for electron pairs of unlike spin. Ac-
cordingly in the present formalism Coulomb correlation
between electrons of like spin is ignored. Coulomb corre-
lation between electrons of unlike spin is included in the
present method using a term similar to the one represent-
ing the "Fermi hole" of the local-density HF method
[15]. The analogous entity, referred to as the "Coulomb
hole" [4—6], is introduced in the present formalism and is
required to have the following properties.

(i) The Coulomb hole density should satisfy Kato's
cusp condition [5]. The solutions of the Schrodinger
equation should exhibit a singularity at the position of
the Coulomb singularity about which the Coulomb hole
is centered. According to Kato, the wave function
should have a sharp cusp at the positions of the Coulomb
singularities (r, =0).

(ii) The total Coulomb hole charge is zero, i.e., the
Coulomb hole density integrates to zero over the entire
range of the Coulomb hole [6]. Short-range correlation
effects are included in this method partially by imposing
the condition that the wave function should have a sharp
cusp at the position of the Coulomb singularities. This is

2
p&(r)=g n;u, *&(r)u, &(r), g,„.=,

ir —r'

and U&'"(r) is the "Coulomb hole" correlation potential
acting upon an up spin electron, the potential being pro-
duced by all the down spin electrons. The variational
minimization of the total energy (E ) with respect to the
spin orbitals u, leads to the one-electron equations:

[f&+v'(r)+vt (r)+v t" (r)+ &v""(r)]u, &(r)= Eu, &(r) .

(3)

Equation (3) differs from the HF equation by the pres-
ence of the last term within the bracket on the left-hand
side. This term, v't'"(r), is added to the potential v(r)
used in Eq. (1), to obtain the one-electron equations. Fur-
ther, the pure exchange potential has been determined by
defining a local-density potential using the important
property that the total charge removed from the Fermi
hole is zero. The radius of the exchange hole in this mod-
el is assumed to be the same as the Fermi hole radius
[16]. The exchange density and the potential become
positive beyond a certain distance, which is fixed in terms
of the Fermi hole radius. The exchange potential is then
given by

—2/3

U'"(r) = —4~'~ (2' —1) +—

Xgp;. &(r)p& (r)n u "(r)u (r) . (4)

It is the weighted average over all the occupied up spin
orbitals. In Eq. (4), n& is the total number of up spin
electrons, p&(r) is the density of up spin electrons at the
point r, and p; t(r) is the density of up spin electrons ex-

cluding the ith electron.
A similar procedure is used for the determination of

the Coulomb correlation potential. The Coulomb corre-
lation for an electron of a given spin ean be thought of as
arising due to the removal of charge of all electrons hav-

ing opposite spin from its vicinity. For small r, the
Coulomb correlation potential is assumed to vary slowly.
The Coulomb correlation potential for an electron of up
spin at r is given as
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8m, pir

where the Fermi hole radius

1
rF&(r) = n.

, p&(r))le+ 3

—1/3

The radius of the Coulomb hole is assumed to have the
same functional dependence on the charge density as does
the Fermi hole radius. It is considered to be given by

r, &(r) =xrF~(r),

and the unknown x is fixed semiempirically [4].
This method of generating atomic potentials is referred

to as the RC:- method in literature. This name signifies
the inclusion of relativistic and Coulomb correlation
effects and an approximated exchange potential which is
free from the well-known defects of the Hartree-Slater
potential.

Expressions (4) and (5) are substituted in Eq. (2) for the
total energy and the one-electron equations are deter-
mined by variational minimization. The final one-
electron SCF equations of the RC:- method turn out to
be

+ — +v'(r)+u &'(r)+v
&
(r)+u &'"(r) — [s«J —v(r)]

p
2

p
2

Q CX1+ [e„&
—v(r)]

—1

dv l dP

dT Pnj~dl'
Q CX1+ [e„&,

—u(r)]

—1

dv 1
A —P„,, (r)=s«P„,,(r),dl'

(7)

where A is (I + 1) for j=l +—,
' and ( —1) for j= l —

—,', and

u(r)= — +v'(r)+v &'(r)+v
&
(r)+v &'"(r) .2Z

(8)

III. THE METHOD FOR GOS CALCULATIONS

In the present work the GOS has been determined in
the first-order Born approximation. For an ¹lectron
atom described using a single-particle model, the expres-
sion for the GOS f„(K) for the excitation from an initial
state %0 to a final state %„at excitation energy E„mea-
sured from state 0 with momentum transfer AE is given
[9] by

