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Helium doubly excited states with zero angular momentum and electrons located
on the same side of the nucleus
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A particular set of two-electron atomic resonances for the helium atom with zero total orbital angular
momentum (S states) has been recently studied theoretically [K. Richter and D. Wintgen, J. Phys. B 24,
L565 (1991)]. These resonances essentially have both electrons on the same side of the nucleus and the

outer electron "frozen. " The present work suggests that the energies of these resonances correspond,

when the degree of excitation of both electrons increases, to the energies of resonances associated with

the Hamiltonian H =p'/2+p'/2 Z/r Z—/r'—+1/~ Ir~
—~r'~

~
in a space where both particles have

zero angular momentum (E=8'=0). Moreover, the energy of each of these resonances appears to be

that of the lowest member of an almost unperturbed Rydberg series of resonances converging to a single

ionization threshold of He. The analysis of the problem relies on the method of o(4, 2) operator replace-

ments generalized by the method of complex scaling.

PACS number(s): 31.20.Tz, 31.SO. +w, 34.80.—i, 03.6S.Fd

I. INTRODUCTION

Classically stable planetary atomic configurations with
zero total orbital angular momentum have been reported
by Richter and Wintgen [1]. The electrons arrange them-
selves around a collinear periodic orbit with both local-
ized on the same side of the nucleus. The outer electron
is dynamically localized near some fixed radial distance
[1]. A semiclassical treatment [1,2] suggests the energies
E, associated with these resonances, form a Rydberg
series converging to the three-particle breakup threshold,
also called the double-ionization threshold:

trashell resonances. This term is appropriate because
both electrons have the same degree of excitation in that
case. In the present case, in which K is minimum, the
resonances labeled with n =N, i.e., the planetary states,
are characterized by quite different degrees of excitation
for each electron and should not be called intrashell
states.

It is suggested that the energies of the resonances asso-
ciated with the case k = l =0 should converge, as the de-
gree of excitation of both electrons increases, to some of
the energies of the resonances associated with the Hamil-
tonian

H =!p '+-,'p' —Z « —Z/r '+ I /l lr I

—lr'l
l

(2)

E = —IS/[j+ —,'+2(k+ —,')g, +(1+—,')g2]}',

with S =1.4915, g, =0.4616, and gz=0. 0677. The in-

tegers j are positive, the integers k, l are positive or zero.
The zero of energy is taken to be the three-particle break-
up threshold throughout the present paper, and atomic
units are used. Full quantum-mechanical calculations
[2,3] based on the use of Sturmian functions of perimetric
coordinates and a complex scaling method have
confirmed the very good accuracy of Eq. (1), at least for
the case where k =I =0.

The states associated with the resonant energy given by
Eq. (1) and the condition k = I =0 will be described in the
present paper as "planetary states*' following Ref. [2], for
the sake of convenience. These states, within the now
usual classification scheme [4] (K, T, N, n), should corre-
spond to K minimum, K = —N+1, T=O, and n =N.
The condition n =N does not mean that the degree of ex-
citation of both electrons is similar. The integer number
n is only a label that starts from the value N, where N is
characterized by the threshold energy —2/N . Below
this, the energy of the states characterized by (K, T, N, n)
should converge as n increases to infinity, whereas N
remains fixed. When K is maximum (K =N —1) or
large, the resonances labeled by n =N are described as in-

in a space where both particles have zero angular
momentum (t'=t. '=0). At present, the Hamiltonian of
Eq. (2) is relevant only as far as the resonance energies
are concerned. It is clear that the wave functions with
F =8'=0 cannot describe electrons localized on the same
side of the nucleus.

