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Quantities T, [n] and T,[n] in density-functional theory
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Levy's constrained-search procedure [Proc. Natl. Acad. Sci. U.S.A 76, 6062 (1979)] is employed to
show how to determine Kohn-Sham and Hartree-Fock-Kohn-Sham orbitals and kinetic energies T, and

T„ for the two-electron, four-electron, and the general case starting from the electron density. Numeri-
cal results are presented for the species H through I"+ and the atom Be. The Pauli potential is also
determined for Be. The small differences among Kohn-Sham, Hartree-Fock, and Hartree-Fock-Kohn-
Sham orbitals suggest that determination of Kohn-Sham orbitals from the density in this way is an at-
tractive procedure for getting an orbital description from an electron density.

PACS number(s): 31.20.Sy, 31.20.Tz, 71.10.+.x

I. INTRODUCTION

Three important quantities in the Kohn-Sham im-
plementation of the density-functional theory of the
ground state of an electronic system are T[n], T, [n], and

T, [n] [1]. T[n] is the exact kinetic energy as a function-
al of the electron density n, T, [n] is the exact kinetic en-

ergy for the ground state of a corresponding noninteract-
ing system with the same density n, and T, [n] is their
difference,

T, [n]=T[n]—T, [n] .

T, [n] is the kinetic-energy part of the exchange-
correlation energy E„,[n] of Kohn-Sham theory. It is
not the kinetic-energy part of the correlation energy in
Hartree-Fock theory, though it is (as we shall see) numer-
ically fairly close to it. T[n] and T, [n] are universal
functionals of n.

Also a universal functional, this time of the Hartree-
Fock electron density n H„, is the restricted Hartree-Fock
kinetic-energy T "[nH„]. For Hartree-Fock theory, too,
there is a corresponding noninteracting system with the
same density, with kinetic energy T, "[nH„]. A corre-
sponding "correlation" energy is

T, "[nHF]=T "[nH„]—T, [nH„] .

This is a very different quantity than T, [n]. Indeed (as
we shall see), T, "is small relative to T, .

This paper is concerned with T„T, ", and T, "—their
calculation for two- and four-electron systems and their
calculation generally. Almbladh and Pedroza [2].
Aryasetiawan and Stott [3], and March and co-workers
[4,14,15] already have gone over similar ground.

The calculations of T, n, T ", and nH„are standard
problems which we need not here go into. We assume
that we are dealing with an X-electron system of interest
having a nondegenerate ground state, for which we know
the numbers T and T " and the functions n(r) and
nHF(r) The problem. we address here is the determina-
tion of T, and T, ".

The general prescription for solution was given by

Levy [5]. Namely, for any physically acceptable density
n —exact, Hartree-Fock, or approximation to either-
one may take

T, [n]= min &e, lTI@D&,
D

(3)

where f'is the X-electron kinetic-energy operator, 4D is
a normalized ¹lectron Slater determinant, and the
"constrained search" is over all Slater determinants that
give the density n.

With this formula for T, [n], one immediately recog-
nizes that

T, [nHF]=T, [nHF] (4)

In actual density-functional calculations, one needs
functional derivatives of the various energy components.
Accordingly we are necessarily concerned with the func-
tional derivative 5T, [n]/5n.

For a one-electron system, since g = n ', the
Schrodinger equation itself immediately gives

T[n]=T, [n]=—,
' J dr= T[n] . -/Vn('

Here the notation T is introduced for historical reasons;
the W stands for Weizsacker. This same formula also
holds for a system of E bosons in its ground state. This
prompts us to write, for a system of fermions,

T, [n]=T [n]+T [n]

where T [n] is the extra kinetic energy required of the
fermions by the Pauli exclusion principle. Then

5T, [n] 1 ~Vn~ 1 V n +v [n],
6n 8 n2 4 n

where

5( T, [n] —T„[n])
v [n]= (9)

This means that one need only evaluate T, [n]. There
also are rigorous inequalities,

