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Kn (ls —2p ) transition energies for atoms in the range 31 & Z & 100 have been calculated
using the Dirac-Fock model with self-consistent magnetic interaction and full relaxation. Complete
retardation, hydrogenic radiative corrections (with finite nucleus efFects), as well as screening correc-
tions are included. Electrostatic and Breit correlation energies have been computed with relativistic
many-body perturbation theory. Auger shifts and core-core contributions have also been added.
Comparison of these theoretical results with a large body of experimental results shows that the
agreement is well within theoretical and experimental uncertainties up to Z = 83, but experiments
for larger Z show a very large scatter, which remains to be explained.

PACS number(s): 31.10.+z, 31.20.Di, 31.30.Jv

I. INTRODUCTION

Estimates for energies of inner-shell transitions in
heavy atoms require a many-body relativistic theory of
bound states in very high fields. In response to this
evident complexity, recent theoretical and experimental
work has focused on high-Z iona with few electrons for
which complete ab initio calculations are more manage-
able. While precise experimental data are available for
one, two, and three electron ions up to Z = 54 (and even
92 for the 2p-1s transition in heliumlike uranium [1], and
for the 2p-2s transition in lithiumlike uranium [2]), with
generally satisfactory concordance with theory, experi-
mental tests involving ls electrons for Z around 92, and
with a precision better than 10 ppm are still years away.

By contrast rather precise experimental data on Ka
transition energies are available up to Z = 94, and some
less precise data for Z up to 100. While theoretical
progress has been made over the past few years, the prob-
lem was evidently considered sufficiently difficult that
"complete" calculations would be inappropriate. In ad-
dition, several key features needed for 10 ppm estimates
were missing. Very recently, however, a very complete
comparison between experimental and theoretical K and
L transitions in xenon has shown that such a goal is now
reachable [3]. This work reports an attempt to estimate
a wide range of medium- to very-heavy-atom inner-shell
transition energies taking into account all the progress
made in the few-electron systems in recent years. Among
the progress that has been instrumental in reaching high
accuracy, we can point to the ability to compute corre-
lation energies in a relativistic framework, using many-
body perturbation theory, as developed by Johnson and
collaborators [4—12] and by Lindgren's group [3, 13—18].

The latter method was used in this work. For very high
Z it was also very important to realize that due to the
deformation of atomic nuclei, extrapolations of nuclear
radii made from lighter elements (as done, for example,
in Ref. [19]) are unusable. They provide systematic de-
viations of 0.11 fm, which lead to systematic discrepan-
cies between theoretical and experimental energies. This
problem was identified and solved in earlier stages of the
present work [20]. Finally recent progress in the calcu-
lation of screening corrections to the self-energy [21, 22]
have made it possible, if not yet to base directly all cal-
culations to a sound /ED calculation, at least to get
reliable estimates of the error associated with the semi-
classical estimates developed in earlier stages [23].

II. CALCULATION

The calculation consists of a fully relaxed Dirac-Fock
(DF) calculation, described below, and corrections from
correlation and other many-body effects as described in
Secs. IIA and IIB, respectively, as well as from /ED
efFects as described in Sec. IIC. The Breit interaction
is treated on the same footing as the Coulomb interac-
tion all through the calculation. Retardation of the elec-
tromagnetic Geld beyond what is included in the Breit
interaction was added on the Dirac-Fock level.

In previous studies [24, 25] of fermium the Dirac-Fock
method was used to test the validity of the conventional
@ED against nonlinear @ED predictions. In this work a
more precise Dirac-Fock calculation has been performed,
with full exchange and relaxation, using most recent val-
ues for fundamental constants [26]. A Fermi model is
used for the nucleus and the grid used to tabulate elec-
tronic wave functions has at least 64 points inside the
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nucleus, in order to get very precise wave functions in
the region where they will contribute most to radiative
corrections. This number of points was obtained by in-
creasing the number of grid points inside the nucleus from
30 (its original value) until the vacuum polarization value
obtained for the 1s orbital of a hydrogenic uranium ion
matched closely (better than 0.1 eV) the value in Ref.
[19]. In fact, we also had to improve slightly the integra-
tion scheme (close to the origin) for the vacuum polar-
ization, to get a complete agreement.

