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The molecular-orbital description of two-electron atoms [J. M. Feagin and J. S. Briggs, Phys. Rev. A
37, 4599 11988)],derived from H, + by interchanging the roles of electrons and nuclei, is generalized to D
dimensions. For H2 itself there exist myriad exact interdimensional degeneracies because D~D+2 is

equivalent to m ~m +1, augmenting by unity the projection of the electronic angular momentum on
the internuclear axis. When the molecular orbitals (MO's) are transcribed to treat two-electron motion,
additional constraints limit the exact degeneracies to states in D =3 and 5, but many approximate degen-

eracies persist. Since the MO description emphasizes rotational properties of the two-electron atom, the
link between dimension and orbital angular momentum is a pervasive feature. We use this link to classi-

fy groups of quasidegenerate doubly excited atomic energies and to explain striking similarities among
certain pairs of hyperspherical or molecular-orbital two-electron potential curves.

PACS number(s): 31.50.+w, 31.20.Gm

I. INTRODUCTION

Recalcitrant problems often can be better understood
when recast as analogs of more accessible prototypes.
This is the motivation for relating highly correlated states
of a two-electron atom to a molecular counterpart, the
H2+ molecule ion. The adiabatic molecular-orbital
description of two-electron atoms [1] has elucidated both
qualitative and quantitative features of the atomic spectra
via parallels with the molecule [2]. Thereby the separa-
bility of the H2+ problem can be exploited to character-
ize symmetries of the atomic states. A kindred approach
has proven useful even for the one-electron case, in relat-
ing spheroidal eigenfunctions of the hydrogen atom to its
hidden symmetry [3]. In this paper, we extend the
molecular-orbital (MO) description to arbitrary spatial
dimensions, and thus facilitate a more comprehensive in-

terpretation of two-electron spectra.
The adiabatic MO approach and D-dimensional gen-

eralization are naturally complementary, since both em-
phasize the rotational properties of a system. The MO
description defines a set of body-fixed angular-momentum
quantum numbers [2], and the D-dimensional generaliza-
tion leads to a direct correspondence between angular
momentum and spatial dimension [4]. In addition, both
the MO description and dimensional treatment are asso-
ciated with degeneracies in the H2 molecular-orbital
curves. Generalization to arbitrary dimension results in

Hz interdimensional degeneracies [4], and motion near
the saddle region of the two-center Coulomb potential
corresponds to approximate "saddle" degeneracies [2].
Thus it seems promising to combine the two approaches
in addressing the two-electron atomic problem.

Because of their pronounced collective electron
motion, the two-electron doubly excited states are funda-
mental in understanding the dynamics of electron corre-

lation. Herrick and co-workers first noticed the rovibra-
tional character of two-electron doubly excited states [5]
and subsequently described the quasidegenerate spectra
in terms of multiplet structure [6]. Yuh et al. also used
the rovibrational model to interpret the angular correla-
tions contained in configuration-interaction wave func-
tions [7]. In addition, an alternative to the rovibrational
model, the hyperspherical approximation, has been used
to illustrate many qualitative features of the correlated
electron motion of two-electron atoms [8] and, recently,
to obtain quantitative results [9]. The adiabatic molecu-
lar treatment of two-electron atoms is distinct from these
methods because it extracts an internal quantization axis
directly from the Hamiltonian.

Previously, Lin [10] noticed similarities in the hyper-
spherical curves for states of different symmetries. Good-
son et al. [11]attributed these similarities to interdimen-
sional degeneracies of two-electron atoms, including
some exact degeneracies proven by Herrick [12]. Some
further approximate inter dimensional degeneracies
among doubly excited states have also been noted [13].
In this paper, we provide an explanation for the similari-
ties of the two-electron adiabatic hyperspherical poten-
tials and the degeneracies by emphasizing their molecular
foundation. Essentially, we will show that the similar
two-electron hyperspherical curves are based on molecu-
lar orbitals which correspond to dimensionally related
pairs of H2 states. We also illustrate how doubly excit-
ed atomic energy levels associated with saddle degenera-
cies can be approximated from D-dimensional 'S' ener-
gies. The D-dimensional energies have been calculated
using dimensional perturbation theory [14].

Before developing the details of this correspondence,
we first examine H2+. In Sec. II, after describing the D-
dimensional Hz+ problem and its exact interdimensional
degeneracies, we identify the approximate degeneracies

46 2410 1992 The American Physical Society



46 MOLECULAR-ORBITAL DESCRIPTION OF DOUBLY EXCITED. . . 2411

associated with localized motion about the saddle point
of the two-center potential. Section III focuses on linking
H2+ molecular orbitals to doubly excited states of the
two-electron atom and derives the D-dimensional gen-
eralization of the adiabatic MO method. In Sec. IV, we
show how doubly excited atomic energies in D =3 can be
organized into multiplets using the single-channel molec-
ular approximation in D dimensions. Finally, in Sec. V
we explain the observed similarities among pairs of hy-
perspherical two-electron curves using the D-dimensional
molecular description. We also show how exact interdi-
mensional degeneracies associated with H2+ are altered
in the D-dimensional MO treatment of electron motion.