The set of Coulomb correlated and relativistic one-
electron equations (7) can be solved for atoms using a
modified Herman-Skillman computer program [17]
which performs spin-polarized calculations. The orbitals
[u;] are not orthogonal since the orthogonalization con-
straint has not been included in the variational minimiza-
tion scheme in order to keep the formalism simple. Nev-
ertheless, orthogonality of the spin orbitals can be ob-
tained subsequently using Lowdin's orthogonalization
procedure [18]at each iteration of the SCF cycle [4].

study are oriented at random. In the latter case, an aver-
age over all atomic orientations is implied. Moreover,
the term "state n" is often used to mean a set of all sub-
states at E„ in which case the sum over these degenerate
substates is also implied in Eq. (10). In the above cir-
cumstances, I„(K) will be a function of the scalar vari-
able j', which is more convenient than 8 for the study of
the GOS. Such a simplification, however, cannot be
made when spin-polarized atoms are used or when polar-
ization of light from excited atoms is studied.

The cross section cr„ for excitation of an atom to a
state n is obtained by integrating the above expression for
f„(K),

4m.a Oz
o „= Jf„(Kao)d[ln(Kao) ], (11)

(E„l&)(ulvo)'

where v is the velocity of the incident particle, vo the
Bohr velocity, and ze is the charge of the incident parti-
cle, e being the electronic charge. The GOS as well as the
limits of integration [ln(K,„ao) and ln(Km;„au) ] in Eq.
(11) depend on the excitation energy E„The upper a. nd
lower limits of integration are related to the initial and
final wave numbers through the following relations:

f, (K)= ",If.(K)I',
E

(Kao )

in which the matrix element I„(K)is given by

I„(K)= g J4„'e 'hodr, dr2 . . dr~,
j=1

(9)

(10)

K,„ao=(ko+k„)ao and K;„ao=~ko —k„~ao .

At the threshold for excitation, the upper and lower
limits are identical and it follows [19] that

(K,„ao) =(K;„ao) =
m, R

where r. is the position vector of the jth atomic electron
and ao is the Bohr radius. The matrix element in Eq. (9)
will be independent of the azimuthal angle P, when the
state 0 is spatially symmetric or when the atoms under

where M is the mass of the target atom and m, is the
mass of the electron. When the collision energy T is
much higher than the excitation energy E„(E„/T&(1)
the following approximate relations are valid:
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(2Mv)
max 0 (~

E„/R

2(v/vo)

(12a)

(12b)

e' '=pi (2k+1,)j I( «)P&(c os'), (13)

where 8 is the angle between K and r, P& is the Legendre
polynomial of order k, and jz is the spherical Bessel func-
tion of order I,. The absolute square of the transition ma-
trix element for an nl ~n'I' transition is given by

~I„I „ I ~

=(2l'+1) g (2A, +1)(R„I„,I, )

The errors arising due to such an approximation are
small for ion-atom collision calculations [19].

To evaluate the integral in Eq. (10) the plane-wave part
e' ' is expanded in terms of spherical Bessel functions:

included, and 0.915 Ry when it is excluded. In both the
HS and the RC:- potentials, the excitation energies have
been calculated as the difference in orbital energies of the
initial- and final-state levels involved in respective transi-
tions.

Figure 1(b) gives the corresponding results for the exci-
tation of krypton to the 4p ( P3&2)5s state. The excita-
tion energies for this transition using the RC:" potential
are E„=0.890 Ry when "Coulomb hole" correlation is
included and E„=0.858 Ry when it is excluded. The ex-
perimental excitation energies for the 4p ( P, &2)Ss and
4p ( P3/2)Ss excitations are, respectively, -0.783 and
-0.738 Ry.

A distinct minimum is found to occur at (Eao ) = 1.21
in the calculations involving both the HS and the RC:-
potentials for both the excitations of krypton. It may be
pointed out that Kim et al. [20] had predicted this
minimum from their HF calculations.

where

(14) 0.20

0.005
ENLARGED PLOT
NEAR MINIMUM

R, t, „ I
= 1 P„t(r)J'q(«)P„ I (»)d» . (15)

0

The sum over 1, in Eq. (13) goes from ~1
—I'~ to (I + I')

in steps of 2 since the 3j symbol vanishes for all other
values of A, .

Calculations of the GOS were performed using two
different local-density potentials: (i) The Hartree-Slater
(HS) potential [17]. The excited-state wave functions
were generated in the HS potential using a computer
code written by Manson. Relativistic effects and core re-
laxation effects were ignored in these calculations; and (ii)
the RC:- potential, described in Sec. II.