The parameters for the Fermi distribution are calcu-
lated using spherical mean radii from Ref. [19] up to
Z=70. From Z=70 to Z=83 we used nuclear sizes from a
more recent compilation [27]. For Z higher than 90, one
has to take into account nuclear deformation. We used
more recent experimental data when available, which
have been obtained from muonic x rays [28—30]. Follow-
ing earlier work [10], we computed an averaged mean-
square nuclear radius from the parameters deduced from
muonic x rays. Whenever no experimental nuclear ra-
dius was available, we fitted the difference between mean-
square radii obtained from the formula proposed in Ref.
[19] and the averaged mean-square radii. This difference
is roughly constant and equal to 0.11 fm. The nuclear
radii used for Z ) 90 are displayed in Table I. For high
Z the theoretical results are very sensitive to the nuclear
mean radius and above Z=90 an uncertainty of 0.1 fm
leads to an uncertainty in the transition energy of sev-

eral eV as discussed in Sec. III. We performed a separate
calculation for each isotope for which an experiment has
been done.

The magnetic interaction is included in the self-
consistent-field process. While this gives a relatively
small change in the Dirac-Fock energy of the atom [31],
it does change the wave function at the origin to the
extent that the vacuum polarization contribution is af-
fected. Complete retardation in the Coulomb gauge has
been evaluated as a first-order perturbation. The use of
the Coulomb gauge, in such a nonlocal method as the
Dirac-Fock one, is very important to avoid spurious con-
tributions as has been shown theoretically [32—34] and by
comparing high precision two-electron multiconfiguration
Dirac-Fock (MCDF) results with experiment [35].

A. Correlation

Relativistic many-body perturbation theory is the
method of choice for computing correlation energy on
K and L electrons in heavy atoms. In earlier attempts
by Chen et aL [36] the nonrelativistic correlation contri-
bution to the K and L shell was calculated for zinc. This
number was then used for all elements heavier than zinc,
as a rough estimate of the Coulomb correlation energy.
In a relativistic calculation the correlation contribution
can be separated into two parts, one due to the pure

TABLE I. Mean-square radii and Fermi distribution t parameter (fm). Comparison between extrapolated values and values
deduced from muonic atom x-ray measurements (underlined values). Nonunderlined values are deduced from extrapolated
values corrected with the average of the last column.

90
91
92

93
94

95

96

97

98

99

100

232
231
233
234
235
238
237
239
240
242
244
241
243
245
247
248
247
249
250
249
250
251
251
252
253
254

Extrapolated (Ref. [19])

5.7070
5.6995
5.7143
5.7216
5.7290
5.7510
5.7440
5.7581
5.7653
5.7797
5.7940
5.7725
5.7869
5.8011
5.8160
5.8224
5.8160
5.8294
5.8365
5.8294
5.8365
5.8435
5.8435
5.8505
5.8575
5.8644

Muonic atoms

5.8045
5.8114
5.8158
5.8289
5.8343
5.8625
5.8559
5.8765
5.8867
5.8973
5.9059
5.8928
5.9047
5.9130
5.9279
5.9343
5.9279
5.9413
5.9483
5.9413
5.9483
5.9554
5.9554
5.9624
5.9693
5.9763

Expt. prec.

0.0043

0.0066
0.0031
0.0028
0.0023

0.0022
0.0030
0.0025

2.2456
2.2939

2.2174
2.2939
2.1906
2.2214
2.1920
2.2939
2.2939
2.2939
2.2939
2.2939
2.2939
2.2939
2.2939
2.2939
2.2939
2.2939
2.2939
2.2939
2.2939
2.2939
2.2939

Muonic minus extrapolated values

0.0975

0.1015
0.1073
0.1053
0.1115

0.1184
0.1214
0.1176

0.1203
0.1179
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FIG. 1. Diagrams and expressions for correlation, Auger-shift, and core-core contributions.

Coulomb interaction between the electrons, and one due
to the Breit part of the electron-electron interaction. The
Breit interaction consists of the magnetic interaction and
the first term in the expansion of the retardation of the
electromagnetic field. Correlation corrections due to the
magnetic interaction have been shown to equal Coulomb
correlation at Z = 54 and to be four times larger at
Z = 92 for the ground state of two-electron systems [37].
For hole states the Breit correlation was computed for
the first time, to our knowledge, in Ref. [3] for xenon, to-
gether with the relativistic Coulomb correlation. A dis-
cretized Dirac-Fock-Breit basis set, as described in Refs.
[13, 14], was used to calculate the lowest-order correla-
tion as illustrated in Fig. 1. The sum over excited states,
Ir) and Is), includes angular momenta up to t = 10 for
Coulomb correlation as well as for the Breit interaction
for the K shell. For the L-shell Breit correlation, which
is considerably less important, angular momenta up to

