
PHYSICAL REVIEW A VOLUME 46, NUMBER 5 1 SEPTEMBER 1992

Casimir efFect in absorbing media
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The Casimir force between two dielectric slabs of finite thickness is calculated for the case of dissipa-

tive media. The medium is modeled as a continuous field of quantum harmonic oscillators interacting
with the heat bath. The electromagnetic field inside and outside the cavity formed by the plates is found

for the ground state of the coupled system, and its pressure is calculated. Two terms in the expression
for the Casimir force are distinguished. One is the electromagnetic vacuum pressure, which is the only

contribution in the case of lossless media. The other arises from the Langevin forces that appear togeth-
er with the damping as the result of the interaction of atoms with the heat bath. It is shown that both
contributions are necessary in order to arrive at a finite result.

PACS number(s): 12.20.—m, 42.50.—p, 03.65.—w

I. INTRODUCTION

One of the problems that has received considerable re-
cent attention is that of the quantization of the elec-
tromagnetic field in the presence of a dielectric medium
[1—11]. The interest in this problem is related to the de-
velopment of cavity QED [12] and to experiments in cav-
ities with non-perfectly-reflecting walls. Theories have
been developed that allow one to calculate various quan-
tum electrodynamical effects like the Casimir effect [5],
spontaneous emission in a cavity [6], level shift and spon-
taneous emission in a dielectric microsphere [7], and the
spectrum of squeezing in a leaky cavity [8]. The
modification of the spontaneous emission has been also
studied for an atom located in the vicinity of a dielectric
wall [9], inside a dielectric slab [10],and in a bulk dielec-
tric [11,13]. Another large group of papers has arisen
from the need to describe the propagation of light
through a inedium [14,15], in particular the effect of the
dielectric medium on the quantum statistical properties
of the field. For example, nonlinear efFects like the pro-
duction of squeezed states have been examined [15].

The difficulty with the quantization of the electromag-
netic field in dielectrics stems from the fact that the medi-
um may be in general nonlinear, nonhomogeneous,
dispersive and dissipative, and it is not easy to handle all
of these properties together. The question of quantiza-
tion in dispersive and lossy media was recently treated by
Huttner and Barnett, who generalized the quantum mi-
croscopic approach [16] first for dispersive [2] and then
for dissipative media [17]. However, so far they have
considered homogeneous media only. On the other hand,
the standard quantum macroscopic theory for nonhomo-
geneous media [1] does not take dispersion into account
and refers to a medium described by a constant refractive
index. Although useful for many applications, this ap-
proach, as well as all other approaches neglecting losses,
is generally incorrect. It is well known that the dielectric
function e(to) must satisfy the Kramers-Kronig relations,
otherwise causality would be violated. According to
Kramers-Kronig relations, the imaginary part of a realis-

tic, frequency-dependent dielectric function must not
vanish, and that implies the dissipation of radiation ener-

gy. Therefore, a complete theory would have to include
not only the field and atoms, but also a system that ab-
sorbs energy, usually called a heat bath or a reservoir.

The aim of the present paper is to recalculate the
Casimir force between two dielectric plates, taking into
account that the medium is not lossless. Reviews of the
Casimir effect may be found in [18]—[21]. For previous
approaches to the Casimir effect in dielectrics see [5] and
[22]—[28]. In Sec. II of the present paper the method and
the result obtained in [5] for the case of the nonabsorbing
medium described by a constant refractive index is re-
viewed. Section III introduces the model of the medium
composed of atoms —damped quantum oscillators, and
the equations of motion for the atoms coupled with the
electromagnetic field. It is shown in Sec. IV that the field

and therefore the Casimir force have two contributions,
which arise from the electromagnetic vacuum and from
the I.angevin forces. These are derived in Secs. V and VI.
The resulting Casimir force for the case of semi-infinite
slabs is studied in Sec. VII. Section VIII gives the results
for the general case of finite thickness of the plates, and
the conclusions.

