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Basic dynamic properties of the high-order nonlinear Schrodinger equation
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The dynamic behavior of the nonlinear Schrodinger equation (NSE) with an additional high-order
Hamiltonian perturbation that displays a nonlinear interaction between Langmuir waves and electrons
in plasmas is studied. It is shown that periodic solutions, solitary waves, and recurrence exist, which are
also inherent in the cubic NSE. A more important phenomenon, stochasticity, has been found in such a
continuum Hamiltonian dynamic system. This phenomenon illustrates that nonintegrability arises from
the high-order Hamiltonian perturbation. In addition, our numerical results also show that recurrence,
which sensitively depends on initial conditions, is only a special feature of the dynamic system.

PACS number(s): 47.10.+g, 05.45.+b, 52.35.Ra

I. INTRODUCTION tE, +E,.+ IEI'E g IEI4E—=O, (2)

The cubic nonlinear Schrodinger nonlinear equation
(NSE)

iE, +E„„+~E~E=O,

which is known to be completely integrable by the inverse
scattering transform (IST) [1], is one of the basic evolu-
tion models for nonlinear waves in various branches of
physics. A class of periodic solutions and solitons can be
obtained by IST, and much work on Langmuir solitons in
plasmas, optical solitons, magnetic solitons, etc., is stimu-
lated [2,3]. The solitons developed by modulational in-
stabilities keep their spatially coherent structures and
temporally periodic evolutions.

In particular, it has been found that the unstable
modulations to the uniform solution would first grow at
an exponential rate as predicted by Benjamin and Feir [4]
and that eventually the solution would demodulate and
return to a near-uniform state. The energy in the system,
which is initially confined to a few low modes, would
spread to many higher modes due to the nonlinear in-
teraction, but would eventually regroup into the original
modes [5,6]. The well-known Fermi-Pasta-Ulam (FPU)
recurrence [7] in connection with deep water waves has
been verified experimentally by Lake et al. [8] and Yuen
and Lake [9]. The simple and complex recurrence phe-
nomena were also discussed numerically by Yuen and
Ferguson [10] and analytically by Stiassnie and Korszyn-
ski [11].

In recent years, attention has been focused on analyz-
ing the behavior of high-order NSE s involving quintic
terms [12—15]. In Langmuir plasmas, the beat-frequency
interaction between the large-amplitude parts of high-
frequency fields and particles can occur in the evolutive
later stages of plasma instability. In Ref. [14], one of us
(X.T.H. ) derived the dynamic equation involving quintic
fields from Vlasov-Maxwell equations. Under the static
approximation, the high-order NSE can be written as the
following dimensionless form:

where E(X,t ) is the slowly varying complex amplitude of
high-frequency electric fields of plasmons, and g is the
coupling constant of high-frequency fields with electrons,
which depends on electron temperature and density, etc.
The dimensionless density is [15]

n (X, t ) = —2
I
E

I (1 r
I
E (3)

where r is taken as

3(2T, +3T, )/T, for Eq. (2)
T=

0 for Eq. (1) .
(4)

Here T, and T, are the temperature of the ion and elec-
tron, respectively.

For Eq. (2), a solitary-wave solution was obtained [15]
and recurrence was also discussed numerically [12]. It is

natural to ask whether periodic solutions can exist and
whether integrability will be broken down under high-
order Hamiltonian perturbation. To our knowledge,
there is no systematic treatment of this problem.

In Sec. II a periodic solution and a solitary wave are
obtained. The properties of the solitary wave are dis-
cussed from. the point of review of physics. The linear-
ized stability analysis is given in Sec. III. The nonintegr-
able behavior is analyzed in Sec. IV. In Sec. V we simply
discuss the relationship of recurrence and stochasticity.
Some conclusions are given in the final section.

II. PERIODIC SOLUTION AND SOLITON

The invariance of the equation under phase shift, space,
and time translations leads to the existence of the follow-
ing invariants: The quasiparticle number

N= E 'd~, (5)

Equation (2) can also be derived from the Lagrangian
density

L, =(t /2)(E*E, —EE,*)—IE„I'+ ,' IE I' —(g /3) IE I'-.
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V(G) q= V/2

J

L

2

2 dg
+ V(G)=HO . (12)

FIG. 1. The pseudopotential function in the regions of
O&g &3/16a'. V(G)= ——'gG +—'G ——'a G (13)

Obviously, Eq. (12) is the energy integral of a classical
particle with unit mass, Ho represents the pseudoenergy
of a particle, and V(G) is the pseudopotential

the momentum

P= —,'i EE —E E* dX,

and energy

H= f (IE.I' ,'I—&—l'+-,'gl&l'}dx . (7)

Gt+26x C'x+ 6@.x =o
—G+t +G„—64„+6 —gG =0 .