l = 6 were included. The contributions from the highest
angular momenta included can be used to estimate the
uncertainty caused by the truncation of the I sum. That
is, for the L shell in xenon the contributions from l = 9
and t = 10 amount to 0.01 ev and for the K shell they
are even smaller. Thus it can safely be assumed that
higher angular momenta will contribute with less than
0.1 eV. Higher-order correlation is also estimated to less
than 0.1 ev since it scales as I/Z compared to the leading
correlation contribution. Here we have extended the cal-
culations in Ref. [3] to atoms from Z = 31 to 100. Since
the correlation calculations are very tedious and further
the result changes smoothly with Z, see Figs. 2—4, only a
few elements have been calculated. From the results for
krypton, xenon, lead, and plutonium, which are displayed
in Tables II—IV, all other elements have been obtained by
extrapolation. Indeed magnetic correlation energy gives
a sizable contribution at high Z.

TABLE II. Contributions to 1s, 2pi~2, and 2p3~2 ionization energies for Z = 82 (eV). Each individual contribution is
corrected for finite nuclear size.

Level

Coulomb
Magnetic
Retardation (order ur )
Higher-order ret. () u )
Coulomb correlation
Breit correlation
Auger plus core-core
Hydrogenlike self-energy
Self-energy screening
Nuclear polarization
Vacuum pol. (Uehling) n(Zn)
Electronic correction to Uehling
Vacuum pol. n(Zn)
Vac. pol. (Killen k Sabry) n (Zn)
Total level energy

88498.39
-355.02

26.50
6.80
2.09
2.01
0.14

-225.64
11.94
0.10

48.34
-0.28
-2.05
0.37

88013.69

2pc/a

15268.33
-69.26

7.27
-0.12
3.23
0.81

-3.39
-3.88
2.74
0.00
0.50

-0.04
-0.03
0.00

15206.16

2@3/2

13079.67
-46.11

7.25
3.04
3.10
0.54

-1.99
-5.17
2.50
0.00

-0.23
-0.02
0.01
0.00

13042.57
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TABLE III. Contributions to the Kai transition energy for Z=36, 82, 92, 94, 100 (eV). Each individual contribution is
corrected for finite nuclear size.

Coulomb
Magnetic
Retardation (order ur )
Higher-order ret. (& tu )
Coulomb correlation
Breit correlation
Auger plus core-core
Hydrogenlike self-energy
Self-energy screening
Nuclear polarization
Vacuum pol. (Uehling) a(Za)
Electronic correction to Uehling
Vacuum pol. a(Za)
Vac. pol. (Ksllen & Sabry) a (Za)
Total transition energy
Experiment

12677.63
-21.34

1.21
0.05

-1.27
0.36
1.78

-12.76
0.74

1.28

-0.01
0.01

12647.68
12648.01

82

75418.73
-308.91

19.24
3.76

-1.01
1.47
2.13

-220.47
9.44
0,10

48.57
-0.25
-2.05
0.37

74971.12
74970.01

92

99101.59
-459.97

28.05
6.61

-0.85
1.87
2.02

-344.11
15.11
1.08

89.56
-0.43
-4.39
0.68

98436.84
98431.45

94

104456.38
-496.27

30.06
7.32

-0.80
1.95
2.00

-375.42
16.62

101.10
-0.48
-5.08
0.77

103738.16
103734.40

100

121956.17
-619.87

36.62
9.74

-0.71
2.20
1.94

-486.45
22.24

145.28
-0.67
-7.82
1.10

121059.77
121095.00

Experiment minus theory
Experimental precision

0.33
0.05

-1.11
0.17

-5.38
0.28

-3.76
0.60

35.23
15.00

B. Auger and core-core effects

Relaxation and correlation are, however, not the only
many-body efFects. Important remaining efFects have ear-
lier been given names as Coster-Kronig fiuctuations and
Auger efFects. Since the situation regarding the names
of the difFerent contributions is somewhat confusing it is
perhaps appropriate to define precisely the classification
used here.

In second-order perturbation theory there is a class of
contributions which involve two core electrons and one
excited state at the intermediate level

(aha Vis ir hhple) (rhhple i V12 i
ah)

&a + 5 r &holer,exc a,b,core

Expression (I) divides naturally into two subclasses. One
is just a contribution to the relaxation. This is when ei-
ther ia) or, (or ib)) is equal to the hole state, ih), and
further the excited state, ir), has the same angular sym-
metry as ib) (or ia)). The full relaxation can either be
obtained by treating such admixtures to all orders, which
was the method used in Ref. [3], or by performing a full
DF calculation where all the electrons are allowed to ad-

TABLE IV. Contribution to the Kaq transition energy for Z=36, 82, 92, 94, 100 (eV). Each individual contribution is
corrected for finite nuclear size.