II. TWO-CENTER COULOMB PROBLEM
IN D DIMENSIONS

A. Quantum numbers and exact degeueracies

The Hamiltonian for H2 in D-dimensional cylindrical
coordinates is defined by [4]

m (D) ——'
+ V(p, z)+

2 Bp 2 Qz 2p

—E(R ) P(pz;R ) =0, (4)

where m (D) is dimensionally dependent and defined by

m(D)—:ln 2+ —,'(D —3) .

Equation (4) is identical in form to the three-dimensional
Schrodinger equation in cylindrical coordinates, with
m(3) =I, —=m. Consequently, states with the same m (D)
quantum number have the same energies E(R) in
different dimensions D and the same wave functions

~~~(p, z;R). They differ only in Yl( )(Q& z), the an-
gular part of the wave function.

The two-center equation for H2+ given in Eq. (4) for
the cylindrical coordinate system is separable in prolate
spheroidal coordinates (A, ,p), related to cylindrical coor-
dinates by

1 1 8 8 +ppD 2 Qp Qp Q
2

+ V(p, z),

2

p

(la)
and

) R (g2 1 )1/2( 1 p2)1/2
2

z= —,'Rip .

(6a)

(6b)

where the two-center Coulomb potential is

V(p, z ) = —[p +(z+ —,'R ) ]

[ 2+( I R )2] 1/2 (lb)

The coordinate p specifies the perpendicular distance of
the electron from the internuclear axis and z the projec-
tion on that axis, measured from the midpoint between
the nuclei; R is the internuclear distance. The squared
angular-momentum operator in D dimensions, denoted
by l~ &, depends on D —1 angles Q~, and satisfies the
equation

Hence the wave function is factorizable according to

(p, z; R ) =q&„(A,;R )y„(p;R ) .

An H2+ electronic eigenstate is then completely classified

by three exact spheroidal quantum numbers: n&, n„and
m(D). Here nz and n„represent the respective number
of nodes in the /(, and p coordinates, while m (D) is the
sum of lz 2, the number of nodes in the 0& 2 coordi-
nate, and a dimensionally dependent term. These quan-
tum numbers may be equivalently expressed by the para-
bolic quantum numbers that pertain to the separated
atom limit: n „n2, and m (D ). The correspondence is

lg) ] Y/t )(Qg) ])=l(l+D —2) YI( )(Qn ]) . (2) 7l ) =kg, alp = 71p

2
(8)

%=p ' '
P, (p, z;R ) Y(( )(Qn 2) . (3)

Inserting this into the Schrodinger equation
[h E(R)]~%')=0, yield—s a two-dimensional problem
in (p, z):

The eigenfunctions YII I
are hyperspherical harmon-

ics, the generalized harmonics on a D —1 dimensional
surface [15]. They can be chosen to diagonalize simul-
taneously the angular-momentum operators lz
l~ 2, . . . , l, with eigenvalues labeled by the total angu-
lar momentum l = lz &

and the multi-index

[m]=[I&& z, ln 3, . . . , I&]. For D=3, Eq. (2) reduces
to the familiar eigenvalue equation for the spherical har-
monics YI (Q2), with I =lz and m =I, .

The D —2 angles Q~ 2 involved in the l~ 2 operator
of Eq. (1) are separable with the ansatz for the wave func-
tion

where [ ] denotes the largest integer. We note also that
the correspondence with the commonly used spherical
quantum numbers (n, l, m) for the united atom limit is
n =n &+n„+m + 1 and l =n„+m. A complete descrip-
tion of an H2+ eigenstate including nuclear motion re-
quires three further quantum numbers: J, M, and v,
which specify the rotational and vibrational eigenstates
for R, the internuclear axis.

B. Saddle properties and near degeneracies

In addition to dimensionally related states with the
same nz and n„but different m(D), H2+ has a class of
near degenerate states. The corresponding potential
curves have different united-atom limits but are close in
energy for a large range of internuclear distances, includ-
ing the separated-atom limit. The near degeneracies of
this class of states are attributed to localized motion
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about the saddle point p=z=0 of the two-center poten-
tial in three dimensions [2].

Saddle degenerate states are classified according to cer-
tain properties. One of these is the quantum number

n
A =( —1) ", which specifies whether the state has a node
(A = —1) or an antinode (A =+1) at the saddle and
which consequently divides the entire H2+ spectrum into
two subspectra based on the amplitude of the wave func-
tion at the saddle point of the potential. In addition to
having the same value of the A quantum number, states
related by saddle degeneracies must converge to the same
separated-atom threshold N. The key requirement for
saddle degenerate levels, however, is a consequence of the
harmonic expansion of the potential V(p, z) in Eq. (4)
about the saddle point. This leads to a radial
Schrodinger equation for an isotropic oscillator in the
D —1 dimensional subspace perpendicular to the internu-
clear axis,

m (D)——,
'

+ + ro p —Eg(p—;R ) =0,
2 ap2 2p2 2

(9)

where co=2R '~ . The eigenvalues of Eq. (9) are given
by [2] E =Aro(vz+ I ), with
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TABLE I. Saddle and interdimensional degeneracies of H2+
electronic states arising from separated atom manifolds with