II. CASIMIR FORCE BETWEEN THE PLATES:
THE METHOD AND THE RESULTS

FOR LOSSLESS MEDIA

In a previous paper [5] we calculated the Casimir force
between two dielectric, non absorbing plates. As in the
case of perfectly conducting slabs, for which the e6'ect
was first predicted by Casimir [29], this force can be
viewed as the result of the electromagnetic vacuum pres-
sure. The first step to find the force was the quantization
of the electromagnetic field in the presence of dielectrics.
The medium was assumed to be characterized by a
frequency-independent refractive index. Thus it could be
eliminated from the problem, its presence marked only by
the modification of the modes of the quantized field. The
physical vacuum —the ground state obtained in the
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m'r(x, t)+me@or(x, t)+myr(x, t)=F(x, t) .

The appearance of the Langevin force obeying the com-
mutation relation

[F,(x, t ),F, (x', t') ]= iirt5J5(x —x')—5(t t—')2' f

FIG. 1. Configuration of the dielectric plates.

above procedure of quantization —has an important
property: the quantum averages of the components of
the energy-momentum tensor of the electromagnetic field
are not homogeneous in space. In other words, the pres-
ence of boundaries leads to the polarization of the vacu-
um. In particular, the difference between the T „com-
ponents of the Maxwell stress tensor outside and inside
the cavity results in the force between the plates.

In [5] the effect was calculated for the configuration
presented in Fig. 1, in its one-dimensional version (which
means that only the modes with wave vectors perpendic-
ular to the plate surface were taken into account). The
derived expression for the Casimir force has the form

guarantees the conservation of the commutator (2) (see
Appendix A). The heat bath is assumed to have zero
temperature when we have

(F(x, t)) =0,
(3)

(F;(x,t)F (x', t')) = 5; 5(x—x')ymA

—i CO(t —t')

0

This type of model of the interaction of oscillators with
the heat bath has been discussed in [32] together with
other models. See also [33]. Note the difference from the
most commonly used model in which the rotating-wave
approximation (RWA) is made in the interaction of the
atomic oscillators with the heat bath [33,34]. There one
has

with r the reQection coefficient for a single plate:

2iknd

n+ 1
2

n —1
en+1

a(t ) = in)oa(t—) ya(t )—+F(t ),
[F(t),F (t')]=2y5(t —t'),
(F(t)F (t'))=2y5(t —t') .

The important difference between both models lies in
the spectral properties of the noise. While in the model
with RWA the Langevin forces may be regarded as white
noise, it is no longer true in the present case; from (3) it
follows that

It is important to note that in the above formula the re-
fractive index n is constant. In the next sections we will
generalize the method for the case of absorbing medium,
characterized by the complex refractive index depending
on frequency.

III. SPECIFICATION OF THE MODEL
OF THE ABSORBING MEDIUM COUPLED

TO THE ELECTROMAGNETIC FIELD

A. Atoms plus the heat-bath subsystem

and

4am yA(F;(x„ai,)F (x2, aiz) ) = 5, 5(x, —xz)
7l

X I dc' N 5(ai coi)

X5(co+co2)

( [F((xi,a)i), F) (x2, a)2)]) = 4~m yA
5,,5(x, —x2)

7l

X co, 5(co, —ai2),

(4)

[r, (x),pj(x') ]= 5(x—x')5;, ,
iA

(2)

where g is the number density of atoms. The reservoir
representing the system that absorbs the energy (for ex-
ample, phonons) may be described with help of an infinite
set of quantum harmonic oscillators [17,31] or effectively
in terms of a damping constant y and the Langevin force
F(x, t). In the latter case, the interaction of the atoms
with the heat bath leads to the equation of motion

In order to take into account the absorption inside the
material, we will assume that the medium is composed of
the atoms modeled as quantum harmonic oscillators [30]
interacting with the heat bath. Their positions and mo-
menta are described by the operators r(x) and p(x) that
fulfill the commutation relations

so the frequency spectrum is not Bat.