)T THF) THF
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( ——'V +v +v )n' =pn' (10)

where U~s is the Kohn-Sham effective potential and p is
the chemical potential.

is what has been called the Pauli potential. Knowledge of
T, [n] thus provides knowledge of vp[n], as will be illus-
trated in Sec. III C. The Pauli potential is important be-
cause it is an essential ingredient in the differential equa-
tion for n [6—8],

For the two-electron case we also have

[nHF ] = T""[nHF ]

so that Eq. (14) may be written

T, [n]=[T[n]—T "[nHF]]
—[T,, [n] —T [n]—T [nH„]I

= —E, (conventional) —[T [n] —T [nHF]]

= —E, (conventional) —
[ T, [n ]

—T, [n HF ] ]

(16)

(17)

II. TWO-ELECTRON SYSTEMS

A. Theory

T[n) = T„[n]+—,
' f n (r)

~
V8(r ) ~

dr, (12)

where T is given by Eq. (6). Minimizing with respect to
8(r) in accord with the demand of Eq. (3), we find that
8(r) should be a constant, which we may set equal to
zero. There results

Vn
T, [n]=T [n]= —,

' f dr (13)

and this is true for both Kohn-Sham and Hartree-Fock
theory. For the two cases we find from Eqs. (1) and (2),

Assuming its ground state to be a singlet, a two-
electron system will have only one Hartree-Fock or
Kohn-Sham orbital, say P(r), in each case equal to the
square root of one-half the density. That is,

(t(r) =&n(r)/2exp[i8(r)],

where 8(r) is an arbitrary function of r. Equation (7)
then gives

T, [ n ] — E, ( co—n ventional ) . (18)

B. Numerical results

The calculation of T, [n] and T, "[nHF]:—T "[n„„]
for any two-electron species is straightforward. One cal-
culates T [n] using Eq. (13) from Hartree-Fock and ex-
act densities, and T, [n] from .Eq. (14). In Table I are
given results for the atomic species H through F +.
Hartree-Fock wave functions were taken from Clementi
and Roetti [9]. Accurate wave functions were taken from
Thakkar and Smith [10].

Included in Table I are the conventional correlation
energies,

E, ( conventional ) =E ( accurate )
—E""

where E, (conventional) is the conventional quantum-
chemical correlation energy, equal to the negative of the
first term on the first line by the vivial theorem. (The
density-functional quantity T, [n] obeys no such simple
virial relation. ) The second term, expected to be small,
represents a correction to the formula, approximate at
best,

T, [n]=T[n]—T [n] (14)
= —(T[n]—T "[nHF]) . (19)

and

TH"[n„„]=0.

Note the differences between E, (conventi—onal) and T„
in accord with Eq. (17). Note the agreement with the ine-
qualities of Eq. (5).

TABLE I. Values of T, and T, for two-electron atomic species (a.u.). (Results obtained for Ne'+,
Na +, and Mg' + were also computed, but omitted for the reason indicated in the discussion just below

Table VIII in Ref. [10]. We thank Professor Thakkar for discussion of this point. )

Species

H
He
Li
Be +

B3+
C4+
N'+
~6+
F7+

T[n]'

0.5278
2.9037
7.2799

13.6556
22.0310
32.4062
44.7814
59.1566
75.5317

THF[n ]b

0.4879
2.8617
7.2372

13.6112
21.9868
32.3610
44.7365
59.1120
75.4841

T, [n]'

0.4998
2.8671
7.4411

13.6141
21.9885
32.3631
44.7381
59.1126
75.4871

T, [n]'

0.0280
0.0366
0.0388
0.0415
0.0424
0.0432
0.0434
0.0440
0.0446

—E, (conventional)'

0.0398
0.0420
0.0435
0.0443
0.0447
0.0450
0.0453
0.0454
0.0456

'Accurate kinetic energies from Ref. [10].
Hartree-Fock kinetic energies from Ref. [9]. By Eqs. (13) and (15) of text, this also is T, [n „F].