It is also suggested that each of the terms (n, k =l =0)
of the Rydberg series converging to the double-ionization
threshold is also the lowest term of another Rydberg
series converging to a single ionization threshold of He,
and well characterized by a single quantum defect. That
means that this series can be described by single-channel
quantum-defect theory, and the multichannel quantum-
defect theory is not required, at least below the
eighteenth threshold. The energies of these Rydberg
series of resonances also correspond to the energies of the
Rydberg series of resonances associated with the Hamil-
tonian given by Eq. (2) in a space where both particles
have zero angular momentum ( 8 =8' =0).

The analysis of the problem is made within the frame-
work of the method of o(4,2) operator replacements [5].
This method is described very brieAy in Sec. II of this
work. The basic approximation [Eq. (16)] upon which
the present work relies is also given in Sec. II. The im-

plementation of the method of complex scaling for calcu-
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lating resonance energies within the method of o(4,2)
operator replacements is first illustrated for the hydro-
genic case in Sec. III. The results obtained for the two-
electron case are presented and discussed in Sec. IV.

& (P) —= la(P) —a'(p)l . (10)

E(P) and l%'(P)& denote the eigenvalues and eigenvec-
tors, respectively. The vector

II. BASIC EQUATIONS

The Schrodinger equation for two-electron atoms in
the limit of infinite nucleus mass and for nuclear charge
Z 1s

( ,'p Z—/r+—,'p —Z/—r'+1/lr —r'l E)l@—& =0 .

The symbols r and p denote the position and momentum
operators associated with an electron. The superscript
prime refers to the other electron. The above equation
can be considered within the o(4,2) algebra framework.
The method is described in detail in Ref. [5]. The essen-
tial points are presented here briefiy for the sake of clari-
ty. A realization of the o(4,2) algebra in terms of position
and momentum operators has been obtained [6]:

a(P) —=exp( —P) [—,'rp —p(r p) ]
—

—,'exp(P)r,

d' —=r X p; g = rp; tz ——rp„;

b(P)—:a(P)+exp(P)r,

t, (P) = —,
' [exp( —P)rp —exp(P)r],

t3(P) =——,'[exp( —P)rp +exp(P)r] .

The o(4,2) operator replacements are the following [5]:

r ~2 exp( P)ti(P)—,
r~ —2 exp( —P)a(P),

p~exp(P)t3 '(P)g/2,

p ~exp(2P)[t3 '(P)t, (P)+1]/2 .

(4)

(5)

[2T(P)+4( 1+exp( —P) [
—[Z /t 3(P) ]—[Z /t 3 (P) ]

+ 1/ 3 (P) ] ) —8 exp( —2/3)E (P) ]

x [t,(P)t ', (g)]'"l
%'(P) & =0,

(8)

T(P)=—[t,(P)] '"t, (P)[t,(P)] '"
+[t'(P)] '"t'(p)[t'(p)] '" (9)

These replacements are approximations that become ex-
act if the limit P going to + 00 is taken at the end of the
calculations or if, for a fixed P value, one considers the
limit of zero energy. From now on, for the sake of clari-
ty, we will use the term "replaced problem" for the prob-
lem obtained by transforming the original Hamiltonian
with the o(4,2) operator replacements [Eqs. (4)—(7)]. The
Schrodinger equation, Eq. (1), is transformed into Eq. (8)
according to the replacements given by Eqs. (4), (5), and
(7):

[t,(p)t,'(p) ]'"
l q (p) &

n &n', J, )J2', J,AJ2 if mA( —1)

nAn' if mA( —1) '
(12)

The numbers n and n' are positive integers, and J, and J2
correspond to the coupling of two angular momenta
j=(n —1)/2, j'=(n' —1)/2. Then J, and J2 are cou-
pled and yield L. If the triangular inequalities pertaining
to the coupling of angular momenta or the above condi-
tions [Eq. (12)] are not satisfied, the basis vector (11) has
to be read as the null vector. Then all the nonzero basis
vectors (11) provide a complete orthonormal basis with
respect to the 1/(rr') scalar product [7]. These basis vec-
tors have eigenvalues 1/n+1/n' with respect to the ac-
tion of the operator I/t3(P)+1/t3(P), and eigenvalues