Coulomb
Magnetic
Retardation (order ur 2)

Higher-order ret. (& ur~)

Coulomb correlation
Breit correlation
Auger plus core-core
Hydrogenlike self-energy
Self-energy screening
Nuclear polarization
Vacuum pol. (Uehling) a(Za)
Electronic correction to Uehling
Vacuum pol. a(Za)
Vac. pol. (Kallen k Sabry) a (Za)
Total transition energy
Experiment

Experiment minus theory
Experimental precision

36

12623.85
-20.37

1.21
0.09

-1.28
0.34
2.27

-12.92
0.78

1.28

-0.01
0.01

12595.25
12595.44

0.19
0.06

82

73230.06
-285.76

19.23
6.92

-1.14
1.20
3.53

-221.75
9.20
0.10

47.84
-0.24
-2.01
0.37

72807.53
72805.33

-2.21
0.24

92

95276.28
-420.36

28.09
12.50
-1.04
1.44
4.18

-343.60
14.07
1.06

87.50
-0.39
-4.26
0.67

94656.13
94650.72

-5.41
0.56

100197.09
-452.27

30.13
13.94
-1.04
1.50
3.92

-374.13
15.31

98.57
-0.43
-4.92
0.75

99528.43
99524.63

-3.80
1.00

100

116112.59
-559.57

36.82
19.05
-0.98
1.65
3.73

-481.32
19.71

140.61
-0.59
-7.51
1.06

115285.26
115319.00

33.74
15.00
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FIG. 2. ls Breit and Coulomb correlation energies (eV). FIG. 4. 2pi/2 and 2p3/2 Breit correlation energy (eV).
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FIG. 3. 2pi/q and 2p3/2 Coulomb correlation energy (eV).

just to the presence of the hole. As discussed in the be-
ginning of Sec. II the latter method is used in this work.

It is the remaining contributions to (1) which are sub-
ject to a rather confusing labeling. The effects when both
la) and lb) are less tightly bound than the hole state lh),
i.e. Is~I ( l~i, l

and l&sl & lshl are often treated sepa-
rately. In the case when the principal quantum num-
ber for lh) is the same as for la) or lb) the effect is
sometimes classified as Coster-Kronig fiuctuations in cor-
respondence with the experimentally observed Coster-
Kronig transitions. However, since only virtual transi-
tions are considered even energetically forbidden fluctua-
tions, i.e. , ls, + sbl ( lshl, may sometimes be included in
the Coster-Kronig results. Super Coster-Kronig fluctua-
tions refer to the case when all three principal quantum
numbers are the same. Although the Coster-Kronig fluc-
tuations constitute an important subclass of effects there

are other important contributions to (1) and we have
chosen a somewhat different classification scheme.

As in the earlier work on xenon [3] the contributions
where ls + si, l

( lshl will be called Auger effects and
when le~ + si,

l
) lsi, l

we refer to core-core contributions
in correspondence with the usual nomenclature for calcu-
lations on valence states. This separation is natural since
for the Auger effects the intermediate state is autoioniz-
ing, which is not the case for the core-core effects. Thus
the treatment of the latter involves no special problems
while the calculation of the former requires an integra-
tion over a pole in the energy spectrum. The pole is
treated by a method suggested in Ref. [38]. The matrix
elements, obtained numerically, are fitted to a polyno-
mial which make possible an analytical calculation of the
integral. It should be noted that all contributions in (1)
are included in the present calculation.

Coster-Kronig fiuctuations were identified to give siz-
able contributions for 2s holes as early as 1981 in the
pioneering work of Chen and co-workers [36, 39]. Al-

though the core-core and Auger shifts are larger for 2s
or 3p electrons, they are not negligible for 1s and, es-
pecially not, for 2p electrons as shown in Tables II—IV.
For the latter hole states, however, one must be care-
ful to include simultaneously the shifts not covered by
the Coster-Kronig definition which are often of the same
order of magnitude or, as for the case of a 1s or 2p3g2
hole, give the whole contribution [3]. The inclusion of
both the core-core and Auger contribution is also very
important to get values which are smooth functions of
Z. As some of the above calculation are rather time-
consuming, we have performed them on a limited number
of elements. Although the individual contributions some-
times vary enough to make an extrapolation somewhat
uncertain, the sum of the core-core and Auger shifts is
well behaved (Fig. 5) and possible to extrapolate, except
for the L2 shell (Fig. 6) around Z = 92. The problem
for the 2pqyq level is due to the fact that for the impor-
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matic and higher-order core-core effects contribute with
at most a few tenths of an electron volt. As mentioned
above the extrapolation of the core-core and Auger ef-
fects requires the sum of the contributions, at least for
the 2piyz hole. Since the iteration of Auger effects is
not within reach at present and since the accuracy of the
present calculation is around 1 eV up to Z = 82, and less
for higher Z, the higher-order core-core effects are not
included in the results.