'Equation (13) of text with accurate densities.
Equation (14) of text. The corresponding Hartree-Fock values are zero by Eq. (15).

'Quantum-chemical correlation energy of Eq. (19) of text.
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f n(r)cos[28(r)]dr=0,

f n(r)sin[28(r)]dr=0 .

(23)

(24)

0

L
0

0. 6-

We attach Lagrange multipliers p& and pz to Eqs. (23)
and (24) and proceed to carry out the minimization with
respect to 8(r), at constant n(r) as required by Eq. (3).
We find

,' f—n~V8~ dr+ f n cos(28)dr

0. 0
0

+ f n sin(28)dr =0, (25)
2

from which we infer a differential equation for 8(r },

FIG. 1. Kohn-Sham orbital for He. The density is the accu-
rate density. Atomic units. V 8(r)+V8(r) =A sin2[8(r) —8'],Vn(r)

n(r)

where

(26)

III. FOUR-ELECTRON SYSTEMS

A. Theory

We consider a four-electron species in a singlet ground
state, such as, for example the atom Be. The Hartree-
Fock or Kohn-Sham determinant will have two doubly
occupied orbitals, say P, (r) and Pz(r). Again the prob-
lem is to carry out the procedure implied by Eq. (3), for
the Hartree-Fock density n H„and the accurate density n.
The procedure is the same in both cases.

The determinant is invariant to unitary transforma-
tion. This permits us to write the two orbitals in the po-
lar, circulant form [11,12]

P, (r) =&n(r)/4exp[i8(r)],

Pz(r) =&n(r)/4 exp[ i 8(r)], — (20)

where 8(r) is an arbitrary real function of r. With this
choice, Eq. (7) again becomes

T, =T + —,
' f n(r)~V8(r)~ dr, (21)

where T is given by Eq. (6). Again we must minimize
T, with respect to 8(r), but this time we have the addi-
tional orthogonality constraint,

fP, (r)gz(r)dr=0 . (22)

This complex constraint is equivalent to the two real con-
straints,

The Kohn-Sham and Hartree-Fock orbitals for these
systems are very similar but not identical. The Kohn-
Sham orbital is displayed in Fig. 1 for the atom He. Note
that the Kohn-Sham and Hartree-Fock orbitals necessari-
ly have different long-range exponential decay constants,
the first governed by the exact ionization potential, the
second by the Koopmans theorem approximate ioniza-
tion potential of Hartree-Fock theory.

Values of T, for H, He, Li+, and Be + were obtained
less directly by Almbladh and Pedroza [2]: 0.8, 1.0, 1.1,
and 1.1 eV, respectively. Our values should be more ac-
curate.

1

( 2+ 2)1/2

8'= —,'cos '[p, /(pf+Iuz)' ] .
(27)

Finally, since the addition of a constant to 8(r) does not
change the original Slater determinant, we may set
8' =0, obtaining

V 8(r)+V8(r) = A sin[28(r)] .Vn(r)
n(r)

(28)

8( oo ) = —n /2, 8'( oo )=0, (29)

and

8'(0}=0 . (30)

For a given density n (r) we then accomplish the solution
of Eq. (28) as follows. Guess a value of A. Numerically
integrate Eq. (28) inward from some large r, assuming Eq.
(29), testing the resultant solution as to whether both Eqs.
(22) and (30) are satisfied. Repeat with new values of A
until the solution is found. In our actual calculation, for
accurate density Eqs. (23) and (24) reached 7.6X10
and 1.7X 10, respectively, corresponding to an overlap
between p& and $2 of about 7.7X10 s. For HF density,
we have a similar situation.

B. Calculation of T„T„and orbitals for Be

Table II gives calculated results for the various kinetic
energies for the ground state of Be. We have proceeded

This equation may be found in a paper by Harriman [13].
It has also been derived and variously discussed by
Aryasetiawan and Stott [3] and by March and co-workers
[4,14,15]. It is the zero-electron repulsion special case of
an equation of Nyden and Parr [12]. Apparently, howev-
er, no previous authors have derived this equation from
the constrained-search procedure of Eq. (3).