[2[J,(Ji+ I)+Ji(J~+ I )]—L (L, + I )]

with respect to the action of the operator I/A (P) [8,9].
It remains to give the action of the operator T(P). The
operator T(P) satisfies the equation

&xlT(P)ly &=I/2[&x lT+(P)ly &+&ylT, (P)lx &*],

and the action of T+ on the basis vectors is given by Eq.
(21) of Ref. [5]. The key point of the present paper is to
notice that for L =0 and minimum values of J& and J2,
i.e., J, =J2=(n —n')/2, Eq. (21) of Ref. [5] is particular-
ly simple.

The following notation is first introduced:

is expanded in an orthonormal basis, and one obtains
finally an infinite Hermitian matrix for Eq. (8). The basis
vectors are labeled by n, n', J„and J2 within a space
characterized by the fixed total orbital angular momen-
tum L and its projection M, the total electronic spin S,
and the parity m".

(n n Ji J 2s+iL M)P

The basis vectors (11) are defined precisely in terms of
scaled hydrogenic vectors, also called Sturmian vectors,
in Ref. [5]. The real or complex nuinber P characterizes
the scale of length. The wave functions associated with
the basis vectors (11) spread over distances of the order of
2n exp( —P) for r, and 2n'exp( —P) for r' Thi.s clearly
indicates that convergence with respect to the size of a
truncated basis cannot occur in the limit where the real
part of P goes to + ~. The labels n, n', J„and J2 and
the good quantum numbers L, S, and m. satisfy the condi-
tions [5]

l(n, ')nP& = l[n, n', J, =
—,'(n n'), Jz= ,'(n —n'), —L'=O,M =0]P—& . (14)
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We are considering from now on only triplet S states because the operator 1/A (P) is not defined for singlet S state [5].
Then Eq. (21) of Ref. [5] gives [10]

T+(P)~(n, n')P) =a(n, n')[[(n n'—)/(n —n'+1)]' [n'/(n'+1)]'~ [1/a(n, n'+1)]~(n, n'+ l)P)

+[(n —n'+1)/(n —n'+2)]'~ [(n+1)/n]' [1/a(n+1, n')]~(n+ i, n')P)

+(n +1)[(n n—'+2)(n n'—+1}n'(n'+1)] '~ /a(n, n'+1)

X ~(n, n'+1,J, +—,',J +—'„O',P) j, (15)

where

T+ (p) =8+(13), (16)

with e+ defined by

8+(P)~(n, n')P)—:~(n, n'+1)P)+~(n+ i, n')P) . (17)

The Hermitic operator T(P) is thus approximated by the
Hermitic operator e(P) defined by

28(P) ~(n, n')P) = ~(n, n' —l )P) + ~(n —l, n')P)

+~(n, n' +llP) +~(n +l, n')P) . (18)

The space spanned by all ~(n, n')P) vectors remains in-
variant space for the replaced Schrodinger equation [Eq.
(8)] if T is approximated by e. The vectors ~(n, n')P)
have the eigenvalues [(n —n')(n —n'+2)] '~ with
respect to the action of 1/A (P). We also make the ap-
proximation

I/A(P)~(n, n')P) =[(n n')] '~(n, n')P) . —(19)

The conditions of large n' and n —n' for the approxima-
tions given by Eqs. (16) and (19) can be justified by physi-
cal arguments. First, the decomposition of the resonant
state must involve a large value of n' because the spatial
extension of the inner electron wave functions,
2n'exp( —P), must be large when highly excited reso-
nances are considered. Secondly, n —n' cannot be re-
stricted to small values, because otherwise the terms
1/( n n') would —completely dominate the terms
—Z/n —Z/n ', and the energy would then be above the
double ionization threshold. It is then easy to see from
Eqs. (18) and (19) and from Eqs. (23) and (24) below that,
in the limit where P goes to + ~, the eigenvalue problem

if a=b
a(a, b ):—

( —,
' )'~ otherwise .