(8)

Defining E(X,t)=G(X, t)e' ' "with G and 4 both
real functions, we have equations for G and 4,

—'gG ——'6 +a 6 +2HO=O, (14)

where e =—'V —Q.
Considering 0 (g (3/16a, a plot of the pseudopoten-

tial function is given in Fig. 1. A particle lies in the re-
gion of pseudoenergy Ho &0, and starting from the left
point G=G, will go to the right-hand side of the well,
reAect from the place G =G2, and return to 6 =G &, mak-
ing a cycle. This particle orbit corresponds to a periodic
solution. If a particle lies in the origin point (say Ho =0)
initially, its orbit corresponds to a very special solution in
G, a single-pulse solution called a solitary wave (also
called a soliton in an integrable system}.

Supposing Ho ~ 0 and considering

Also, let

G(X, t ) =G(g), (=X—Vt, @=qX Qt . —

Combining Eqs. (8)—(10), we get

(10)

we can find three positive real roots G =a, , a2, and a3,
and assume 0 a, & a2 & a3.

Thus, the solution of Eq. (12) can be expressed with the
elliptic integrals of the first kind,

G(X, t)= a2(a3 —a() —a3(az —a()sn (&g/3M(, k )

(a3 —a, )
—(a2 —a, )sn (&g/3M(, k )

(15)

where

M = [a2(a3 —a, ) ]'/
1/2

k= a, (a2 —a, )

a~(a3 —a, )

Hence, the periodic solution of Eq. (2) is

(17)

E(X,t)=
[(1——",ga )

'/ cosh(2ug) + 1]'

i[( V/2)X —( V /4 —a )t ]Xe (21)

The solitary solution was obtained by Liu and He using
the test function method [15]. For Eq. (21), we define
EO=E(0,0) and obtain

G(X t } i(( v/2)x —
( v /4 a(t]—

If Ho =0, we can get

E4
a2— 1

E2
2g
3

3[1—(1—
—",ga )' ]

a) —0, a2-
4g

hence the condition for the soliton wave satisfied is
O~g (3/2Eo. In the case of g=O, the periodic solution
for cubic NSE (1) is

and

3[1+(1——6ga )'/ ]
E(X,t)=&2adn(a( k)e'((

and the solitary-wave solution (21) can be reduced to

E(X t)=& a2sehc(ag) 'e'

(22}

(23)

k = 1, M =o.&3/g

Thus, a solitary-wave solution can be obtained

(20) which is the so-called Langmuir soliton [16].
The physical significance of the solitary wave is very

clear. From Eq. (21), we obtain the height and width of
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where L and h are expressed in the following form:

L(IEoI'}=2IEoI'—3g IEoI',

h(t)=E, (t)(1—2glEOI } .
(32}

If we consider the periodic boundary conditions
E( L /—2)=E(L /2), the eigenfunction of Eq. (31) can be
chosen as

FIG. 2. Solitary-wave solution (21) with a=1.0. Curve a
corresponds to g =0. Curve b corresponds to g =0.1625. (33)

the solitary wave,

Eo,„=v'2a( 1+—', ga~ }, (24)

where e, e* are small parameters. Here, we choose the
wave number of modulational instabilities to the uniform
solution as E=E,„,and obtain

ln(17+ 12v'2)+ ga .1 2v'2

2(x 3

A, = ]+i
(25)

for cubic NSE (1) as ED =+1,and

(34)

The pondermotive force creates density depletion, and
the maximum density can be obtained from Eq. (3),

A, = 1+i(—1+4g+ v'1 —4g )/2g (35)

In 1,„=4a[1—(2r ——', g)a ] . (26)

III. LINEARIZED STABILITY ANALYSIS

Obviously, the effects of high-order nonlinear terms
enhance the amplitude and width of the solitary wave,
and weaken the density depletion as compared with those
for the case of g =0 (see Fig. 2). A(o, t)=IE(o, t)l —E, ,

d A(O, t)
(36)

for high-order NSE (2) as Eo=+[(1—v'1 —4g )/2g]'~
with O~g & —,'.