C. +ED effects
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FIG. 5. 18 and 2p3y2 core-core and Auger contribution
(eV).
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FIG. 6. 2pi~2 core-core and Auger contribution (eV).

tant admixture of a double vacancy with holes in 2psyz
and 3dsgz the constant part of the energy denominator
(ss(f„, + sgp3, 2 scapi, 2) passes through zero somewhere
around Z = 92. The subsequent switch from a core-core
type of effect to an Auger contribution leads to a discon-
tinuity in the contribution as a function of Z as shown
in Fig. 6. We thus made separate fits for the low-Z and
the high-Z part for the 12 shell. In order to simplify
further this part of the calculation we did not recouple
the angular momenta of the outer shell with the one of
the inner hole.

In Ref. [3] the core-core contributions were iterated to
all orders. That improved the agreement with experi-
ment with one order of magnitude for transitions involv-
ing a 2s hole which have a very large shift due to this
effect. For the Kn transitions the situation is less dra-

The next main difficulty in the present calculation
lies in the evaluation of radiative corrections. For the
vacuum polarization contributions, potential of order
n(Zn) —the Uehling potential —of order o,(Zo.)s, and of
order o;2(Zn)—the Kallen and Sabry potential —have
been used in first-order perturbation with Dirac-Fock
wave functions, accounting for both the finite nuclear size
and screening corrections. Numerical results obtained
through this procedure have been checked against one-
electron results of Ref. [19] for the two first contributions
and against Ref. [40) for the latter and found to be accu-
rate to better than 0.1 eV.

The Uehling potential can be corrected further for
many-electron effects. The expression of this potential
involves the charge density. In all earlier calculations
of inner-shell energies, this charge density was taken as
the proton density. Here we also computed a correc-
tion where the nuclear charge density is replaced by the
electrons' charge density. This correction is very small
except for very high Z and is very time-consuming. It
has been evaluated for all elements with atomic number
larger than 82.

For 1s, 2s, 2pi~z, and 2psyz shells we used one-electron
self-energies from Refs. [41,42). For ns, npiyz, npsgz, and
ndsy2 shells, 5 & n & 3, we used a recent evaluation by
Mohr and Kim [43]. For shells with n & 5, an ns scaling
has been used to get self-energy corrections. It has been
shown [43] that for n & 3, such a scaling reproduces
very accurately direct evaluation. Precise accounting for
the finite nuclear size in the evaluation of all radiative
corrections is really essential in the heavy-atom region.
We have corrected ns and npigz self-energy for the finite
nuclear size as in Ref. [19].

To account for the so-called screening correction to
the self-energy, for which there is no effective potential
valid to all orders in Za, an approximate method based
on semiclassical arguments has been used. This method
provides an effective potential to correct the lowest or-
der in Za of the self-energy for changes in the electronic
density at the nucleus. Very recently a similar potential
has been formally derived from @ED [44]. This method
has been extensively checked against experiment at low
and medium Z in two- [45, 46] and three-electron ions
[47]. For two-electron ions this method produces results
in good agreement with those obtained [48, 49] by the use
of the Kabir and Salpeter equation and I/Z expansion
to correct for changes in the electronic density at the
nucleus and to evaluate two-electron Bethe logarithms.
In a recent calculation [51] in a three-electron system
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the agreement was found to be of the order of 1.5% of
the value. This method also yields results in reasonable
agreement with direct evaluation of the screened K-shell
self-energy by Desiderio and Johnson using a relativistic
Hartree-Fock wave function [50], although a precise com-
parison is difficult, because of strong numerical noise in
their values. In other calculations done for very heavy
elements (a complete set of references on previous calcu-
lation of K and I transitions can be found in [52]) the
self-energy screening correction was evaluated using an
effective Z method which lacks rigorous justification and
has been found to overestimate the screening corrections.
Recently direct calculations of the screening correction on
heavy ions have been reported [21, 22]. For the ground
state of lithiumlike uranium we find in Ref. [21] a self-
energy screening value of —11.41 eV while the method
used here gives —10.76 eV [47]. This represents only a
6% change. We have used, to be very conservative, 20Fo
of the self- energy screening as an error estimate. In
Table II we give the contribution to ionization energies
for lead. Values for the different contributions described
above are listed in Tables III and IV for some elements.