The factors a can be dropped because for the triplet
states to be considered, the basis vectors with n =n' have
to be read as null vectors [see Eq. (12)]. The minimum
value of J, ,Jz for I. =0 corresponds to E minimum and
T =0 in the usual (E, T) classification scheme [4,8,9]. It
is stressed, however, that the basis vectors (11) are not
hydrogenic ones but are, rather, scaled hydrogenic, with
a scaling factor that depends on n, n'.

For n', n —n' suSciently large, it is seen that the
coeScient of the last vector on the right-hand side of Eq.
(15) is small with respect to the coefficient of the first two
vectors. The basic approximation of this paper is

becomes equivalent to the eigenvalue problem associated
with the Hamiltonian of Eq. (2} in a space where both
particles have zero angular momentum (P=Z'=0). The
approximations discussed above are of the same nature as
those that were made in Ref. [11] for the case of max-
imum J„J2. In that work, a more rigorous mathemati-
cal study of this type of approximation was presented.
Though we shall not present the details of that work
here, we may recall the conclusion: These approxima-
tions should improve as the degree of excitation of both
electrons increases.

At this point, one could study the Hamiltonian of Eq.
(2) by one of the usual methods of quantum mechanics.
In Refs. [11,12] the Hamiltonian of Eq. (2) with the term
1/(r+r') in place of 1/~r r'~ was i—nvestigated within
the framework of first-order perturbation theory. The
present term I/~r r'~ clearly—cannot be considered as a
perturbation. We choose in the present paper to study
the replaced problem with finite P values. The method of
o(4,2) operator replacements [5] has been used up to now
with real values of the number P, because only bound
states were considered. For resonances, it is necessary to
use complex P values, as illustrated in the following sec-
tion.

III. IMPLEMENTATION OF THE METHOD
OF COMPLEX SCALING

The numerical diagonalization of a Hermitic Hamil-
tonian in a truncated basis of order 0 yields 0 eigenval-
ues with possible degeneracy. When the size 0 of the
truncated basis increases without restriction, some of the
eigenvalues will converge to the true bound-state ener-
gies. However, in an energy range near a resonance, the
number of eigenvalues per unit energy increases infinitely
with 0. The physical reason is that the energy range of a
resonance corresponds to the continuum of energies asso-
ciated with one ionized electron and an ion. In order to
locate the resonances energies, specific methods such as
the Feshbach projection method or the complex scaling
method are then used. Essentially, the complex scaling
method amounts to the multiplication of r and p by
exp(ie) and exp( ig) resp—ectively, where 8 is a real
number. From Eqs. (4)—(7) it is clear that the implemen-
tation of the complex scaling method within the method
of o(4,2) operator replacement can be made by using
complex P values. The method will first be illustrated for
the hydrogenic case. For isolated hydrogenic atoms,
there are, of course, no resonances. However, it is of in-
terest to consider first this case because it displays con-
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veniently the specific features pertaining to the case of
finite complex p values. The Schrodinger equation for a
hydrogenic atom is transformed by the o(4,2) operator re-
placement into the following equation:

[2t (p)+2[1—2Z exp( —p)/t3(p)]
—8exp( —2P)E(P)][tq(P)]' Iq'(P)) =o, (20)

t(p)—:[t,(p)] '"t, (p)[t, (p)] '".
E(p) and ~%(p)) denote the eigenvalues and eigenvec-
tors, respectively. The bound-state energies correspond-
ing to Eq. (20) are [5]

s(P, n, Z) = [exp(2P)/4] j 1 —[1+(2Z exp( P—) /n ) ]'~
J

= —
—,'(Z/n) [1—[exp( P—)Z/n]