principal quantum number X.

u2=2n +m(D) . (10)

Here, the quantum number n& can be substituted for n

since A, is proportional to p in the saddle limit where
A, ~ 1 and p ~0, as seen from Eq. (6a). For Hz+ states to
have degenerate eigenvalues within the saddle expansion,
it is necessary that they have identical u2 quantum num-
bers. Since u2 is a function of two quantum numbers,
Hz+ states with different (n&, m) but the same uz can be
saddle degenerate. The three properties which specify
H2 saddle degenerate states —the presence or absence
of a node at the saddle point of the potential, conver-
gence to the same separated-atom threshold, and degen-
eracy of the isotropic oscillator levels —can then be sum-
marized in the three quantum numbers 3, N, and vz.

Since N=n, +n2+m+1, another convenient way to
label saddle degenerates states is to use the separated-
atom notation of parabolic quantum numbers (n, n2m )".
For example, in three-dimensional space, the states
(006)—,(114)—,(222) —,and (330)+—are saddle degenerate
in the N=7 manifold with uz =6. In this paper we con-
centrate on the A =+I spectrum, the states with an-
tinodes at the saddle.

In view of Eq. (5), any set of saddle degenerate states
can also be described as arising from interdimensional de-
generacies among o. states (lD 2=0). For the example
just mentioned, the four saddle degenerate states corre-
spond to D =15, 11, 7, and 3, respectively. Table I lists
all the sets of saddle degenerate states that occur in three
dimensions for N (5, with the corresponding values of D
(at right) for 0 states. In addition to the parabolic quan-
tum numbers, the customary united-atom labels are
shown. Within any set of saddle degenerate states
An, =An 2

= —1, Am =2, and AD =4. These molecular
quantum numbers are directly related [2] to the quantum
numbers K=n2 —

n& and T=m, which are widely used in

the hyperspherical treatment of two-electron atomic
states [8—10]. Since v2 =N —K —1, within any set of sad-
dle degenerate states AK =0 and ET=2.

In the approximation of Eq. (9), the saddle states with
m )0 are doubly degenerate, corresponding to the +m
azimuthal degeneracy of the oscillator. This degeneracy
will be lifted by coupling with overall rotation, to give a
pair of near-degenerate states with the same value of v2

and m but difFerent parity, as in the "A doubling" which
occurs for excited states of the degenerate bending vibra-
tion of a linear molecule [16]. Since in such states the
molecule can be regarded as bent on the average, this
doubling can also be attributed to "asymmetry splitting"
of a slightly asymmetric rotor. If the total electronic an-
gular momentum is L, the pair of near degenerate states
may be designated L, I — and I L —

(
—1) in

asymmetric-rotor notation [16]. This convenient nota-
tion also connects naturally with the large-D limit, which
gives "bent" electronic structures for both the H2+ sys-
tem [4] and for the two-electron atom [13].

Figure 1 displays (at left) the systematics of the quan-
tum numbers for the two-center Coulomb problem in "di-
amond digrams" analogous to the "Isupermultiplets" (at
right) used by Herrick, Kellman, and Poliak [6] to classi-
fy intrashell doubly excited states of two-electron atoms.
In this format, nearly degenerate saddle states or asym-
metry doublets appear on the same horizontal within
each diamond. States with given m or o. states with given
D appear on the same vertical. The saddle states of Table
I appear in the main torso of each diamond. Other states
in each N multiplet which have solo values of v2 appear
in top and bottom "caps" with m =0 or 1 and ~A ~

=N or
N —1. The molecular and atomic patterns are isomorph-
ic.
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coordinates are related to the electron-nucleus vectors r;
by R=r, —r2, and r =

—,
' (r, + r2). All lengths in Eq. (11)

are scaled by the nuclear charge via x =Zx', and energy
is scaled according to E=E'/Z, where primed quanti-
ties are in atomic units. The D-dimensional Laplacian
operators are given by

d 1 8

g dX,. R ' BR BR

2
D —1

R
(12a)

and

p2 y d 1 ~ D —]
pD ' Br Br

ID
2

2
(12b)

where XD, and lD, are the analogous D-dimensional
angular-momentum operators. These are specified fur-
ther in the Appendix. We can now recast the dimension-
ally generalized two-electron atomic problem into a di-
mensionally generalized molecular problem by an ansatz
for the spatial wave function:

P(M), s, n(r R)

OO

~ I ~ a I43210 ~ ~ I

1 2 3 4

1se )(fl )F,(R )R
i, ImI

XP;
(

)(FR), (13)

FIG. 1. Supermultiplet display of H2+ states (at left) labeled

by parabolic quantum numbers (n &, n2) and by the projection m

(for D =3) of the electronic angular momentum in the internu-
clear axis. The dimensions D corresponding to m =0 states are
also indicated as well as other quantum numbers that specify
