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Configuration-interaction and Hylleraas configuration-interaction methods in valence-hond theory:
Calculation of the nuclear shielding constant for the ground state of the hytlrogen molecule
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Values of the magnetic shielding constant in the ground state of the hydrogen molecule are calculated
using explicitly correlated Gaussian functions. The total shielding at equilibrium amounts to 26.73 ppm.

PACS number(s): 31.20.Di, 31.20.Rx, 33.25.Dq

The most accurate calculations of two-electron two-
center systems such as H2 have been performed with the
KoIos-Wolniewicz wave function. In addition to the best
potential-energy curves (see Refs. [1,2] and references
therein), a wide range of very accurate expectation values
[3,4] and electric and magnetic linear-response properties
[2,5] have been calculated. However, computational
difFiculties arising from the evaluation of integrals con-
taining r type operators have been a serious obstacle to
calculating such interesting molecular properties as nu-
clear magnetic shielding, spin-orbit coupling, electric
field, etc. So far, for the elliptic coordinate basis set of
the Kofos-Wolniewicz wave function, the required in-

tegral formulas have not been obtained, except for the
electric-field gradient operator [6]. Another type of func-
tion, containing explicitly the interelectronic distance r,2,
has been used for many years. In this method, which is a
special case of the Hylleraas configuration-interaction
(HCI) approach, the basis consists of Gaussian functions
multiplied by either an exponential, exp( yr, 2), or a-

linear, r, 2 correlation factor. Both these types of Gauss-
ian basis sets have been tested for two-electron systems
and give energies [7] comparable to those obtained using
the Kolos-Wolniewicz function. Recently, we have pro-
posed a HCI two-electron wave function of the valence-
bond type (HCIVB) [8]:

PHcIvB( 1,2) = g c;F;(1,2)rI'z, v; =0 or 1, (1)

where F; are gerninal functions defined as symmetrized
products of primitive Cartesian Gaussian functions cen-
tered on the nuclei. For two-electron systems this wave
function gives energies within 1 cm of the best theoret-
ical results. The aim of this paper is to demonstrate the
ability of the HCIVB function to reproduce magnetic
properties and to obtain accurate values of the magnetic
shielding constant o. and the rnagnetizability y of H2.
This is the first calculation of cr with explicitly correlated
wave functions. Throughout this article atomic units are
used.

For a closed-shell molecule placed in a static uniform

magnetic field 8 and containing a nucleus X with a mag-
netic moment pN, the electronic Hamiltonian may be
written

W B,((tN ) =—,
' g ( i Vk + Ak ) + V—, (2)

k

where V includes all Coulomb interactions, and Ak is the
vector potential describing the total magnetic field at the
position of electron k

PN XrkÃ
Ak =

—,'BXrkG+
2

C PkN
(3)

In the above equations the symbols i, V', and
c=137.0359895 have their usual meaning. rkG is the
vector from a chosen gauge origin 6 to electron k, while

rkN is the position of the kth electron with respect to the
given nucleus X. Multiple perturbation theory applied to
the Hamiltonian (2) and the assumption of the Coulomb
gauge for the vector potential (V A=O) lead to the
desired expressions for the diamagnetic and paramagnet-
ic components of the nuclear magnetic shielding constant
tensor o. p=o. p+o.Pp. Thus

1 ~,~,(00) rkN rkG ap rkN kG,~,(00) ~

2c k kN

(4)

0'~'1 e'"'d~1
0ap — l kG P

k

y f )p(00) N )p(10)d
2c k kN

(5)

The first-order functions 4" ', +&"are obtained as varia-
tional solutions of the corresponding equations

(~(00) ~(00)))p(10)—1 ~ ia )p(00)a2~kg
k

I(~(00) /(00)))p(01) —1 ~ N q/(00)

C k rkN

and for the components of the magnetizability tensor

+ap +ap+ +ap~
d p

y p= —
—,
' g f )Il' '(r„G5 p

—r„Gr„G)%' 'dr, (6)
k

y'p= —
1 g f 0"~'lk )I'p"'d~+ f (It' )lg %'")dr

k
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+2 +(]0] l ~ I& qy[00a2~kG
k

(y(01))— qy(01)(~(00) E(00))y(01)d
P P P P

(10)

+2f tp' " — g ql' 'dr (11)
C k l'k~

In Eqs. (5) and (7) the definition of the electronic angular
momentum operator is I = —ifir X V and lko and if& are
components of this operator referred to the origins G and
N, respectively.