To display the numerical results in later sections, we
construct the phase-space diagrams (A, A, ) at X=O as
done by Moon [18],which are defined as

In the preceding section, we only obtain a special
periodic solution and a solitary wave. Are there more
general periodic solutions and many-solitary solutions?
Here, we do not discuss this problem. In this section we
further qualitatively analyze the dynamic properties of
Eq. (2) and consider the homogeneous solution,

=+ 1 —v'1 —4g
2g

1/2

For phase space ( A, A, ), it is easily seen that Eo =+1 for
cubic NSE (1), and

E,(t) =Eoe",

where Eo are

ED=0,
1/2

(1+&1—4g )

Zg

(27)

(28)

1+v'1 —4g

2g

1/2

with 0&g & —,
' for Eq. (2) correspond to the hyperbolic

fixed points, respectively. The linearized stability
analysis also shows that ED=0 for Eqs. (1) and (2) corre-
sponds to the elliptic fixed point. For Eq. (2), the other
fixed points, i.e.,

The linear growth rate as a function of an unstable
wave number E obtained from Eq. (2) is [17]

y(K)=E[2EO(1 2gEO) —K ]'~— (29)

E(X,t ) =E,(t)+5E(X,t )

and linearizing Eq. (2), we have

a, +a„„+L(IE,I') h(t)
—ia, +a„„+L(IE,I') &E'h *(t)

(30)

=0, (31)

for 0& IXI &ED[2(1 2gEO)]' . The—unstable wave
number corresponding to the maximum instability mode
is E,„=E(1 02gEO )'~ . —

Defining

for all parameter values g, and

1+&1—4g
2g

' 1/2

for g) —,
' correspond to the elliptic points. Because the

cubic NSE is integrable, therefore, the trajectories in
phase space ( A, A, ) correspond to the periodic re-
currence solutions. Of course, the different trajectories
should be associated with the different initial conditions.
The origin is a saddle point.

On the other hand, although the recurrence phenome-
na have also been found in Eq. (2) [12], the integrable
problem has not been discussed. In the following section,
we further analyze the integral behavior numerically.
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IV. NONINTEGRABILITY

For the cubic NSE (1), the integrability had been cor-
roborated by IST. However, more general NSE's, e.g. ,
higher dimensions or noncubic nonlinearity, do not pos-
sess integrability, and many interesting phenomena can
appear. For example, a collapse of nonlinear Langmuir
waves, when the spatial dimension d and the coefficient p
in nonlinear term (E~~E satisfies dp )4, can occur [19].
This important process solves the old problem of small-E
condensation in weak turbulent theory. In the case of
one dimension, the integrability of systems will, in gen-
eral, break down if other physical perturbations, such as
driven damping [18,20—22], force dissipation [23,25], and
nonlinear inhomogeneous media [26,27] are taken into
account. A rich variety of temporal chaos and spatial
coherence, which suggests that a low-dimensional chaotic
attractor exists in an infinite-dimensional system, has
been observed [28—31]. In the presence of Hamiltonian
perturbations, however, the problem becomes extremely
difficult for general initial conditions since the system
does not reduce to a finite-dimensional system as that in
the case of dissipative perturbations.

In the following discussions, we choose as the initial
condition

2. 03

l. 20

0.E)
0. 40

-1.60 $
-2 CO I I

-2. 0 -1.6 -1.2 -0. 6
I I I

Q. 0 Q. 4 0. 5 1.2 1.6 2. 0

A(o, t)

(0~90 are the periodic motions around two elliptic
fixed points and a hyperbolic fixed point, but do not cross
over the hyperbolic fixed point. The largest distance for
trajectory deviating from the hyperbolic point is that cor-
responding to 0=90' [Fig. 6(a)].