Assume spherical symmetric n(r)=n(r), for the
ground state of Be. Then 8(r)=8(r) For well b.ehaved-
ness of 8(r) we may require
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TABLE II. Values of T, and T, for the atom Be (a.u. ). (Hartree-Fock density from Ref. [9],accurate
density from Ref. [16].)

Accurate kinetic energy T[n]
Hartree-Fock kinetic energy T""[n„„)
Accurate Kohn-Sham kinetic energy T, [n]
Hartree-Fock-Kohn-Sham kinetic energy T, [n uF]
Density-functional kinetic-energy contribution

to the exchange-correlation energy T, [n]
Kinetic-energy contribution to conventional

correlation energy —E, (conventional)

14.6669
14.5730
14.5932
14.5720
0.0737

0.0939

as described above for the Hartree-Fock density deter-
mined from the Hartree-Fock wave function of Clementi
and Roetti [9], and then again for the accurate density
determined from the accurate wave function of Esqvivel
and Bunge [16] (which gives 99.5&o of the conventional
correlation energy).

Note that T, [nH„] is smaller than T "[nHF], as re-
quired by Eq. (5). Their difference, 0.0010, is just the
small correction term of Eq. (20). The Hartree-Fock-
Kohn-Sham orbitals are only slightly different from the
Hartree-Fock orbitals. The total electron densities are
identical in the two cases, but 8(r) is not quite the same.
Table III shows that the difference between these two
8(r) is hardly discernible. In Sec. V we make a special
proposal to capitalize on this result. In Table III we also

tabulate the accurate and HF densities for some r, so that
one can reproduce the HF, HF-KS, and Kohn-Sham or-
bitals (see below).

Note that the fully correlated density gives a Kohn-
Sham T, [n] that is significantly larger than T, [nHF].
This inequality may be generally true, but it does not fol-
low from the rigorous inequalities of Eq. (5).

The T, [n] we obtain, 0.0737 a.u. , compares favorably
with the value obtained by Almbladh and Pedroza by
another method, 2.01 eV. This is quite different from the
conventional quantum-chemical —E, (conventional) =
0.0939 [2], but as we have seen, there is no reason to ex-
pect the two quantities to be the same.

In terms of the atomic orbitals P& and (t 2 as written in

Eq. (20), the conventional canonical orbitals for Be are

TABLE III. The accurate, HF densities and phases factor B(r) for Hartree-Fock, Hartree-Fock-
Kohn-Sham, and Kohn-Sham orbitals and in Be.

0.0960
0.2160
0.3060
0.4260
0.5160
0.6060
0.7260
0.9060
1.0260
1.2060
1.3260
1.4160
1.5060
1.6260
1.7160
1.8060
1.9260
2.1060
2.4060
2.8260
3.1260
3.5160
3.8160
4.0860
4.4760

nHF

16.5520
6.5576
3.3591
1.3591
0.7023
0.3674
0.1610
0.0576
0.0372
0.0275
0.0252
0.0240
0.0229
0.0213
0.0200
0.0187
0.0169
0.0142
0.0103
0.0062
0.0042
0.0025
0.0016
0.0011
0.0007

16.5415
6.5472
3.3154
1.3589
0.7039
0.3696
0.1633
0.0597
0.0391
0.0295
0.0265
0.0252
0.0240
0.0223
0.0209
0.0194
0.0175
0.0147
0.0105
0.0062
0.0041
0.0024
0.0015
0.0010
0.0006

HF

0.1780
0.1670
0.1498
0.1088
0.0584

—0.0155
—0.1624
—0.5009
—0.7687
—1.1053
—1.2556
—1.3354
—1.3943
—1.4450
—1.4788
—1.5007
—1.5216
—1.5415
—1.5581
—1.5666
—1.5689
—1.5701
—1.5705
—1.5707
—1.5707

b
~HFKS

0.1872
0.1749
0.1561
0.1120
0.0593

—0.0165
—0.1645
—0.4996
—0.7625
—1.0933
—1.2423
—1.3221
—1.3816
—1.4382
—1.4686
—1.4916
—1.5140
—1 ~ 5358
—1 ~ 5548
—1.5652
—1.5681
—1.5698
—1.5703
—1.5706
—1.5708