Although both o. and y are physically gauge indepen-
dent, in practical calculations with finite basis sets they
show a dependence on the choice of gauge origin. The
problem has been approximately solved by means of the
individual gauge for localized orbitals (IGLO), localized
orbital, localized origin (LORG), or gauge-invariant
atomic orbital (GIAO) procedures [10], and recently a
formal solution in terms of polarization propagator
theory has been proposed [11]. Oddershede and Geertsen
have developed the idea of "the gauge constant" as a
tneasure of the gauge origin dependence of cr [12]. A
similar quantity can be defined also for y. The gauge ori-
gin transformation, N =G —d, applied to a hydrogen
molecule placed along the x axis and inserted into
(4)—(7) gives

o (G)=o (N)+d C" C = —' f 4' —' — 4' 'dr
f]~

(12)

o~(G)=o (N)+d C, C = —' f 0" —' 'p', "dr,i3

y (G)=y (N)+d'C C

(13)

(14)

y~(G)=pl'(N)+d, 'C~», C~ = ', f +'——I 'P, dr, (15)00

where 4, is a variational solution of the equation
(%' ' —E' ')4, = —t)+' '/t)z. Obviously, for a com-
plete basis set, the gauge constants C =C +C~ and
C&=C&+C~& are zero. All deviations from these condi-

with the unperturbed Hamiltonian &' ' and its eigenval-
ue E' ' and eigenfunction 4' ', by minimizing the fol-
lowing functionals [9]:

( qy( &0)
)
—f y( to)(~(oo) E(00) )ql(10)d

tions cause the unphysical gauge origin dependence of the
total a and y.

The variation-perturbation method briefly outlined
above has been applied to the calculation of the shielding
tensor of the proton in the H2 molecule. To assess the ac-
curacy of the present shielding results, calculations of g
and several other expectation values have been performed
with the same type of wave function. For the hydrogen
molecule in its X 'X+ ground state the equilibrium dis-
tance R, =1.4011 a.u. was assumed. The gauge origin G
was chosen at the molecular midpoint. The zeroth-order
functions used are described in Table I. The functions la-
beled 118—504 do not contain correlation factors so they
are of CI type. The last function referred to as 586 con-
tains explicit correlation factors, as specified in the table.
The nonlinear parameters of the unperturbed functions
were optimized with respect to the ground-state energy
by the method described in Ref. [8]. The final results
have been obtained with the 586 function.

The first-order functions, %'," ' and 4", ", possess Hg
symmetry while 4, possesses H„. The required symme-
try is ensured by taking proper Gaussian products in the
geminal functions F; [Eq. (1)]. In the present calculations
the following types of geminal functions have been in-

Pz~ PxPz~ „2Pzs Py yz Pz g» Pz 2 Pz»
d &d „p,d „and sd, . The perturbation corrections rel-

ative to the noncorrelated zeroth-order functions are also
limited to the noncorrelated geminal functions. Detailed
discussion and examples of how to build the geminal
functions are given in the previous paper [8]. Initially,
the first-order functions were constructed from the bases
of the three lowest eigenstates of proper symmetry, i.e.,
the nonlinear parameters of the basis functions were
found by the optimization with respect to the energies of
these eigenstates. Such a procedure was successful in the
case of the dynamic polarizability calculations [13] yield-
ing excellent agreement with the most accurate results
[5,14] for both ground and excited states. However, it
failed when applied to the paramagnetic components. In
that case, and especially for o~, the optimization of the
nonlinear coefficients with respect to the computed pa-
rameters appears to be necessary. The optimization pro-
cedure was carried out until convergence to at least four
significant figures was reached, which corresponded to
about 100 expansion terms.