the separated atom shell: N=n&+n&+m+1, the Stark projec-
tion K=n2 —n&, and the saddle excitation v2=2n&+m. Iso-
morphic supermultiplets are shown (at right) for corresponding
intrashell doubly excited states of two-electron atoms.

III. MOLECULAR DESCRIPTION
OF TWO-ELECTRON STATES
IN ARBITRARY DIMENSIONS

2 1 1H= —V ——V—2
R 4 I'

ri
1 1——+

r2 ZR

where we use molecular Jacobian coordinates. These

The remarkable symmetries exhibited by the H2+
molecular spectrum can be used to interpret the pattern
of quasidegenerate doubly excited atomic states. The
molecular symmetries provide a simple and appealing in-
terpretation of the atomic spectra because the atomic
states can be described in terms of adiabatic MO poten-
tials, as demonstrated in recent work [2,17]. Here we
only state the known results but emphasize the new
modifications resulting from D-dimensional generaliza-
tion. In particular, we demonstrate how the molecular
description of the complete three-body motion aFects
H2+ interdimensional degeneracies.

The D-dimensional motion of two electrons in the field
of an infinitely heavy nucleus of charge Z is described by
the Hamiltonian

where the tilde denotes body-fixed quantities. This D-
dimensional generalization of the molecular two-electron
wave function is similar to its three-dimensional proto-
type [1]. As in D = 3, the wave function of Eq. (13) is an
eigenfunction of the exact two-electron symmetry opera-
tors, spin (S) and parity (n. ), as well as of the total orbital
angular-momentum operator LD, with quantum num-
ber L. In D dimensions, however, there is an addi-
tional set of D —3 angular-momentum operators
(LD 2, LD 3, . . . , L f) which all commute with the Ham-
iltonian of Eq. (11). The quantum numbers for these
operators are condensed in the multi-index {M ]
=[LD 2, LD 3, . . . , L, ] where L, =M is the familiar
projection of the angular momentum onto the space-fixed
x3 axis. This is analogous to Eq. (2).

The sum in Eq. (13) consists of the products of three
terms. The first factor 2) is a linear combination of gen-
eralized rotation matrices (described in the Appendix)
pararnetrized by a set of D —1 Euler angles QD, . Con-
struction of 2) as a linear combination of the matrices
guarantees that the complete wave function P is an eigen-
function of the spin and parity operators [18]. The factor
2) rotates the space-fixed coordinate frame S into a body-
fixed frame S which is defined such that the interelectron-
ic vector R lies along the body-fixed xD axis. The other
two terms in Eq. (13) represent the body-fixed two-
electron wave function. F, (R )/R ' " corresponds to
interelectronic vibration, and the wave function

~(F;R) is the solution of Eq. (3) of the H2+ two-
center problem. Choosing the separable two-center
molecular wave function of Eq. (3) for P;

~

~(F;R ) in Eq.
(13) is the key to the molecular characterization of two-
electron states. This choice allows us to restrict the ex-
pansion on the right-hand side of Eq. (13) to one single
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channeli, [m I,

y', l.I'"( R)

(14)

d2

dR
+ V(R )+ EF(R ) =0 . —

ZR
(15a)

Solutions of Eq. (15a) form series of two-electron levels
converging to the hydrogenic threshold N associated with
the particular V(R). The intrashell levels, which are our
main focus, are vibrational ground-state energies for
different potentials. The two-electron potential V(R )

contains all the D-dimensional dynamics and can be writ-
ten as a sum of two terms:

In the following, we drop the tilde symbol in denoting
body-fixed quantities, because henceforth we will always
work in the body-fixed frame.

Upon first consideration, the single-channel molecular
ansatz of Eq. (14) may not seem to be a suitable approxi-
mation, especially in higher dimensions, since the exact
wave function includes a sum over all orientations [m I

and all channels i of ()));
(

((r;R ). However, the single-
channel molecular approximation in three dimensions
yields reasonable values for the two-electron energies of
symmetric doubly excited states [2], indicating that the
wave function of Eq. (14) correctly accounts for electron-
ic density in the major part of the Hilbert space associat-
ed with these states. Furthermore, the H2+ nodal lines
along fixed A, and p of Eq. (14) explain the nodal patterns
found in the probability density of doubly excited states
[17].

Moreover, generalization of the single-channel molecu-
lar ansatz to D dimensions provides further justification
for the molecular description of two-electron atomic
states. We show that this simple, almost analytic molecu-
lar approximation of Eq. (14) can explain similarities and
exact degeneracies of two-electron levels of different an-
gular momenta or, equivalently, in different dimensions.
We first project the Schrodinger equation (H E)

~
t(j) =0-