straight line due to the finite size of the matrix. The finite
size of the matrix is also apparent in Fig. 1 because the
Rydberg series is represented only by a finite number of
terms. The negative-energy terms close to zero energy,
corresponding to the top of the vertical line of Fig. 1,
have not converged, or are missing. It is of interest to
note that if the same numerical calculation is repeated
but for a different value of p, p= —1 —0. li, then the
agreement with respect to Eq. (22) is better than or of the
order of 10 " for the first 11 eigenvalues. This illus-
trates the fact that for a fixed size of the truncated basis
(n ~ 0), the agreement with the exact results given by Eq.
(22) improves as the real part of p decreases. In the limit
where the real part of p goes to —oo, it can be seen from
Eq. (20) that the basis vectors ~(n, l, m)p) become exact
eigenvectors with eigenvalues

+2[exp( —P)Z/n] —. . j, (22) s(P, n ) =exp(P)Z /(2n ) . (25)

where n denotes the principal quantum number. It is
clear from Eq. (22) that the correct Rydberg hydrogenic
value is obtained if the real part of p goes to + ~, or if,
for a fixed value of P, one approaches the zero-energy
limit (n ~~ ). It is also clear that for finite p values, the
bound-state energies become complex if p is complex
(with an argument different by km. /2). There is a com-
plete basis of orthonormal vectors that are eigenvectors
of t3 [7]:

t3(p) ~(n, p, m )p) =n ~(n, p, m )p) .

The action of t is given by [7]

2t (P)~n, /, m )P)

(23)

= j(n +/)(n —8 —1)/[(n —1)n)]]' ~(n —1,8,m)P)

+ [(n +/+1)(n —8)/[(n +1)n]]'
X ~(n+1, 8,m)P) . (24)

In the above equation, the vector ~(n =0,8 =0,m =0)p)
has to be read as the null vector. If the vector

is expanded in this orthonormal basis, one obtains a tridi-
agonal infinite matrix eigenvalue problem which has Eq.
(22) as solutions. Figure 1 reports the numerical results
obtained for the case of 8=0 with the truncated basis in-
volving one hundred vectors (n =1—100), p=O —0. li,
Z =1. The abscissa corresponds to the real part of the
energy, the ordinate to the imaginary part. The relative
accuracy with respect to the exact results given by Eq.
(22) is better than or of the order of 10 "for the first six
eigenvalues, and then decreases rapidly. Thus, it is only
of the order of 10 for the eighth eigenvalue. It is seen
in this figure that, as usual, the continuum spectrum is
rotated by an angle corresponding to the argument
of 2P. It can be shown [13] that the operator
exp(2p)[1+t(p)]/4, which is associated with the kinetic
energy, is bounded by —,'exp(2P). This continuum appears
in Fig. 1 as a discrete set of points due to the finite size of
the matrix. These points are not exactly located on a

Before turning to the two-electron atomic problem in
Sec. IV, the different kind of convergences to be con-
sidered will be described. The first kind is the conver-
gence of the solutions of the replaced problem with
respect to the solutions of the original problem. This
case has to be divided into two subcases. First, the con-
vergence of a given eigenvalue when the real part of p
goes to + ~; secondly, for a fixed p value, the conver-
gence of the replaced eigenvalues towards the original ei-
genvalues when one moves towards the zero-energy limit.
It is essentially this latter convergence that wi11 be of in-
terest in Sec. IV. The second kind of convergence to be
considered is the convergence of the replaced problem
with respect to the size of a truncated basis including all
basis vectors with n smaller than a given integer O. This
convergence improves as the real part of p decreases, as
illustrated previously.