The behavior of the calculated quantities with the
change of 4' ' is shown in Table II. It is known that an

TABLE I. 4" ' basis definitions. No stands for a number of basis functions. E' ' is given in har-
trees. Note that only the last function contains correlation factors r».

No

118

372

504
586

E(00)

—1.172 128

—1.174059

—1.174 104
—1.174470

Definition

70 geminal functions of the type ss, 16 of sp,
16 of p p„, 16 of p~p~+p, p,

Geminal functions of 35 different types generated
from Gaussian functions s through f'

CIVB corresponding to 10s4p2d1f full CI
504 augmented by 82 most important r» terms

'See Ref. [8] for details.
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TABLE II. Convergence of the magnetic shielding (in ppm)
and gauge constant components (in ppm a0 ') with the 4'
basis size, N0. C and C stand for the gauge constants for the
perpendicular components of or and o [see Eqs. (12) and (13)],
respectively.

X0 g d
II

gP —'CP 3( da
2

—Co'

118 25.223 27.870 0.9727
372 25.154 27.884 0.9889
504 25.153 27.878 0.9897
586 25.151 27.882 1.0021

13.373
13.505
13.507
13.537

13.401
13.541
13.547
13.557

0.019
0.024
0.027
0.013

'For the exact wave function, the Hellmann-Feynman theorem
gives —'C" = —13.563 ppm a0 '.

accurate zeroth-order wave function is necessary when a
precise variational solution of the first-order perturbation
equations is required. A regular approach of the
paramagnetic parameters to the exact value can be ob-
served when better and better %" ' functions are em-
ployed. The accuracy of the wave function also affects
expectation values, but no regular trend in o

II
and o.

~ can
be established. The goodness of the set of functions ap-
plied can also be characterized by the gauge constant C .
The closer to zero is the gauge constant, the less gauge
dependent are the calculations. The perpendicular com-
ponent of o~ depends linearly on the gauge displacement
d„=G„H„:o ~~( G—) = rr~~( H) + ,' C~ d„, an—d analogously

for diamagnetic components. Table II contains values of
—,'C and —,

'C" according to the convention above. The
exact value of the diamagnetic part of the gauge constant,
C, is known (see Table II) and an estimate of the quality
of 4' ' can be performed. The converged value of the
paramagnetic gauge constant, C~, tends to approach the
corresponding negative diamagnetic value in order to
minimize the total C . Results of these attempts are
given in the last column of the table. The absolute value
of the gauge constant C increases with increasing basis

size, except for the last step. This counterintuitive
phenomenon illustrates the fact that only the exact
zeroth-order wave function assures validity of the varia-
tional principle for the solutions of Eqs. (8) and (9).
Therefore a poor zeroth-order function can accidentally
yield results of second-order parameters close to the ex-
act values.

Table III presents selected expectation values corn-
pared with the best results obtained with the Kofos-
Wolniewicz wave function. The highest relative
difference does not exceed 0.05%. The values of (x Ir ),
(x Ir ), and (z Ir ) are computed with a wave func-
tion of high quality. Accuracy of the electric field (about
0.05% of relative error) is examined by a comparison
with the exact value, which can be derived from the
Hellmann-Feynman theorem. At equilibrium, by
definition, the total electric field affecting the nucleus is
zero, thus a contribution coming from one electron is
1/2R, =0.254702 a.u. The two latter quantities are es-
timated by a summation to ( 1 lr ), which when com-
pared to the most accurate known value gives a relative
deviation of only 0.0007%. Also the components of y
and yl' agree very well with those evaluated with the
Kogos-Wolniewicz wave function [15]. The impercepti-
bly small C& guarantees independence of the presented
results from the choice of gauge origin. The two total
magnetizabilities, the first computed with the gauge at a
nucleus and the second according to the transformation
formulas (14) and (15), differ by approximately 0.02%.
The brief discussion above together with the results listed
in Table III entitles us to believe that the results of the
shielding calculations are of the same quality as those of
x

In Table IV the final results concerning o. are listed
along with other theoretical and experimental values.
Most of the theoretical results were obtained without tak-
ing into account electron correlation effects. Among
these, coupled Hartree-Fock results of Iwai and Saika
[20] and Sadlej and Raynes [21],who used large basis sets

TABLE III. Comparison of expectation values (in a.u. ) and the magnetizability components (in
e a0/2m ) obtained with the N0 =586 wave function to the best results available in the literature. All
entries given for R, =1.4011a0. h~=yII —yi. 6 and H stand for the molecular midpoint and the pro-
ton, respectively.