III. COMPARISON WITH EXPERIMENTS

Differences between all available experimental results
for Knq and Kaz transition energies and this calculation

are shown in Figs. 7 and 8, respectively, with experimen-
tal error bars and theoretical uncertainties. The theo-
retical uncertainty is a combination of the uncertainty of
one-electron calculations with extended nucleus (mainly
due to an uncertainty in the nuclear radius) and of a frac-
tion of the self-energy screening correction as discussed in
Sec. II C. For the lighter elements the latter uncertainty
dominates and the estimated error scales as Zs. For the
heavier elements the error scales roughly as Z ~ because
of its nuclear origin. Since some nuclear sizes are much
better known than others, this uncertainty does not vary
smoothly with Z, leading to the small spikes in Figs. 7
and 8. In the near future, when the uncertainty on the
self-energy screening will have been reduced, it should be
possible to use "electronic" rather than muonic x rays to
measure nuclear charge radii.

Theoretical energies and the differences with individ-
ual experimental values for all the (Z, A) pairs available
are displayed in Table V for Knq and Table VI for Kn2.
A simple inspection of Figs. 7 and 8, and of Tables V
and VI, shows that the agreement is compatible with
combined theoretical and experimental uncertainties for
Z ( 90. For many of the highest Z, however, the dis-

crepancy between experiment and theory can reach 35 or
40 eV, while experimental and theoretical error bars are
15 and 5 eV, respectively. Obviously it should also be

x10 x10

4- o
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FIG. 7. Experimental-theoretical energy differences for

Knq. The dashed curve represents a more realistic theoreti-

cal lower bound, due to a likely overevaluation of the effect of
the finite nuclear size on the self-energy (see text at the end

of the conclusion).

FIG. 8. Experimental-theoretical energies differences for
Knq. The dashed curve represents a more realistic theoretical
lower bound, due to a likely overevaluation of the eKect of the
finite nuclear size on the self-energy (see text at the end of
the conclusion).
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noted that some experiments for the same isotope dis-

agree (Z = 93—for both lines —and Z = 98 for the Kaq
line), and also that experiments for close isotopes are in
disagreement (the A = 250 and 251 isotopes of Z = 98).
It is possible, although unlikely, that strong local varia-
tion of the nuclear radius of those highly deformed nuclei,
or strong increase in the nuclear polarization effects due
to the existence of low-lying nuclear levels, could explain
the discrepancy between adjacent isotopes or between ex-
periment and theory. However, that would not explain
the situation for einsteinium (Z = 99), where the Kaq
shows very good agreement, while the Kaz disagrees by
several standard deviations.

It should also be noted that variation of the transition
energy is of the order of 50 eV/fm at Z = 92 and 100
eV/fm at Z = 100. If real, the discrepancy of 35 eV
on fermium would amount to a change of 0.35 fm in the
mean-square radius of the nucleus. This is very unlikely.
Calculations of the nuclear size and deformation param-
eter in fermium have been done by Guet [53] and give
values in close agreement with the one we used here.

The status and role of nuclear polarization in the com-
parison between theory and experiment at high Z is not
clear either. From the work of Plunien et aL [54] we

learn that in zssU the nuclear polarization contributes
+1 eV to the transition energy. This actually increases

TABLE V. Theoretical energies and comparison with experimental values for Kaq (eV). AE = E,„~t, —Et,q, „"Expt. unc. "
is the experimental uncertainty and "Theor. unc. " the theoretical one. References: a, Ref. [56], absolute double flat-crystal
measurements; b, Ref. [57]; c, Ref. [58]; d, Ref. [59], curved-crystal measurement using standard lines (all experimental values
have been corrected for new fundamental constants snd new standard line); e, Ref. [60], Ge-Li spectroscopy; f, Refs. [24, 61-64],
conversion electron spectroscopy; g, Ref. [65] measurements relative to silver Ka updated to its most recent value; h, T. Mooney
(private communication), absolute double flat-crystal measurement.