B. Equations of motion for the atoms
and the electromagnetic Seld

We consider the configuration of the dielectric plates
as in Fig. 1. The coupled system, the electromagnetic
field plus atoms interacting with the heat bath, is de-
scribed by the set of equations

p(x, t) —(e/c) A(x, t)r x, t =
m

p(x, t) = ma)or(x, t) —ym—r(x, t)+F(x, t),
4 BP (x, t)

EA(x, t) —
2

A(x, t)=-
c
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IV. TWO CONTRIBUTIONS
TO THK CASIMIR KFFKCT

As in the case of a non absorbing medium, we will cal-
culate the Casimir force as a difference between the T,
components of the Maxwell stress tensor on the left and
right sides of the plate in the ground state of the coupled
system (physical vacuum). Our calculations for finding
the electromagnetic field in the physical vacuum will fol-
low in the spirit of Compagno, Passante, and Persico
[35], where they found the density of the magnetic and
electric field around the neutral source in the dressed
ground state. We assume that at t =0 the Geld is in the
vacuum ("free vacuum") state. It evolves according to
the equations of motion and after t ~~ is damped to the
ground-state ("physical vacuum") solution.

We will present calculations for the one-dimensional
configuration that is restricted to the modes with the
wave vector perpendicular to the plate surface. This will
allow us to compare the present results with those ob-
tained in our previous paper for lossless media. The
Casimir force is then given by the difference of the mean
energy density e(x)=((1/8n)[E (x)+B (x )] & in the re-
gions I and III.

Fc =e'(x = —a /2 —d )
—e"'(x = —a /2) =e' —e"' .

In order to find the electromagnetic field, we take the
Laplace transform of Eqs. (5) and eliminate the atomic
variables. As the result, we obtain the following equation
for the field:

2 22a A( ) 21+4~ en 1

Bx S +COO+ PS
A(x, s )

A(, 0)+ A(, 0) 4~ecq sF(x,s )

m s +coo+ps
(6)

This equation is modified in comparison with the equa-
tion for the free field by the presence of the complex re-
fractive index n (s ) = 1+(4~e q /m )[ 1/(s +coo+ ys ) ],
and by the presence of the inhomogeneous part contain-
ing the Langevin forces. In the above equation we have

where the damping constant y and Lang evin forces
F(x, t) are related through the fiuctuation-dissipation re-
lation (3). The operator Pr(x, t) represents the transverse
part of the polarization P(x, t ) of the medium:

P(x, t) =reer(x, t ) .

The electric and magnetic fields may be calculated from
the vector potential A(x, t ) by the usual relations:

Er(x, t)= ———A(x, t), B(x,t)=VX A(x, t) .
l

C

omitted the terms containing the positions and momenta
of the oscillators at t =0 because they do not contribute
to the field in the vicinity of the plates for t ~~. We are
looking for the solution of Eq. (6) for t ~ ~, with the ini-
tial condition

1/2

A(x, O)= g f dk c
oo COk

Xer [bkr(0)e'"'+bkr (0)e '"'],
' 1/2

A(x, O)= g f dk c
oo COk

X e, [ i ~„—b„,(0)e'

+i cokbkr (0)e '""],

(b„(o)&
= (b,', (0) &

= (b,',, (o)b„(0)& =0,

(bkr(0)b„, , (0) & =5(k —k')5qq, .

This solution has the form

A(x, t)= A r( xt) +AL(x, t),
where we have distinguished two contributions: Ar (x, t ),
which depends linearly on the Langevin forces, and
Av(x, t ), formed by the modified initial vacuum modes.
Similarly, the Casimir force will be composed of two
parts: FC=Fv+FL, where F~ and FL wi11 be called, re-
spectively, the contribution from the vacuum and the
contribution from the Langevin forces. (There is no cross
term because of the property (F(x, t ) & =0.)