~KS

0.1960
0.1829
0.1628
0.1160
0.0601

—0.0199
—0.1748
—0.5185
—0.7816
—1.1070
—1.2523
—1.3306
—1.3879
—1.4429
—1.4723
—1.4946
—1.5162
—1.5373
—1.5555
—1.5655
—1.5682
—1.5698
—1.5703
—1.5706
—1.5708

'Evaluated by transforming Hartree-Fock orbitals of Ref. [9] to the form of Eq. (20).
Calculated by solving Eq. (28) with n H„( r) taken from the Hartree-Fock wave function of Ref. [9].

'Calculated by solving Eq. (28) with n (r) taken from the accurate wave function of Ref. [16].
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0

FIG. 2.~ . Kohn-Sham orbitals for the accurate density of
Atomic units. Be, where the solid curve is 1s(r) and the dashed
curve is 2s(r). Atomic units.

FIG.G. 3. Pauli potentials for the accurate and HF da e an ensities of
, w ere e so id curve is for accurate density and the dashed

curve is for HF density. Atomic units.

4i+4i
Is(r) = — =&n (r) /2 cos8( r)

2s(r)= —=&n(r)/2 si n8(r) .
&2i

(31)

where

1 ~Vn~ 1 V n

8 2 4 n
(37)

C. Pauli potential for Be

From Eqs. (9) and (21) we can proceed to determine the
Pauli potential for Be. We first obtain

U~(r)= —,
' V8(r)~ + dr' .

5T, (r')

5n(r

But Eqs. (25) and (28) give

5T, (r)
58(r)

= —An (r)sin28(r)

(32)

(33)

From the data of Table III one can reproduce and com-
pare the Hartree-Fock, Hartree-Fock-Kohn-Sham, and
t e Kohn-Sham 1s and 2s orbitals for Be. While the three
sets of orbitals are qualitatively similar, they are in fact
significantly different. Note that Is(r) is nodeless, while
2s(r) has one node. In Fig. 2 we plotted these two orbit-
als for the accurate density of Be.

5T, [n]
p UKs(r)+

5n(r)
(38)

(39)p =

Ups�(r)+

v (r)+ U~(r),

should
where p is the chemical potential of the system 0

ould beware, however, of taking Eq. (39) as defining

It is interesting to compare the magnitudes of v„and v

as unctions of r. This is done in Fig. 4 for the Kohn-
Sham description of Be. For either small r or large r, as
first suggested by Herring and Chopra [6], U„dominates.

n the medium r region, on the other hand, v and v

have comparable magnitudes. Not th te a v is greater
than zero for medium r.

For the ground state the Kohn-Sham effectiv t
tial v

e ec ive poten-

[1,17]
UKs that enters Eq. (10) above satisfies th 'des e i entity

while functional differentiation of Eq. (23) gives

J' n (r')sin28(r, )
58(r') dr, cos28(r)
5n(r) 2

Consequently,

v (r) =
—,
'

~
V8(r)

~

——cos28(r)

=
—,'~V8(r)~ —A cos 8(r)+ —,'A .

(34)

(35)

V(r)

45--

I
I
I
I

30--
I

I
I
I
I
I
I
I

I
I
I
I

I

I
I
I
I
I

15
I

I

I

I

I

(36)

The Hartree-Fock and Kohn-Sham v for Be are corn-
pared in Fi . 3.in ig. . There is little di6'erence between them.
Equation (35) may be found in Ref. [18].

We may rewrite Eq. (8) as

5T, [n] =v +vp

F~~. ~. Companson of v and v

Be w
nd v for the accurate density of

e, w ere the solid curve is v and th d
tomic units.