31
33
36
40
42
44
45
46
47
48
49
50
51
52
54
56
60
62
67
68
69
74
79
82
83
90

91
92

94

169
Nat
197
Nat
209
232

231
233
238

237

239

244

Kaq (Theor. )

9251.92
10543.50
12647.68
15774.87
17479.44
19279.51
20216.GG

21177.25
22163.01
23173.75
24209.80
25271.37
26358.72
27472.12
29778.43
32193.0G

37361.47
40119.41
47547.78
49129.10
50742.55
59319.34
68806.28
74971.12
77109.90
93351.56

95868.75
98437.92
98436.84

101059.80

103738.16

103736.59

Kag (Expt. )

9251.68
10543.27
12648.01
15774.92
17479.35
19279.14
20216.10
21177.06
22162.89
23173.95
24209.72
25271.33
26358.83
27472.18
29778.74
32193.22
37360.69
40118.43
47547.03
49127.18
50741.42
59318.77
68804.41
74970.01
77108.82
93347.26
93347.28
93347.58
95866.26
98433.66
98432.96
98431.45
98434.24

101056.22
101072.28
103734.40
103737.77
103740.20

-0.24
-0.23
0.33
0.05

-0.09
-0.37
0.10

-0.20
-0.12
0.20

-0.08
-0.04
0.11
0.06
0.31
0.22

-0.78
-0.98
-0.74
-1.91
-1.13
-0.57
-1.87
-1.11
-1.07
-4.30
-4.28
-3.98
-2.49
-4.26
-3.88
-5.38
-2.59
-3.58
12.48
-3.76
-0.39
3.61

Expt, unc.

0.07
0.08
0.05
0.05
0.01
0.18
0.20
0.22
0.03
0.19
0.28
0.23
0.25
0.27
0.05
0.07
0.07
0.06
0.58
0.12
0.09
0.05
0.22
0.17
0.20
0.2
2
0.6
2
0.5
0.5
0.3
2
3
6
0.6
5
2

Theor. unc.

0.1
0.1
0.1
0.2
0.2
0.3
0.3
0.3
0.3
0.3
G.4
0.4
0.4
0.4
0.5
0.5
0.6
0.7
0.9
1.1
1.1
1.4
1.7
1.9
2.0
2.7
2.7
2.7
3.3
3.0
3.0
3.0
3.0
3.7
3.7
3.3
3.3
3.3

Ref,

h
h
h
h

g
g
g
g
a
g
g
g
g
g
a
a

a
a

c
a
a
a

a
b
C

C

C

C

a
b
b
d
C

d
b
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TABLE V. (Continued)

96

97

98

99
100

241

243
245
248
249
250
250

251
251
254

Knq (Theor. )

106473.37

106472.65
109266.37
109264.94
112119.49
112118.97
115035.63

115035.06
118015.53
121059.77

Kni (Expt. )

106470.72
106472.00
106473.18
109273.00
109272.16
112127.14
112111.48
115035.11
115031.00
115067.00
118018.00
121095.00

-2.65
-1.37
0,53
6.63
7.22
?.65

-7.49
-0.52
-4.63
31.94

2.47
35.23

Expt. unc.

6
6
3
5
2

5
6
8
5

15
10
15

Theor. unc.

3.5
3.5
3.5
4.4
4.4
4.7
4.7
5.0
5.0
5.0
54
5.8

Ref.

TABLE VI. Theoretical energies and comparison with experimental values for Kn2 (eV). b,F = E,„~q —Eqq„„"Expt. unc. "
is the experimental uncertainty and "Theor. unc. " the theoretical one. References: a, Ref. [56), absolute double flat-crystal
measurements; b, Ref. [57]; c, Ref. [58]; d, Ref. [59], curved crystal measurement using standard lines (all experimental values
have been corrected for new fundamental constants and new standard line); e, Ref. [60], Ge-Li spectroscopy; f, Refs. [24, 61-64],
conversion electron spectroscopy; g, Ref. [65] measurements relative to silver Kn updated to its most recent value; h, T. Mooney
(private communication), absolute double flat crystal measurement.

31
33
36
40
42
44
45
46
47
48
49
50
51
52
54
56
60
62
67
68
69
74
79
82
83
90

91
92

93

169

197

209
232

231
233
238

237

Knq (Theor. )

9225.21
10507.90
12595.25
15690.62
17374.53
19150.68
20073.74
21020.66
21990.70
22984.52
24002.35
25044.35
26110.78
27201.79
29458.59
31816.73
36848.32
39524.34
46701.33
48223.35
49774.18
57982.39
66992.31
72807.53
74817.72
89960.00

92287.27
94657.21
94656.13

97069.80

Kn2 (Expt. )

9224.84
10507.50
12595.44
15690.65
17374.27
19150.46
20073.65
21020.12
21990.27
22984.02
24002.00
25044.01
26110.75
27201.53
29458.21
31816.57
36847.46
39523.34
46699.92
48221.55
49772.61
57981.35
66990.64
72805.33
74816.12
89956.93
89956.31
89956.81
92283.29
94652.69
94651.79
94650.72
94655.27
97068.25
97085.89

-0.37
-0.40
0.19
0.03

-0.26
-0.21
-0.10
-0.54
-0.43
-0.50
-0.36
-0.34
-0.04
-0.26
-0.38
-0.16
-0.87
-1.00
-1.41
-1.81
-1.58
-1.05
-1.67
-2.21
-1.60
-3.07
-3.69
-3.19
-3.98
-4.51
-4.34
-5.41
-0.86
-1.54
16.10

Expt. unc.