V. CONTRIBUTION FROM THK VACUUM

The solution for Ar (x, t ) for t ~ ac has the form
' 1/2

Ar(x t)=g f +f dkc

Xe„[bk~(0)e ' fk(x)

+bkr, (0)e

In the above expressions, the first integral comprises the
waves going from left to right, and the second one the
waves going from right to left. The mode functions
fk(x) are described by the same formula as for the case
of a nonabsorbing medium [5]; the only diff'erence is that,
instead of the constant refractive index, we now have

2
COp

n = n (cok ) = 1+
COO COk l Q Ct) I,.

it: )0

eikx+ g e
—ikx

k

e rkx+ D e rkx

e rkx
k

TABLE I. Mode functions fk(x).

k(0
Z

rkx

C ke' +D ke
ikx+ g —ikx

x E( —~, —a/2 —d)
x E. ( —a/2, +a/2)
x H(+a/2+d, + ~)



46 CASIMIR EFFECT IN ABSORBING MEDIA 2289

where ~ is the plasma frequency given by

2 4me g
P

The explicit expressions for the mode functions outside
and between the plates that are necessary to calculate the
Casimir force are given in Table I. The coefficients Rk,
Ck, Dk, and Tk are

infinite value

F "= Rook 1+ Rk
0 2'

In Sec. VII we show that the addition of the contribution
from the Langevin forces will lead to a finite Casimir
force.

R = r 1+ e
e

—ik(a+2d)
r 2e 2ika

—te
—ikd/( 1 r 2e 2ika)

D rte ik (a —d) /( 1 r 2e 2ika
)k

T —t 2e 2ikd/—
( 1 2e 2ika)

R k =R( —k), C k =C( —k),
D k =D( —k), T k =T( —k),

where r and t are the reA ection and transmission
coefficients for a single plate:

n —1(,2k d 1)n+1
2

2iknden+1
4n tknd

2e(n+1)
'2

2iknden+1

Note that, due to the dissipation, the relations
IRk I

+
I Tk I

= 1 and I r I
+

I
t I

= 1 are no longer valid.
The contribution from the vacuum to the energy densi-

ty outside and inside the cavity is

ev= f &~k(1+IRkf')+ f
=f &~k(1+ IRk I'+

I Tk I')

eV'= f &~k( I Ck I'+
I Dk I')

0 27T

+f &~k(lc kl2+ID kl')

= f &~k2(lc„ f'+ fD„I') .

The resulting contribution to the Casimir force takes the
form

r, =f"" i)1~k(1+IRk f2+ ITkl' —2lc„l'—2ID„I') .

VI. CONTRIBUTION FROM THE
LANGEVIN FORCES

The long-time solution At (x, t) =f (dco/
2m. ) AL (x,k)e '"', k =co/c has a rather complicated
structure, but with the use of a proper notation the for-
rnulas may be contracted to a form in which the interpre-
tation of each term is easy. The field in the regions I and
III is of primary interest and is given by

At (x, k)=W, (k)e

A "(x k) =W (k )e'""+W (k )e

where W, (k ), W2(k ), and W3(k) are

W (k )
—pr(k )eiknd ik(a+d)—

1

X [K(1+rr„e '"')+L(r„+re '"')

te'k[' d~+]qtr e'k~'+
n

W2(k)= W(k)[Kr„e '"" +L+Mre'"'

+Nrr e~ 'a+ ndrr„e J

W (k)=W(k)[Krr„e'"'+ " '+Lre'"'

+M+Nr„e '"""],
—a/2eikna /2 ~ )e iknxdX

—a/2 —d—a/2ikna /2 G(x co)e '"""dx
—a/2 —d

M =e
—ikna/2 a/2+d

Co )e iknxdX
a/2

eikna /2 a/2+d
G(x, co )e '"""dx

a/2
4m.e r] F(x, co )G x, co 2= 2

Q)0 —CO l PN

ika /2
W(k) =

2 2ika
)