0.05-

0.00
0, 01 O. t

0.40

+0.1 5-
+N

+,
0 .10—

0.00

(K~)
2

10

LL~I''
10

IV. RESULTS AND DISCUSSION

GOS calculations have been performed for excitation
of krypton to the 4p'( P, zz)Ss, 4p ( P3&2)Ss states and
for the excitation of xenon to the 5p ( P, &z)6s,

Sp ( P3&2)6s states. The results are presented in Figs.
1(a) and 1(b) and 2(a) and 2(b), respectively, for Kr and
Xe. All the figures contain the GOS results for both the
potentials mentioned above. The nonrelativistic HS GOS
has been factored in the proportion —,':—', to get the HS es-

timates, respectively, for np, zz~(n+1)s and the

np3&z~(n +1)s transitions, n being 4 for Kr and 5 for
Xe. In a separate calculation, the RC:" wave functions
were determined by excluding the "Coulomb hole" corre-
lation effects. The GOS values obtained by using these
wave functions are also presented in Figs. 1 and 2 for
each of the excitations considered. Also, the calculations
were repeated after omitting the relativistic terms in the
RC:- potential to examine their contribution.

In Fig. 1(a), the experimental results of Takayanagi
et al. [2] on krypton are also shown. The excitation en-

ergy E„corresponding to this excitation 4p ( P&&2)Ss in

the HS calculation was 0.696 Ry. In the RC:- calcula-
tion, E„=0.947 Ry when "Coulomb hole" correlation is
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FIG. 1. Generalized oscillator strengths for the excitation of
krypton to the (a) 4p ( P, /z)5s state and (b) 4p'( P3/p)5s state.

, result of the present calculation using the Hartree-Slater
potential for the atom; ———,result of the present calculation
using the RC:- potential for the atom; +, result of the present
calculation using the RC:- potential for the atom when
"Coulomb hole" correlation effects are omitted; E, experimen-
tal result of Takayanagi et al. [2] at 300-eV electron-impact en-
ergy; A, experimental result of Takayanagi et al. [2) at 500-eV
electron-impact energy.
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FICr. 2. generalized oscillator strengths for the excitation of
xenon to the (a) Sp'( P&z&)6s state and (b) Sp'( P3/2)6s state.

, result of the present calculation using the Hartree-Slater
potential for the atom; ———,result of the present calculation
using the RC:- potential for the atom; +, result of the present
calculation using the RC:- potential for the atom when
"Coulomb hole" correlation effects are omitted; 0, experimen-
tal results of Kim et al. [20].

The results for excitation of xenon to the Sp ( P&&2)6s
state are given in Fig. 2(a). No experimental results are
available for comparison in this case. The excitation en-

ergy for this transition is 0.604 Ry in the HS calculation.
In the RC:- calculation, E„=0.865 Ry when "Coulomb
hole" correlation is included and 0.834 Ry when it is ex-
cluded. A minimum in the GOS occurs at (Eao) =0.9
in the HS calculation. In the RC:- calculation, the
minimum occurs at (Eau ) = 1.0.

The results for excitation of xenon to the Sp ( P3/2)6s
state are shown in Fig. 2(b). The HS result for this exci-
tation was already reported by Manson [9]. The RC:- ex-
citation energy is 0.753 Ry when "Coulomb hole" corre-
lation is included and 0.724 Ry when it is excluded. The
minimum in the GOS occurs at the same value of
momentum transfer as in the Sp ( P, &2)6s excitation,
since the HS calculations do not distinguish the level
splittings. Kim et al. [20] predict the minimum at the
same value from their HF calculation. However, their
experiments predict the minimum at (Lao) =0.7. The

minimum in the GOS occurs at (Eau ) = l. 1 in the RC:-
calculations.

The results of the RC:- calculations, without the
"Coulomb hole" correlations, show that the contribution
from these effects is negligible. Also, exclusion of relativ-
istic terms in these calculations did not lead to any
significant change in the results for the
np ( P, &2)(n + l)s transition (n =4 for Kr and 5 for Xe}
but the resulting GOS was slightly less for the
np ( P3&2)(n+1)s excitation when relativistic effect was
suppressed from the RC:- calculation.