Taking —g~E~ E as a Hamiltonian perturbation, we
expect that the irregular motions would easily appear
nearby HMO if the integrability of the system is indeed
broken down. Figures (4 and 5) clearly illustrate the
chaotic behavior of the amplitude of fields. As shown in
the figures for the A, -A phase space, irregular HMO

E(X,O) =ED+ 0. le ' cos(K,„X),
where

(37)

1 —&1—4g
2g

' 1/2

6E =+i
$E

(38)

Obviously, it reduces to the initial conditions as con-
sidered by Moon as g =0 [18]. In numerical discussions,
the periodic boundary conditions and the split-step
method [32] have been used. The periodic length is taken
as L =2~/K „.

According to Eqs. (31)—(35), we obtain

BO

0. 00

-0 BO—

-1.20—
-1.60-

2' Q)0. 0 20. 0 40. 0 60. 0 BQ. 0 100. Q 120. Q 140.0 160.0 180. 0 XO. G

(b)

for our dynamic models. Combining Eq. (37), we see that
the unstable manifold of the hyperbolic point corre-
sponds to 0=45' and 0=225' for available values of g.
In the case of g =0, however, our numerical results show
that a homoclinic orbit (HMO) would appear as 0 being a
bit larger than 45 and the hyperbolic point wou1d deviate
from the origin, which results from the modulational am-

plitude in Eq. (37) being not too small. We find that the
period of recurrence for 0=45.225 is much larger than
that for 0=0' and 8=90 (see Figs. 3 and 6). The trajec-
tory corresponding to 0=45.225 is near the HMO. In
the presence of small perturbation, the periodic trajec-
tories may shift from the HMO to adjacent trajectories
whose periods are sensitive to the size of the displace-
ment [24]. The field propagation can then appear to be
chaotic. The small perturbation may lead to irregular
HMO crossings [18,28].

In numerical experiments, we also find that the phase
trajectories for 0 ~0(45.225' are the periodic motions
around an elliptic fixed point and those for 45 ~ 225'

I,IIJliIi)jI„

—10.CC-

"'%.m &'. m 2. M 3.00 4. (G 5. 00 6. 00 7. Q) S. OO 9jCO 10 Z)

Frequency

FIG. 3. Solution of Eq. (1) with 0=45.225 . (a) Phase trajec-
tories, where arrows indicate the directions of motion. (b) The
time evolution of the amplitude of fields. (c) The Fourier spec-
trum of A (0, t ) with respect to time.
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crossings have been observed. These demonstrate the
presence of stochastic motions for complicated dynamics.
The time evolutions for the amplitude of fields also exhib-
it the irregular motions, and the power spectra clearly in-
dicate the broadband structures and noiselike spectra be-
ing typical of chaotic time evolutions. These phenomena
show that the high-order Hamiltonian perturbation in
Eq. (2) leads to chaos. As far as plasma turbulence is
concerned, the cubic NSE describes the nonlinear in-
teraction between the Langmuir wave and ion-acoustic
wave under the subsonic regime, and finite soliton solu-

tions can be obtained by IST. Solitons developed by
parameteric instabilities keep their spatially coherent
structures and temporally periodic evolutions. The ve-

locity of field propagation remains constant [Fig. 6(c)].
In long-time evolution processes, integrability would be
broken down by other physical effects, for example,
damping, dissipation, and high-order nonlinearity. In
this paper, our dynamic model shows that Langmuir
wave fields are no longer periodic evolutions even
without damping and dissipative effects, but still keep
their spatially localized structures. Figures 4(d) and 5(d)
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FIG. 4. Chaotic trajectories of Eq. (2) with g =0.001 and 0=45.225 . (a) Phase motions in the phase space. Notice the irregular
HMO crossings. (b) The time evolution of the amplitude of fields. (c) The Fourier spectrum of A(0, t) indicates the broadband struc-
ture and noiselike spectrum being typical of chaotic time evolution. (d) Contours of iE(X, t)~ =const, where t=550—700 and
X= —L/2-L!2.
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indicate that due to the high-order nonlinear effects the
propagative velocity of the localized structures is not
constant.