onto the known part of the D-dimensional molecular
two-electron wave function of Eq. (14) in the 2D —1 vari-
ables (r, Qz, i). The 2D-dimensional problem then
reduces to a one-dimensional differential equation for in-
terelectronic vibration,

(D,L)~(D 2i—,L+i), i =0, 1,2, 3, . . . . (16)

Even with the presence of the D-dependent centrifugal
barrier —'(D —3)(D —5)/R in Eq. (15b), interdimension-
al degeneracies still occur for potentials which satisfy the
additional requirements that the barrier has the same
value for D and D 2i—as described in Eq. (16). Due to
the restriction D ~ 3 imposed by the term V3 in Eq. (15b),
these states are limited to members of the set
(D=3,D =5). This degeneracy is well known from
Herrick's work [12].

Although it destroys many H2+ interdimensional de-
generacies, the analytic dependence of the interelectronic
potential V(R) on D allows us to make quantitative pre-
dictions about the interdimensional similarities of two-
electron states. Consider two series of states in different
dimensions D,D, linked by the transcription of Eq. (16),
D =D' —2i The .potentials V(R) and V'(R) of these
states differ only in the D dependent angular-momentum
barrier described in Eq. (15b). The difference in the bar-
rier is quadratic in i but linear in D. Thus, when we go to
higher-dimension D, interdimensional similarities are
better preserved for the case where D' also increases and
i remains fixed than for the counter example where i in-
creases while D' is constant. However, we primarily con-
sider the second case, since we wish to approximate
high-angular-momentum states in D'= 3 using L =0
states in higher dimension D. As illustrated in Sec. IV,
we find that deviations of the 'S' intrashell levels for
D ~ 11 from their corresponding energies in D'=3 and
I. 4 do not exceed 4%. Essentially, the single-channel
MO approximation of two-electron motion shows exact
degeneracies between energy levels in D'=3 and 5 and
similarities of variable degree between other dimensional-
ly related states.

IV. QUASIDEGENERACIES OF INTRASHELL
DOUBLY EXCITED ATOMIC STATES

dence of V3 (R ) thus is confined to the angular-
rnomentum quantum numbers

L(D)=L+ —,'(D —3), m(D)=ln z+ —,'(D —3) . (15d)

Equations (15) are derived in the Appendix.
Without the second term in Eq. (15b) there would be

exact interdimensional degeneracies within the single-
channel approximation for states connected by the usual
"dimensional link" [19]

V(R)= V (R)+
4R

(15b)

L(D)[L(D)+ 1]—m (D )+
R 2

(15c)

with E (n)(R) the eigenvalue of Eq. (4). The D depen-

Here V3(R ) is a generalization of the well-known poten-
tial in three dimensions [2],

V, (R)=E (n)(R)+((() (n)~

I +l
+ " '+ —q'lw )

4 r ~m(D)

Within the single-channel molecular approximation,
we can organize the doubly excited atomic energies into
multiplets. Furthermore, applying the interdirnensional
and saddle degeneracies in H2+ potential curves to the
two-electron atom unifies different aspects of the two-
electron spectrum which have been studied using various
approaches [1,2,5 —13]. We will use the interdimensional
relations of Sec. III to define "generator" 'S' potentials
in D ~ 3. These D-dimensional MO's can each be unique-

1y related to a group of three-dimensional MO potentials
which give rise to quasidegenerate atomic intrashell lev-
els. Thus the complex spectrum of two-electron intra-
shell levels is greatly simplified to generator S' states in
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dimensions D ~3. The generator potentials are defined
by the molecular quantum numbers (n, n2m(D))", where
m(D)=(D —3)/2 and either n& or n2 or both are zero.
Thus, in the diagrams of Fig. 1, the corresponding gen-
erator states are located along the edges of each diamond.
Since they are of 'S' symmetry, the generator potentials
for A = + 1 states can be completely characterized by the
dimension D and the quantum number E =n2 —n &,

where D ~ 3 and E runs from —N to +N in integer steps.
For each of the generator potentials the corresponding

group of quasidegenerate two-electron potentials in D =3
can be identified in three steps given below. For clarity,
we also outline properties of a specific example, the gen-
erator potential with D =7 and E =0.

(i) Select the angular momentum for the D=3 MO
which connects it with the generator MO in D according
to the transcription of Eq. (16). The angular momentum
for D =3 which corresponds to the E=0 state in D =7 is
L=m =2. Thus, since K=O implies n, =n2=0, this
generator's dimensionally related MO in D =3 is (002)
in the separated-atom notation. For this state N =3.

(ii) Find the other MO potentials which are saddle de-
generate with the dimensionally related MO. The only
saddle degenerate MO for (002) in the manifold N=3
with v2=m =2 is (110)+ with v2=2n, =2 and
L =m =0.

(iii) Construct the two-electron atomic states which