2n/(n +1)
2 2iknd

me

n —1r„= n+1

For a lossless medium this expression represents the total
Casimir force. This is no longer the case when dissipa-
tion is present. It is easy to demonstrate this in the limit
of infinitely thick plates ( d ~ Oo ). We have then
ITkl ~0, ICk I ~0, ID„I ~0 (the incoming vacuum is
absorbed in the first plate), and we are left with the

r and t are given by (8) and n = n (co) by (7).
The above formulas together with the expression (4) for

the correlation of the Langevin forces are sufficient to ob-
tain the mean energy density of the electromagnetic field
caused by the Langevin forces. To this end we will have
to evaluate integrals of the type
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d co'C I( k') f dx'f, (k', x')

XF(x', co')e '" e ' 'f dco"C (k")

a/2
&& &x "f (k" x")F(x" m")e '""*e ' "')—a/2 —d

which give, when (4) is used,

constX f dcocoC, (k)C2( —k)

X f dx'f, (k,x')f (
—k, x') .—a/2 —d

For the region outside the plates we get

CO2~CO ~W
~2eik(n —n )d

eL = dk A'cok
2mc o )coo2

—co2k —iyco [ )n[ [1—r2e '"a[

X
)
1+rr e2(ka)2 eik(n —n )xdX + )r +re2ik )2ae ik(n —n )xdx

0 0
n n—d —d

+ (1+rr e2 k(a)(ra+me 2ika) e ik(n+n )xdX +C.C.
0

n n —d

—ik d~2 f 'k( —
) d + ~tr

ik d~2 f —'k( —n ) d
0 0

~t ~2rne '"("+" )"f e'"("+"
0

Further, we will use the following notation:
2ikn

&
d iz&

—2kn&d —
z2n=n)+in2, n, =Re(n), n2=1m(n), e ' =e ', e ' =e

We will also take advantage of the property

(10)

/CON&
2n, (co)n2(co) =

COO CO I QCL)

The contribution from the Langevin forces to the energy density outside the cavity now takes the form

X [n)(e ' —1)/1+rr„e '"'/ +n, (1—e ')[r„+re '"'[ [in2(e ' —1)(l+rr„e '"')(r„'+r'e '"')+c c ]..

+n))t
f (e ' —1)+n))tr„/ (1—e ')+[in2/)t[ r„*(e ' —1)+c.c. ]] .

For the region between the plates we get in a similar
way

dk „2(1+[r i') iw )'
o 2m (n[ [1 re '"'(—

X {n)~r„~ (1—e ')e '+n)(1 —e ')

+ [in2(e ' e'"" )r„+c.—c. ]] .

The contribution from the Langevin forces to the Casimir
effect is FL eL eL .

VII. CASIMIR FORCE (FL +Fy )
FOR THE CASE d ~ oo

—2kn2d
The appearance of the factor e ' and the fact that—kn2d

t is proportional to e ' mean that the above compli-
cated formulas simplify significantly when we take the
limit d~~, that is, for the case of semi-infinite slabs.
As this is also the case most often considered by other au-
thors, it seems to be a good starting point for further con-

I

sider ations.
As previously said, the contribution from the vacuum

to the Casimir force is infinite and so is the contribution
from the Langevin forces. Using the formulas from Secs.
V and VI it is easy to check that

Fv(d~co)=ev(d~oo)= f A' c(o1k+r„~ ),
0 2'

III( d )
—0

dk /w/'n(

X [1+rr„e '"'/
2

dk 2
'flCOk n)

0 2m. n+1

= f firg)k(1 —)(r„~ ),
0 2K

() 2~ 1 2e 2l ka 2
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Two last equalities follow from the identity

I
~+ 1 I' —ln —ll'=4~ .

The total energy density of the field in the region I is
equal to

(12)

The sum appearing in this formula is known as Euler's di-

logarithm [36]. This result for the Casimir force was also

obtained by another method in [5].