0.07
0.08
0.05
0.05
0.01
0.18
0.20
0.22
0.03
0.19
0.28
0.23
0.25
0.27
0.05
0.07
0.07
0.06
0.58
0.12
0.09
0.05
0.22
0.17
0.20
0.2
2
0.7
2
0.5
0.5
0.6
2
3
5

Theor. unc.

0.1
0.1
0.1
0.2
0.2
0.3
0.3
0.3
0.3
0.3
0,4
0,4
0,4
0.4
0.5
0.5
0.6
0.7
0.9
1.1
1.1
1.4
1.7
1.9
2.0
2.?
2.7
2.7
3.3
3.0
3.0
3.0
3.0
3.7
3.7

Ref.



RELATIVISTIC EFFECTS, CORRELATION, AND QED. . . 2435

TABLE VI. (Continued)

94

95

96

97

98

99
100

239

244
241

243
245
248
249
250
250

251
251
254

Ka2 (Theor. )

99528.43

99526.89
102033.31

102032.60
104584.60
104583.20
107183.96
107183.46
109833.89

109833.33
112534.30
115285.26

Kn2 (Expt. )

99524.63
99525.33
99529.23

102029.29
102031.00
102031.21
104589.00
104590.19
107194.17
107164.49
109837.15
109818.00
109860.00
112501.00
115319.00

-3.80
-3.11
2.34

-4.02
-2.31
-1.38
4.40
7.00

10.21
-18.97

3.26
-15.89
26.67

-33.30
33.74

Expt. unc.

1
5
2
6
5
3
5
2
5
6
8
5

15
10
15

Theor. unc.

3.3
3.3
3.3
3.5
3.5
3.5
4.4
4.4
4.7
4.7
5.0
5.0
5.0
5.4
5.8

Ref.

In conclusion, the use of the latest developments in
MCDF calculations and relativistic many-body pertur-
bation theory have enabled us to compute Ko. transi-
tion energies in medium- and high-Z atoms to high accu-
racy. It has enabled us to show that some experimental
data are inconsistent, while the most reliable ones are in
rather good agreement with theory. The good quality of
the prediction in the low-Z region shows that our eval-
uation of the correlation contributions and of the Auger
and core-core shifts is adequate. The good agreement in
the thorium-plutonium area is a proof that most QED
and relativistic corrections are well accounted for. How-
ever, the high scatter of some experimental data in the
fermium region precludes further conclusions from this
study. In order to understand QED in high electric fields,
it is then very important that precise and reliable mea-
surements of the Ka transitions for Z ) 90 can be re-

TABLE VII. Predictions of Ka transition energies for
some elements for which no high precision measurements have
been done (eV). NC stands for not calculated.

53
61
63
64
65
66
70

NC
38725.68
41543.38
42997.66
44482.96
45999.74
52389.50

28317.76
38172.79
40903.61
42310.52
43745.67
45209.40
51355.01

the difFerence between experiment and theory. The nu-
clear polarization can be invoked only in cases where this
difference is positive. In a more recent paper more precise
values for the nuclear polarization have been calculated
for lead and uranium [55]. We have included those values
in all our tables. Finally we give some calculated values
for elements for which we have not found any precise ex-
periments, mostly in the rare-earth region (Table VII).

IV. CONCLUSIONS

peated in the near future. A more detailed study of the
role of the nuclear polarization as well as more measure-
ments of the nuclear radii are also needed.

Note added. Upon completion of this work we learned
[66] that the values we used for the finite nuclear size
correction to the self -energy from Ref. [19] are proba-
bly too large by = 30'%%uo . These correction terms have
been computed independently by two groups following
the method of Refs. [22] and [67]. The new correction
values can lead to a reduction of theoretical transition
energies by 0.6 eV in lead, 1.7 eV in uranium, and
= 5.3 eV in fermium. This should improve the agreement
between theory and the very precise experimental values
at Z = 90, 92, and 94, and for several other elements
in the transuranic region. Since these new calculations
have been performed only for one or two elements and
are not yet available, we have not corrected the present
values. This problem should not afFect elements Z ( 70
for which this correction is negligible.
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