IV. NUMERICAL RESULTS

We now turn to the study of the eigenvalues E(p) of
Eq. (8) within the approximations given by Eqs.
(16)—(19). In the limit where the real part of p goes to
+ oo, or, for a fixed p value, in the limit of zero energy,
this problem should correspond to the study of the Harn-
iltonian given by Eq. (2) in the space where both particles
have zero angular momentum (8=8'=0). We consider
a truncated basis involving all basis vectors with n, n

(n )n') smaller or equal to a given value O. The size of
this basis is thus equal to 0 (0 —1)/2. The matrix eigen-
value problem then is of band type, since the only
nonzero diagonal elements originate from the operator e,
whose action on the basis vectors is given by Eq. (18).
Thus the nonzero nondiagonal elements are all equal to
unity. The algorithm used for computing eigenvalues is
the Lanczos algorithm without reorthogonalization pro-
cedures, as described in Refs. [14,15]. Numerical calcula-
tions were performed for five different p values: 0—O. li,—0.25 —0. 1i, —0.5 —0. 1i, —0.75 —0. 1i, and —1 —O. li.
The value for 0 is 100. The results for the value P
0—0. 1i are displayed in Fig. 2. It is seen in this figure
that a series of resonances approach from the left each
single ionization threshold [Eq. (22), with Z =2].
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FIG. 1. Energies from numerical diagonalization of the tridi-
agonal matrix of order 100 (1 n (100) associated with the re-
placed hydrogenic problem [see Eqs. (20)-(24)]. Z =1, t =0,
f3=0—0. 1 i.

We now consider the first (i.e., the one with the small-
est real part of the energy) resonance of each series con-
verging to the di6'erent thresholds. The real part of the
ratio of the first resonance energy below each threshold
to the energy of the same threshold is reported on Table
I. The imaginary part of this ratio is of the order of
10 . These ratios are also reported on Fig. 3 as a func-
tion of the real part of the threshold energies
E(P, N, Z =2) given by Eq. (22). Within the errors intrin-
sic to any extrapolation process, it can be seen that these
ratios converge to about 1.11 in the limit of zero energy,
i.e., in the limit of high excitation of both electrons,
where the present model should be relevant for the reso-
nance energies of the real helium atom. The ratios
F. /[ —4/(2N )] for the helium atom, calculated with the
values reported in Ref. [2] for E, are, for N increasing be-
tween 3 and 11, 1.1248, 1.1207, 1.1183, 1.1167, 1.1157,

FIG. 2. Energies from numerical diagonalization of the band
matrix of order 4950 (1(n'& n &100) associated with the re-
placed approximated two-electron problem [see Eqs. (8) and
(16)-(19)]. Z =2, P=0. —0. li The . first eight thresholds
a(P, N=1 —S,Z =2) [see Eq. (22)] are reported as the top of the
erst eight vertical lines. The last vertical line corresponds to the
double ionization threshold (zero of energy).

1.1150, 1.1145, 1.1142, and 1.1139. [It should be noted
that the j of Eq. (1) of the present paper corresponds to
N —1, where N labels the single ionization threshold. ]
The ratio derived from the semiclassical equation (1) [2]
is (1.4915) /2=1. 112 in the limit of infinite quantum
numbers. Thus, the value 1.11 obtained from the present
paper reproduces within about one percent the quantum
results obtained in Ref. [2].

The accuracy of the present results is far from the ex-
traordinary accuracy obtained in Ref. [2]. In particular,
the accuracy is not su%cient enough to give information
on the width of the resonances. Nevertheless, the present
approach brings two important qualitative results to
light. First, this approach shows how the energies of the
so-called planetary states can be described by a quantum

TABLE I. The first line gives the real part of P. The imaginary part of P is always equal to —0. 1.
The first column labels the single ionization thresholds (P,sN, Z =2) given by Eq. (22). The other
columns report, for a given g value, the real part of the ratio of the lowest resonance energy of the Ryd-
berg series converging to a threshold by the energy of this threshold.