The minimum in the GOS occurs when the radial in-
tegrals in Eq. (14) pass through a minimum. For p ~p 5s

transition the term in A, = 1 alone contributes to the sum
in Eq. (13) and hence the minimum occurs when the radi-
al integral

fP„t(r)j,(Kr)P„ t (r)dr

of Eq. (15) passes through a minimum. This happens for
such a value of E when the first node ofj,(Kr) coincides
with the last node of the product P„(r)P~(r), and the
above integral has roughly equal positive and negative
areas which tend to cancel each other. The existence of a
minimum also depends on the angular momentum of the
target states [21]. For example, when one of the target
states is not an s state, for the simplest case of
min(l, , lf ) = 1, two radial integrals must go through a
minimum simultaneously for the same value of E. The
situation becomes more complicated for higher values of
min(l;, lf }. The position of the minimum in the GOS de-
pends on two factors, viz. , the values of the radial in-
tegral and the excitation or ionization energies.

In the case of continuum transitions, there is a continu-
ous succession of such minima for different E which form
a trajectory on the plane with axes E/R and log~o(Lao)
and hence a trough appears in the Bethe surface [22]
which results from a three-dimensional plot of df IdE as
a function of E and log, o(Etto) employed as independent
orthogonal axes. If a trough reaches the E =0 plane, the
optical limit, it appears as the well-known Cooper
minimum (a minimum of the optical oscillator strength)
[23]. It may be added that minimum (possibly a
zero)/minima in the oscillator strength can be due to a
variety of reasons [24]. Generally, the minimum is not a
zero, as has been discussed in the case of the "Cooper
minimum" [25,26].

For krypton, experimental data are available [2] only
for (Eao) ~ 1. The minimum found in the present calcu-
lations is not seen in the experimental results of Takay-
anagi et al. It will be interesting if experiments at higher
values of momentum transfer are carried out to verify if
the minimum in the GOS predicted by the present calcu-
lations is indeed observed.

It is to be remembered that the minimum in the GOS
may not explicitly manifest itself in the scattering cross
section. The cross section for excitation varies with the
energy dependence of the upper and lower limits of in-
tegration [Eqs. (12}],in addition to its dependence on the
GOS as a function of log, o(Tao) . For large excitation
energies, the upper limit of integration is well beyond the
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value of the momentum transfer at which the minimum
occurs in the GOS and hence a change in the upper limit
does not significantly affect the integral cross section.
The energy dependence of the integral cross section is
therefore mainly due to the change in the lower limit of
integration. The lower limit for electron impact is small

[19] due to the small ratio of the electron to target atom
mass. This ratio is large for ion-atom collisions. It has
been shown by Iwai, Shimamura, and Watanabe [19] us-

ing plane-wave Born approximations for the case of
N +(2s 'S —+2s3p 'P ) excitation that the ion-impact ex-
citation cross section does indeed go through a minimum,
whereas the electron-impact cross section does not. It
will be interesting if ion-impact excitation experiments
are carried out to verify the present results.

Finally, it may be observed that the RC:- results for
GOS are higher than the HS results. One possible reason
for this is the different manner in which the exchange po-
tential is treated in these two models. Another reason is
the fact that the RC:- excitation energies are higher than
the corresponding HS values. The excitation energy ap-
pears as a multiplication factor in the expression for the
GOS [Eq. (9)] and thus causes an enhancement of the
RC:- results over the HS results. Furthermore, while it
is generally known that relativistic effects cause the radial
functions to become compact, different orbitals in a self-

consistent field of a many-electron atom respond in

different quantitative and even different qualitative ways
to relativistic effects [27]. We compared the initial-state

np and the final-state (n +1)s orbitals calculated in the
relativistic RC:- and the nonrelativistic HS model poten-
tials and found that the excited state (n-+1)s orbitals are
relatively more compact in RC:- compared to the initial-
state (np) orbitals. This would allow an enhanced overlap

and consequently an enhanced GOS in the RC:- model
relative to the HS model.

V. CONCLUSIONS

Within the validity of the Born approximation, the po-
sition of the minimum is related to the nodes of the orbit-
als of the electron active in the transition. The calcula-
tions reported here thus provide a stringent test of the
wave functions calculated using the RC:- method. The
results of the present calculations suggest that the RC:-
method is well suited for studying atomic-collision pro-
cesses. Since the RC:- potential was used in separate cal-
culations using different levels of approximation, it is pos-
sible to conclude that the results of these calculations are
not significantly sensitive to "Coulomb hole" correlation
effects but are somewhat sensitive to the relativistic
effects. The differences in the HS and RC:" results are
also caused by the different treatment of the exchange in-
teractions in the two models. We have undertaken
several additional collision studies to examine these fac-
tors in further detail.
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