originate from each saddle degenerate MO. In general,
due to the A doubling, there will be two quasidegenerate
atomic levels of the same vibrational excitation but oppo-
site spin and parity associated with each MO potential.
For our example, we obtain the ('D', D') pair from
(002)+ but only a 'S' state from (110)+, since the S'
symmetry is forbidden.

We are now able to construct complete groups of
quasidegenerate intrashell energy levels because these
three steps account for the three known types of approxi-
mate or exact degeneracies: (i) the interdimensional de-

generacy, (ii) the saddle degeneracy; and (iii) the molecu-
lar A-doubling or "asymmetry-doublet" degeneracy.

Figure 2 exhibits quasidegenerate excited D'= 3 energy
levels of helium with N ~ 5 and L ~4 which correspond
to 'S' intrashell levels for D =3, 5, 7, 9, and 11. Again
we use the diamond supermultiplet format to display the
D'=3 states. However, only the E=0 and —1 states are

I
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KOQ

shown since at present D-dimensional energies are avail-
able only for these intrashell states. Table II lists both
the energies of the D'=3 [20—24] states and the corre-
sponding 'S' generator states for E=O and —1; these
arise from nominal 1s and 2p configurations, respec-
tively, but configuration mixing is large, especially for
N ) 1. The energies ED(K) of the K =0 generator states
have been calculated to eight or more significant figures
by both variational [25] and perturbation [14,26,27] tech-
niques. To a fair approximation, these energies can be
obtained by simply combining first-order perturbation
calculations about the D ~ 1 and oo limits [28]; this gives

FIG. 2. Correlation of quasidegenerate excited D'=3 energy
levels of helium with K=0 or —1 (at left, format as in Fig. 1)
with corresponding 'S' "generator states" for D =3,5,7,9, 11 (at
right). Ordinate scale plots ( —E) ', where E (in hartree
atomic units) is energy below the double-ionization limit
(He +2e ). Energies and MO designations are given in
Table II.

ED(K =0)= —[2Z/(D —1)] [0.788 85 —0.079 11(1—5)—0.025 92(1—5) +0.015 815(1—5) + ],

with 5=1/D; the accuracy is 0.14%%uo for D=3 and im-
proves as D increases. The energies ED (K) of the
I(:=—1 generator states are from similar dimensional
perturbation calculations [26].

Figure 3 plots the ratio of the energies for each of the
quasidegenerate states and the generator state of the ap-
propriate dimension, specifIed by 2N+ 1=D+2iK i. Al-
though the deviation from unity of these normalized en-
ergies increases with D, the discrepancy is less than 4%
up to D= 11. The normalized energies increase with D
because the centrifugal term in Eq. (15b) causes the inter-
dimensional degeneracies to become progressively less
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FICx. 3. Energies of quasidegenerate D'=3 helium states nor-
malized to corresponding generator state. Format as in Figs. 1

and 2.
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TABLE II. Quasidegenerate helium intrashell levels and corresponding generator levels in higher di-
rnensions.

(nl, n2, m )

(0,0,0)+

(0,0, 1)

(1,0,0)+

(0,0,2)+

(1,1,0)+
(1,0, 1)+

2S+ lL n.

lge

3pe
lpO

lge

3Do

lDe
lge
3pe

lpo

3

2.9037

0.7105'
0.6913
0.6219'

0.3151
0.3145
0.3175'
0.2907'
0.2820'

—ED(K =0)

2.9037

0.7105

0.3127

—ED(K = —1)

0.6216

0.2913

D+2II~
I

(0,0, 3)+

(1,1, 1)+

(1,0,2)+

(2, 1,0)+

(0,0,4)+

(1,1,2)+

(2, 2,0)+
(1,0, 3)+

(2, 1, 1)+

3Fe
1Fo
3pe
lpo
3Do

lDe
lge

360
16e
3Do
lDe
's"
F'

IFO

3pe
lpo

0.1789'
0.1791
0.1802g

0.1788'
0.1671'
0.1676'
0.1682g

0.1154'
0.1149'
0.1147'
0.1149'
0.1152'
0.1094'
0.1096'
0.1087g

0.1079g

0.1749

0.1115

0.1667

0.1075

'Reference
Reference

'Reference
Reference

'Reference
'Reference
gReference

[11].
[20].
[21].
[22].
[23].
[24]
[6];derived by graphical estimation of shift from neighboring levels with same N and K.

rigorous as D becomes larger. On the other hand, the
saddle degeneracies and the near coincidence of asym-
metry doublets become more accurate for higher quan-
tum numbers.

V. DiSCUSSION

The dimensionally generalized molecular-orbital
description of two-electron states proves to be efficient
because the D dependence can be condensed into a simple
analytic form contained in the adiabatic MO potential.
This provides a systematic procedure for analysis of ob-
served similarities among two-electron potential curves
derived from the hyperspherical method [10] as well as
elucidating other quasidegeneracies among doubly excit-
ed two-electron states.

Correlated two-electron motion is often described by
hyperspherical potential curves V(9t), in terms of the hy-
perradius 9t =(r, +ri)'~ . These curves can be uniquely
associated [1] with MO potential curves V(R ) which are
functions of the interelectronic distance R, as specified in