VIII. CASIMIR FORCE FOR THE FINITE
PLATE THICKNESS d; CONCLUSIONS

which is exactly the energy density of the free vacuum.
%e should have expected this result, as in the one-
dimensional case the mean energy density does not de-

pend on the position in the region with the constant re-
fractive index, and infinitely far from the plates it should
be the same as in the free vacuum.

Although both contributions to the Casimir effect are
infinite, the sum (FL +Fv ) gives the finite result

Fc=Fy+FL, =(ev eP )+(et. eL, )

In this section we will use the results of the previous
sections to derive the expression for the Casimir force
that is valid for any thickness of the plates.

According to (9), the contribution from the vacuum to
the field between the plates is

»t 1-- dk„2(1+lrl')ltl'
~o 2~ "

ll —r&e'(«l&

The contribution from the Langevin forces is given by

(11),which turns out (see Appendix C) to be equivalent to

Amok 2 1
one

(13)
txx 1k~ 2(1+I"I')

(1 l
l2

l
lg)

o 2~ ll —r e '"'l (16)

r'(is )e ('""
"ds s

1rc 0 1 r 2( s )
—(2sa /c)

n l
(14)

Having written it in this form, it is easy to check that our
result is in agreement with the expression derived by
Lifshitz, who was the first to calculate the force between
two semi-infinite dielectric slabs [22].

From (14) it follows that for large distances (a ~ c/coo)
between the plates the main contribution to the Casimir
force comes from small frequencies where n is constant
and we may make the approximation

2
(0 )e

—( 2sa /c )

Fc= "ds s
() 1 „2(0)e—(2sa/c)

n

r„(0) dg
2m a o 1 —r„(0)e

The last integral can be evaluated by use of the special
function 4 [36],which satisfies the equations

Qo s —1 —Ut

4(z, vs)= g (v+m) 'z = dt
t e

1(s) o 1 —ze

The expression for the casimir force then takes the form

Fc= r„(0)C&[r„(0),2, 1]
2&Q

[r.' o )2na() .(1+m )

Comparing it with (1), one sees that eventually we have
exactly the same formula that was valid for the case
without absorption in the medium.

The expression (13) has the advantage that its physical
origin is clearly seen. Before applying it, it is useful to
transform it further. In Appendix B we show that (13) is

equivalent to

iScok 2 1
o 2~ ll rzez(«l2

(17)

At this point we have proved that the expression (1)
obtained for the case of a constant refractive index holds
also for a refractive index depending on frequency, in

particular for the realistic case when the absorption is
present. The difference is that while in the case of a con-
stant refractive index we had to introduce the cutoff func-
tion decreasing to zero for large frequencies in order to
get a finite result, now this cutoff is achieved in a natural
way by r(cok )~0 for teak ~ cc. Moreover, the interpreta-
tion of the effect is different in the two cases. A refractive
index that is real and does not depend on frequency
means that there are no damping and no Langevin forces,
and the whole effect comes from the vacuum modified by
the presence of boundaries. In the real situation of a
dispersive medium, the refractive index is complex and
there are losses. According to the quantum theory,
damping is accompanied by the Langevin forces. The
pressure of the Geld radiated by atoms due to the
Langevin forces adds to the pressure exerted by the
modified vacuum.

The expressions (15) and (17) correspond to one-
dimensional calculations with only k vectors normal to
the surface taken into account. To get the result valid for
a real situation, an integral over k(( should be added (lead-

ing to a in place of a dependence of the force on a
separation) and evanescent modes should be included.
But our main idea —the necessity of taking into account
both contributions to the Casimir force —remains valid.
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APPENDIX A

The quantum evolution of a damped harmonic oscilla-
tor is described by the equations

Eqs. (Al) is

p(0) „ ,*, r(0)r(t)= e"—e' ' — (z*e"—ze' ')
m(z —z*) Z —Z'

1 dtlF( tl)( 2(t t ) z (t t ))
m(z —z*)

~(0) „ mao()r(0)
p(t)= (ze"—z*e' ') — (e"—e' ')

Z —Z* Z —Z'

p mc00r ftor+F .