0.00 —0.25 —0.50 —0.75 —1.00

1.0686
1.0853
1.0937
1.0982
1.1008

1.0698
1.0851
1.0937
1.0986
1.1014
1 ~ 1032

1.0708
1.0846
1.0931
1.0984
1.1016
1.1037
1.1050

1.0718
1.0840
1.0920
1.0975
1.1012
1.1036
1 ~ 1053
1.1064

1.0728
1.0834
1.0907
1.0960
1.0999
1.1028
1.1048
1.1063
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TABLE II. Real part of the effective quantum number v as defined by Eq. (26), where E results from
numerical diagonalization for the case P=O —O. li.

Real part of v for P=O —O. li

2.90
4.24
5.57
6.94
8.34

3.92
5.26
6.58
7.94
9.35

4.94
6.27
7.58
8.95

5.94
7.27
8.59

6.95
8.28

7.95
9.28

8.95

problem with only two degrees of freedom in the limit of
high excitation. Second, the energy of each planetary
state appears as the lowest member of a well-defined Ryd-
berg series of resonances converging to single ionization
thresholds. In order to see how these series are indeed
characterized by a single quantum effect, Table II details,
for P=O —0. 1i, the effective quantum number of the
series calculated from the equation

v=1.49%. The fractional part of this effective quantum
number should vary slowly when one goes to higher Ryd-
berg states of a given series, and then stabilize. Mul-
tichannel quantum-defect theory, however, could become
necessary above the energy range where different Ryd-
berg series being to overlap. From Eq. (1), this situation
begins when —[1.4915/(N+1)] ( —2/(N ), i.e., above
the 18th threshold.

E e=(PN, 2),+e(Pv,l), , (26) V. CONCLUDING REMARKS

1. '140

1. 120

1.100
y '

y
yyy

y
y

1.080
y y

y Y

where E are the numerical results reported in Fig. 1. As
E is complex, v is also complex, but the imaginary part of
v is small (less than 0.1) and approximately constant
within a given Rydberg series. It is clear from Table II
that the real part of v increases by nearly one unit at each
new resonance of the series. The numerical values of
these effective quantum numbers are of no physical mean-
ing, since the limit of the infinite real part of P should be
taken. The fact that these effective quantum numbers in-
crease by a step of almost one unit, however, clearly
characterizes an unperturbed Rydberg series. An ap-
proximate value for the effective quantum number of the
lowest terms of the Rydberg series in the helium case can
be obtained by comparing the semiclassical equation (1)
with Eq. (26), j =N —1. One obtains approximately

The classical problem of two electrons moving on the
same rectilinear trajectory, on the same side of the nu-
cleus, is basically a problem with two degrees of freedom.
A remarkable result of Ref. [1] is the existence of stable
motions. Here, we start from a purely quantum ap-
proach and use the method of o(4,2) operator replace-
ments. We found that, within some approximations,
some solutions of the replaced problem can be described
in subspaces of the whole Hilbert space. These subspaces
are spanned by the vectors of Eq. (14) involving only two
independent integer labels (n, n'). These vectors involve
many different values of angular momentum quantum
numbers P, P' of each electron. The concrete form of the
replaced Hamiltonian matrix in the sub-bases spanned by
the vectors of Eq. (14) is, however, the same as for the re-
placed problem corresponding to the Hamiltonian of Eq.
(2), in the space where 8 =8'=0.

The present estimations for the energy resonances of
the planetary states agree with the very accurate full
quantum results of Refs. [2,3]. This supports the approx-
imations upon which the present work relies, and, in our
opinion, also supports the existence of nearly unper-
turbed Rydberg series above each of the planetary states
that appear in the present calculations.

This paper presents an illustration of the method of
o(4,2) operator replacement for the study of resonances.
Clearly, the method is not competitive with the method
of Ref. [2] as long as precise energy values are required.
It has, however, the advantage of producing without op-
timization procedure and within a single numerical diag-
onalization (one for each distinct P value) a global picture
of the resonance spectrum.
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FIG. 3. The real parts of the ratios reported in Table I are
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