' L (n&, ni, m ) "~ '(L+1) (n&, n 2m +I)", (18)

where ~=( —1) . Application of the "dimensional link"
of Eq. (16) to the second state in Eq. (18) results in the ex-

Eq. (15). Lin first noticed that certain hyperspherical po-
tential curves are remarkably similar in shape [10].
Goodson et aI. ascribed these similarities to interdimen-
sional degeneracies [11],with the added assumption that
the wave function does not change appreciably as D goes
from 3 to 5.

The molecular-orbital description adds legitimacy to
this assumption, because each pair of similar two-electron
potentials can be characterized by the same n&, n„quan-
tum numbers, regardless of the dimension. Consequent-
ly, states based on similar two-electron curves but associ-
ated with different angular-momentum quantum numbers
L(D) and m(D) have the same internal correlation pat-
tern. The formal relation between the quantum numbers
of the corresponding potential curves in D=3 can be
written as
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actly degenerate state in D=5 with the same quantum
numbers n& and n2 as the first state of Eq. (18) has in
D =3. The identical nodal structure of these dimension-
ally transformed states explains why the potentials of the
original D =3 pair of curves have similar shape.

For example, one of the pairs of similar potential
curves which satisfies Eq. (18) is composed of the
'S'(0, 2, 0)+ curve in the (N=3) manifold and the
P'(0, 2, 1)+ curve in the (X=4) manifold. The

correspondence of Eq. (18) derived from the molecular
nodal structure of two-electron states is also valid for
higher quantum numbers n&, n2, m, and L. Figure 4
shows two examples of related pairs of curves.

The similar shape of such pairs of MO potential curves
can be demonstrated more effectively by utilizing dimen-
sional scaling. This is illustrated in Fig. 5, which shows
that the scaled curves nearly coincide over a wide range
of R. The scaling [27—30] accommodates the singularity
structure of the two-center Hamiltonian h as a func-
tion of dimension. The scaled energy and distance are
specified by
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Scaled interelectronic distance Rs

V, =uV, R, =R/P,
where

u=2X, P=D(D —1)/6 .

(19a)

(19b)

FIG. 5. Two-electron MO potentials of Fig. 4 scaled accord-
ing to Eq. (19), for pairs of dimensionally related states: (a)
'S'(0, 2,0)+ and 'P'(0, 2, 1)+ states, and (b) 'P'(0, 1, 1)+ and
D'(0, 1,2)+ states.

The a factor removes a Coulombic pole in the energy at
the D~l limit [28]; the p factor scales the distance
linearly in (D —1) and quadratically in D for small and
large D, respectively [29];p becomes unity for D =3. For
the states considered in Figs. 4 and 5, the correspondence
between D and the m quantum number gives simply
a =18 and 32, and P= 1 and —", .

The "dimensional link" stated in Eq. (16) definitively
connects dimension and angular momentum, thereby im-
posing exact hydrogenlike degeneracies between MO po-
tentials in different dimensions. Most of these degenera-
cies are lifted when the MO approximation is applied to
two-electron motion, since the presence of a second
angular-momentum operator limits exact degeneracies
for two-electron MO potentials to D =3 and 5. Yet other
dimensionally linked potentials are still approximately

N
l/l
0)

-0.05-
O

OPc 010
LIJ

I
I
I

I

I
I
I
I
I
I
I
I

i

N=4

= M=3

—0.15
0

I I I I I

20 40 60 80 100
Interelectronic distance R (Z bohrs)

FICr. 4. Two-electron MO potentials of Eq. (15b) for pairs of
states (D =3) related by dimensional transcriptions. Solid
curves for 'S'(0, 2,0)+ and P'(0, 2, 1)+ states and dashed curves
for 'P'(0, 1, 1)+ and D'(0, 1,2)+ states, in the notation of Eq.
(18): +'L (n l, n2, m )". Distance and energy units are scaled
by nuclear charge Z as in Eq. (11).

degenerate. Our motivation for defining generator 'S'
MO potentials in D ~ 3 was to create a simple
classification scheme capitalizing on these degenerate and
near-degenerate relationships. Each generator character-
izes a specific group of doubly excited two-electron levels
in D =3 with various angular momenta and symmetries.
Thus the generator states simplify the seeming disarray of
doubly excited resonance energies.

Our discussion here is restricted to the single-channel
MO approximation and the interdimensional degenera-
cies associated with it. However, we emphasize that the
general approach based on Eq. (13) is a promising
method for finding all exact interdimensional degenera-
cies of three-body systems interacting via pairwise forces
[18). The utility of the D-dimensional MO description in
elucidating rotational properties of such systems stems
from the inherent nexus between dimension and angular
momentum.
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APPENDIX

Before deriving the single-channel adiabatic potential
of Eq. (15b) in D dimensions, we briefiy review necessary