E(00)

2
XG

2
ZQ

2
rG

2
rH

1/rH
XH /rH3

XH /rH2 3

zH /rH2 3

Present

1 ~ 174 470'
1.024 242
0.761 975
2.548 191
3.038 961
0.912446
0.254 579
0.388 860
0.261 793

1.174475
1.023 758
0.762 004
2.547 766
3.038 537
0.912452

&II

X,(H)
XPi«)
XPi(H)
—y(G)
—y(H)
4~(G)
h~(H)

Present

1.523 949
1.786 216
2.276 986
0.053 436
0.543 681
1.663 170
1.663 523
0.208 831
0.209 361
0.000 713

[15]'

1.523 951
1.786 196

0.053 463

1.663 139

0.208 782

'The latest value is 1.174475 88 hartree, interpolated from the data given in [18].
From the Hellmann-Feynman theorem (xH /rH ) = 1/2R, =0.254 702a0

'C~ in units of e /2m.
'Explicitly correlated wave functions in elliptic coordinates.



2354 JACEK KOMASA, WOJCIECH CENCEK, AND JACEK RYCHLEWSKI 46

TABLE IV. Comparison of the components of the magnetic shielding constant (in ppm) obtained with the No =586 wave function
to the best results available in the literature. Unless indicated, all entries given for R, = 1.4011ao.

Present [19]' [20] [20]s [21] ' [22]' [23] [24] '" [25]" Experiment

II

Og(G)
"(H)

o.~j(G )

cr~~(H)
o.(G)
~(H)
ho. (G )

Ao. (H)
C '

27.8817
25.1510
34.6482

1.0021
—8.4814
26.7293
26.7384

1.7286
1.7149

—0.0130

27.82

34.44

—8.67

26.45

2.05

27.89
25.06
34.60
0.89

—8.05
26.60
27.00

1.94
1.34

—0.57

27.82
24.87
34.45
0.92

—8.45
26.46
26.61
2.03
1.82

—0.20

27.826
24.837
34.440
0.743

—8.296
26.329
26.705
2.246
1.682

—0.537

27.964 28.169
26.453 25.418

34.737
0.190 0.518

27.083 26.680

1.321 2.233

27.83 27.84

34.55 34.395

26.50

1.83 2.02

—8.55 —8.565 —8.45+0.12[26] —8.48 [25]
26.24+0.17[27], 26.366+0.070[4]

26.61 26.58+0.36[17], 26.43+0.60[28]

'In units of ppmao '.
R, =1.4ao.

'R, = 1.402ao.
Self-consistent-field (SCF) zeroth-order function, variation-perturbation method.

'Many-body perturbation theory (MBPT).
I'Coupled Hartree-Fock (CHF).
Configuration-interaction (CI) zeroth-order function, variation-perturbation method.

of similar quality (s-, p-, d-type Gaussians) seem to be the
closest to the noncorrelated limit. As we can conclude,
correlation effects on the particular o. values are rather
small and do not exceed 2%. The only exception is
o~t(G), but the true coupled Hartree-Fock (CHF) limit is
in this case difficult to estimate due to the large
discrepancies between the available results, even obtained
with similar basis sets. In any case, our value 1.0021
differs significantly from the other published results. The
equilibrium shielding cannot be directly compared with
the experimental one. Assuming the trends reported by
other authors [4,16,17], one can expect that applying
corrections for rovibrational and temperature effects will

give a value of o(300 K)=tr, —0.39=26.34 ppm which

can reasonably be compared with the experiment. And
again, the near-zero value of the gauge constant C en-
sures the gauge invariance of the magnetic shielding con-
stant and of its anisotropy Ao =o.