We wish to prove that the commutation relation

(A 1)

where

+ dt'F(t')(ze" ' ' z'—e' " ' ')1

z —z'

[F(t),F(t')]=2myii)i f

itive'""

t~(t t )

2' (A2)
Z= l CO

2
0

2 1/2

guarantees the conservation of the commutator for the
position and momentum of the oscillator. The solution of

I

Then we get

2
C00 1[r(t),p(t)]= —[p(0), r(0)] (e"—e'*') —[r(0),p(0)], (z'e"—ze' ')(ze"—z'e' ')

(z —z') (z —z')

dt'f df"[F(t') F(t")](e"' '' e' —" '')(ze" ' ' z'e—' " ' ')
m(z —z')'

The calculation of the terms containing the commutator [r(0),p(0)] is straightforward and gives

[r(t ),p(t )]0=i()i'e

(A3)

(A4)

This result shows that damping not accompanied by the Langevin forces would lead to the damping of the commutator
of the position and momentum. The term in (A3) containing the Langevin forces, when expressed by (A2), takes the
form

[r(t ),p(t )]t;=i' f dt' f dt"
(z —z*)'

1 eita(t' t")(zez(2t —t' t") ze—z (t —t')ez(t —t"))—
~ ~

27Tl

Integrating over t' and t" we get

[r(t),p(t )]F=iiri 2yz
(z —z')

co (ice—z)t l
—(ico+z)t

dco co e
27Tl le Z

, e —1 e(tN Z )t 1 (t CO+2)t

C. C.

The first integral is zero, and we are left with

2ye (crt+ 1) (e( z*ta)tt+ (iat+z)t)
[r(t),p(t)] =i' de~ — den

Z Z 2~l oo CO+ lZ N lZ oo N+ lZ CO lZ

=i'(1 —e r') .

Adding together [r(t),p(t)]o and [r(t ),p(t )]F, we get the
proper value of the commutator [r(t ),p(t )].

APPENDIX 8

2)r„~ —2Re(r e '" ")
FC ddt CO

ETC 0 2 2i(at/c)a~2f„e
2 2i (~/c )a

Re dm co
WC 0 2 2i(a)/c)ar„e

Here we show that

-dk
Ad)k 2 1

0 2K ri 2ika/2

may be rewritten as (14). First let us notice that the for-
mula above is equivalent to

Now we may replace the integral over the real axis by the
integral over the positive imaginary axis (the integrand
has no singularities on the upper half-plane). We then get

2 2i (co/c)a
$ ooFc= — Re deuce

2 2( / )
ETC i0 2 2&( /c )a

Putting co=is we immediately get (14).
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APPENDIX C

Like most formulas from Sec. VI, the expression (11)
looks rather complicated, but one requires only some

algebra to show that the much simpler formula (16) is
equivalent to it. In the transformations below we will use
the notation introduced by (10) and the identity
1 —

~r„~ =4n, /~n+1~ . Using the definition (8) we get

and

e
4//n+ I

/

4("i+"2)

/
I re '"—"«[ /n+. I

/

4/~n+1~~ 4n& 2in2(n" n)—
n)

~1 r„e —'""«~ ~n+1~ ~n+1~
+ Z

e

1 —)rf = .
k [1—/r„t —/r„/ (1—/r„/ )e ' —(r„e '"" +c.c. )+()r„/ e '"" +c c .)].r2e2iknd 2

r

, z "t —, z;k„«2(n' —n)
nI e + re'" +c.c.

J
I —r e '""

f
/n+I/ )n+ If fn+I[

[n&(1 —
~r„~ )

—(in2r„+c c )]e. .
„2 zikn«2

Taking into account the form of the coefficient ur we get
2

1 —
~r

—~t) = [n&(1 —
~r„~ e ' —e '+~r„~ e ')+[(in~r„e ' in2r„e —'"" )+c.c]],

n

which is what was to be proved.
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