~ an e ashed curve is v W'
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equation for vKs(r) in a variational procedure for deter-
mining n(r). This will fail, because this equation is an
identity at the solution point.

IV. GENERAL CASE

The determination of T, [n] for the general case is a

problem of much interest on which there already has
been substantial progress, especially by March and co-
workers [4,14, 15,18]. Below we describe two methods.
The first is simply a special case of a procedure given
some time ago by Nyden and Parr and coincides more or
less a less with the strategy being employed by March.
The second is ours.

TI). (qA~ V2~qk) P. g(pic~ l~qiL) (46)

TA y TA. y k g( A, l)
J J

(47)

We repeat for higher and higher A, values, finally obtain-
ing

Then the Hartree-Fock equation to be solved is

[
—

—,'V +A.u(r)]f, (r)=e, P, (r) .

For a particular k value, we solve these equations using a
conventional method (e.g. , basis sets) to give P E, v

n, and the quantities

A. Method in which all orbitals are expressed
in semipolar form

T, = lim T, = lim QE —lim [X(n u ) ] .
g —+ oo g~ oo ~ k ~ oo

J
(48)

Following Nyden and Parr [12], we write each and
every orbital in the trial determinants being used in the
constrained search of Eq. (3) in the "semipolar" form

P, (r)=&n(r)/N exp[i8 (r)] . (40)

B. Method involving the direct solution of SCF equations

We imagine the problem to be the problem of solving
the Hartree-Fock problem for H = T, subject to the con-
straint g ~gi~ =no, where no is given. That is, if
n =pi gi, n(r) —no(r)=0 for all r. Or,

f [n (r) —no(r) ] dr =0. Or,

[n(r) —no(r)][n(r') no(r')]-
d r d r' =0 . (43)

/r —r'

We associate a Lagrange multiplier k with this con-
straint, and define

n (r') —no(r')
u(r)= QI

/r —r'[ (44)

The "phase factor" 0 here may have imaginary as well

as real parts (although the imaginary parts will generally
be small [11]).Orthogonality requires the conditions

f n(r)exp[i[8;(r) —
81, (r)]Idr=5 &N .

In this representation, the kinetic energy is given by a
simple generalization of Eq. (21), namely,

T, =T + —,
' g f n(r)~ V8(r)~ dr . (42)

J

Minimizing this with respect to the 8, for fixed n(r),
subject to the constraints of Eq. (41), then gives a set of
simultaneous equations generalizing Eq. (26). The left
side of the equation for 8 isjust V 8 +V8 Vn(r)l (rn);

the right side is just a linear combination of tri-
gonometric functions with coefficients that are Lagrange
multipliers for the Eqs. (41). One solves these equations.

V. DISCUSSION

We are encouraged to believe that it will become possi-
ble to determine T, (n] systematically for any X-electron
species. In this paper we have demonstrated how to do
this for two and four-electron systems (and by implica-
tion for one- and three-electron systems) and have out-
lined how it can be achieved for 1V)4 as well. Our
analysis generally conforms with work by Holas and
March [18].

It should be mentioned, however, that the results we
have obtained for Be differ in numerical detail from the
results of Nagy and March [15].This is due to an alterna-
tive (we believe faulty) treatment of the boundary condi-
tions associated with Eq. (28) by those authors. Certain
kinks in the Nagy-March plots do not appear in ours.

The major conclusions from our study are that Kohn-
Sham orbitals differ very little from Hartree-Fock orbit-
als [19] and that Kohm-Sham-Hartree-Fock orbitals are
almost identical with Hartree-Fock orbitals. This leads
to a strong suggestion as to how to get an electronic wave
function from an electron density. Namely, determine
the Kohn-Sham orbitals by the Levy constrained search
procedure of Eq. (3). We commend this particular idea to
the community of x-ray crystallographers. There have
been many studies on how to fit a density matrix to a den-
sity [20], but the simple suggestion we make here appears
not to have been explicitly made previously. Kohn-Sham
orbitals are very physical.
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