II

—o j. The difference
of the shieldings computed with the gauge at the nucleus
and the bond midpoint is less than 0.01 ppm or about
0.03% of relative difference.

The high quality of the wave function used and the
near independence of the calculated magnetic shielding
constant on the gauge origin allow us to conclude that
the calculations of o. presented in this paper lead to accu-
rate theoretical values.

This work was supported by KBN Grant No. 1565/2/91.

[1]W. KoIos, Adv. Quantum Chem. 5, 99 (1970); D. M.
Bishop and L. M. Cheung, ibid. 12, 1 (1980).

[2] J. Rychlewski, in Molecules in Physics, Chemistry and
Biology, edited by J. Maruani (Kluwer, Dordrecht, 1988),
Vol. 2, pp. 207-255.

[3] W. KoXos and L. Wolniewicz, J. Chem. Phys. 43, 2429
(1965).

[4] R. V. Reid, Jr., Phys. Rev. A 11,403 (1975).
[5] J. Rychlewski, J. Komasa, and W. Cencek, Phys. Rev. A

41, 5825 (1990).
[6] R. V. Reid, Jr. and M. L. Vaida, Phys. Rev. A 7, 1841

(1973); G. Staszewska and L. Wolniewicz, Acta. Phys.
Pol. A 50, 855 (1976).

[7] S. A. Alexander, H. J. Monkhorst, R. Roeland, and K.
Szalewicz, J. Chem. Phys. 93, 4230 (1990};A. Preiskorn,
G. C. Lie, D. Frye, and E. Chementi, ibid. 92, 4941
(1990).

[8] W. Cencek, J. Komasa, and J. Rychlewski, J. Chem. Phys.
95, 2572 (1991).

[9] E. A. Hylleraas, Z. Phys. 65, 209 (1930).
[10]W. Kutzelnigg, U. Fleischer, and M. Schindler, %MR

Basic Principles and Progress (Springer-Verlag, Berlin,
1990), Vol. 23, pp. 165—262.

[11]J. Geertsen, J. Chem. Phys. 90, 4892 (1989); Chem. Phys.
Lett. 179, 479 (1991).

[12]J. Oddershede and J. Geertsen, J. Chem. Phys. 92, 6036
(1990); I. Paidarova, J. Komasa, and J. Oddershede, Mol.
Phys. 72, 559 (1991).

[13]J. Komasa (unpublished).

[14]J. Rychlewski, Mol. Phys. 41, 833 (1980).
[15]J. Rychlewski and W. T. Raynes, Mol. Phys. 41, 843

(1980).
[16]J. P. Flament, H. P. Gervais, and M. Rerat, J. Mol. Struct.

(Theochem. ) 164, 121 (1988).
[17] W. T. Raynes, A. M. Davies, and D. B. Cook, Mol. Phys.

21, 123 (1971).
[18]W. KoJos, K Szalewicz, and H. J. Monkhorst, J. Chem.

Phys. 84, 3278 (1986).
[19]G. W. Parker, Mol. Phys. 46, 183 (1982).
[20] M. Iwai and A. Saika, J. Chem. Phys. 77, 1951 (1982).
[21] A. J. Sadlej and W. T. Raynes, Mol. Phys. 35, 101 (1978).
[22] D. Zeroka, J. Chem. Phys. 59, 3835 (1973).



CONFIGURATION-INTERACTION AND HYLLERAAS. . . 2355

[23] D. B. Cook, A. M. Davies, and W. T. Raynes, Mol. Phys.
21, 113 (1971).

[24] J. R. Hoyland, J. Chem. Phys. 41, 3153 (1964).
[25] H. J. Kolker and M. Karplus, J. Chem. Phys. 41, 1259

(1964).

[26] R. F. Code and N. F. Ramsey, Phys. Rev. A 4, 1945
(1971).

[27] D. F. Evans, J. Magn. Reson. 26, 369 (1977).
[2S] T. Myint, D. Kleppner, N. F. Ramsey, and H. G. Robin-

son, Phys. Rev. Lett. 17, 405 (1966).