results from D-dimensional angular-momentum algebra
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[31] and from the theory of representations of the rota-
tional group in D dimensions [32].

(i) The angular-momentum components are generally
defined as elements of a second-rank tensor

L;J X;pJ Xjpi (Al}

which are antisymmetric and Hermitian, L, = —L,
=L;.

(ii) The tensors (Al) form a linear space. In particular,
the sum L,, = I;, +X;, is an angular-momentum operator
if both its components I; and X," are angular-momentum
operators. This is a direct consequence of the linearity of
the commutator that defines the angular-momentum Lie
algebra,

D —1 D —1 D —1

L~, —
—,
' g L, +"g L(p L——n ~+ g Lu (A7)

d2+ ]q2 +ETC4" (Aga)

The last sum in (A7) is not invariant under rotation of
the coordinates. Thus LD 2 cannot be.

We now proceed to the derivation of the single-channel
adiabatic potential given in Eq. (15b). This potential is
the expectation value

, + —,'(D —1)(D —3)
V(R}=

R

[L,),L„(]=ifiL;q5, ( .

(iii) A scalar product is defined by contracting

with

+!M(( (4( (Agb)

D D

Ln (
—

—, g Li)L,&

—
—, g L;&. (A3)

(iv) The eigenfunctions of Lr
&

are the generalized
harmonics YL(~((Q~ &), which diag&'dualize simultane-

ously all angular-momentum operators L;, i ~ D —2,
with eigenvalues

L, YL(M((Aa ))=L,(L, +i —1)YL (M((Qc) )), (A4)

L; D(M(( (
=L;(L;+i —1)D (M((~( (A6a)

where [M I
= [L~ z, Lz& „.. . , L, ]. The quantum

numbers obey the chain rule L—=LD, ~LD 2~

(v) The D-dimensional rotation matrix 2)(M(( ((J7) is
the irreducible representation of character
(L,O, . . . , 0)=L for the unitary operator D(A) that ro-
tates the D-dimensional coordinate system S into the
body-fixed coordinate system S. The space of the repre-
sentation L is spanned by the D-dimensional angular-
momentum eigenfunctions lL[M] ) in (A4). A matrix
element of D in this basis is given by

D(M(( ((8)=( L[ MIlD (A) L[m } ) . (A5)

In this form, D IMI I I
is a simultaneous eigenfunction of

the total angular-momentum operator LD, with eigen-
value L(L+D —2) and of all the angular-momentum
operators L, , i ~ D —2, in the space-fixed frame

The wave function P( (
from Eq. (13) is the eigenfunction

of the Hz+ Hamiltonian h in (1). We have suppressed
the index i for simplicity. The tensor of total orbital an-
gular momentum is the sum of I," and X;I, which respec-
tively refer to the r and R coordinates of Eq. (12),

L;, —:I,, +X,, (A9)

Since R lies along the xD axis in the body-fixed frame
with R=(0,0, . . . , R), it follows from the definition of
the angular-momentum tensor (Al) that

Lj'(t j for i J D 1 (A10)

Equations (A7), (A9), and (A10) allow us to recast X.n
as

D —
1

Lc), Lc)—~+In—,
—l~ ~

—g L(nl, n .

(Al 1)

The last sum in (All) changes the values of the angular-
momenta quantum numbers I; F [m ] of P( ((r;R).
Therefore, this term does not contribute to the expecta-
tion value (ASa) for which the set [m I represents good
quantum numbers. Since 4 from (Agb) is an eigenfunc-
tion of L, , the only nontrivial term in (A 1 1)
for calculating the expectation value (AS) is

Ig —p lP( (). To obtain this term, we

expand

and in the body-fixed frame

L,- D
I)MI I I

=L, (L,-+i —1)D I~t I
(A6b)

((r, R )=r ' ' g fI(r, R )ll[m I ) .
I =I

D —2

(A12)

(vi) Only L, , i =D —1, is a scalar with respect to the
scalar product (A3) in D dimensions. Hence Ln, is in-
variant under rotation %, while the operators L, ,
i ~D —2 are not. Consequently, the eigenvalues for the
L, , i ~ D —2 operators in the space-fixed frame (A6a) are
difI'erent from those in the body-fixed frame (A6b). The
fact that the L;, i ~D —2 operators are not scalars is
seen from the relation

Using (A4) and (A12), we obtain

b, l = g (I —I~ ~)(i+i~ ~+D —2)
I=ID —2

X IfI (r,R )dr+in z . (A13)

Substitution of I and IL, z with 1(D) and m (D) analogous
to (15d}yields
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b, l = g [(l(D} —m(D}][1(D)+m(D}+1]
1(D)=m(D)

As a last step we must show that the expectation value

D —3
X Jft(p)(r, R)dr+m(D)—

2
q2 +g TC (A16)

(A15)

(A14)
Since 1(D) and m (D) are invariant under the transcrip-
tion of Eq. (16) we can finally reduce (A14) to a conven-
tional matrix element in three dimensions with a simple
D-dependent correction term:

~I'=(4(.
)
II,', —Ip

=(P~(p)(x,y, z;R )II.'+i'ly (p)(»y z'R ))
D —3

2

can be reduced to its expression in D =3. We can rewrite
4(V„= —

—,'h + V(p, z) where V(p, z} is the potential in

(lb) and does not directly depend on the dimension D.
Since d /(dR ) also does not affect angular variables, we
can integrate (A16} over all angles of dimension D ~ 4 to
yield the identical matrix element in D =3. Combining
the results of (Al 1), (A14), and (A16) leads to the form of
the two-electron potential V(R) given in Eq. (15).
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