V. RKCURRKNCK AND STOCHASTICITY

In the Introduction, we simply accounted for the re-
currence of the cubic NSE, which is associated with com-
plete integrability. For Eq. (2), Cloot, Herbst, and
Weideman [12] qualitatively proved the existence of
bound solutions by use of the invariant (5) and (7). Their
numerical results displayed the recurrence of solutions.
Here, we further analyze the relationship between re-

currence and stochasticity. For the initial condition (37),
we expect that recurrence should easily appear nearby
those trajectories corresponding to 0=90'; Figure 7 illus-
trates the type of recurrence, where g =0.2 and 0=90'.
The phase orbit corresponds to a periodic motion of
three-cycle, which can also be verified in Fig. 7(b) from
the well-formed structures of the time evolution of field
amplitude for long-time prediction. The FPU recurrence
phenomenon is displayed in Fig. 7(c), where three kinds
of spatially localized structures appear and the velocity of
field propagation is invariable. Comparing Figs. 6 and 7,
we observe that the recurrence period for g =0 is about
five times as long as that for g =0.2.

2 X
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FIG. 5. Chaotic trajectories of Eq. {2)with g =0.1 and 0=45.225 . (a), (b), and (c) as before, and (d) corresponds to t =400—560.
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l. 00 1If we choose the different parametric values g and
change the initial phase, we observe that the chaotic be-
havior appears as shown in Table I. These phenomena
demonstrate that the recurrence sensitively depends on
the initial conditions and the parametric values. The re-
sults in Table I express that the recurrence only is the
special feature and the stochasticity should be the main
one for the dynamic system (2). The fact that these com-
pletely different dynamic behaviors occur is very interest-
ing and important. Obviously, the presence of recurrence
is not necessarily associated with complete integrability.
Our recent numerical investigations seem to indicate that
there may be cases in which both effects, recurrence and

1 1 sII
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FIG. 7. Solution of Eq. (2) with g =0.2 and 0=90'. (a), (b),
and (c) as indicated in Figs. 6, where (c) corresponds to
t=0-200. Note that the well-formed structures in (b) and (c)
show that the period of recurrence is about five times as long as
that in Figs. 6(b) and 6(c).

.U

TABLE I. The letter C represents chaos and R represents re-
currence. —shows that there is no numerical result.

g 0.001 0.05 0.1 0.2 0.245 0.249
l9 (deg)(c)

45
45.225
90

C
C
C

FIG. 6. solution of Eq. (1) with 0=90'. (a) and (b) as illus-
trated in Fig. 3. (c) Contours of tE(X, t)t'=const, where
t =0—50.

BASIC DYNAMIC PROPERTIES OF THE HIGH-ORDER. . .



2284 CANGTAO ZHOU, X. T. HE, AND SHIGANG CHEN

stochasticity, are simultaneously important for the dy-
namic system (2).

VI. CONCLUSIONS

A systematic analysis on the dynamic properties of
high-order NSE (2) has been given. One of the most im-
portant conclusions is that the high-order Hamiltonian
perturbation (i.e., quintic nonlinear effects) may lead to
the breakdown of NSE integrability. For plasma physics,
our dynamic model can be derived from Vlasov-Maxwell
equations. The cubic NSE describes the nonlinear in-
teraction between the Langmuir wave and the ion-
acoustic wave in the subsonic regime, where the interac-
tion of the second-order fields is only considered. In the
initial stages of field evolutions, many physical phenome-
na, such as solitons developed by modulational stabilities,
can be explained in terms of this model. In strong tur-
bulent plasma theory, however, the cubic NSE is no
longer valid. The other physical effects, for example,
damping and dissipation, have to be considered. These
effects would lead to stochasticity. In particular, the
high-order field interaction has to be dealt with in the
evolutive later stages of plasma instability. Although our
dynamic model only involves the fourth-order field in-
teraction, it is shown that this high-order Hamiltonian
perturbation may also result in the presence of chaos.
The field evolution from coherence to turbulence is tem-
porally chaotic but keeps their spatially localized struc-
tures. The propagative velocity of the localized struc-
tures is variable where the mechanism is due to high-
order nonlinear effects.

For a finite-dimensional dynamic system, of course, it
is well known that small nonintegrable perturbations can
lead to chaos [33]. Some important properties, such as a
route to temporal chaos by double periodic bifurcation
and irregular HMO crossings, etc, are also observed in
the infinite-dimensional dissipative systems [18,30,34].
Our numerical results have also shown that the irregular
HMO crossings occur in the presence of high-order Harn-

iltonian perturbation. Possible theoretical work on the
HMO chaos may be continued in terms of Melnikov's
method [34—36]. Owing to the complication consisting
of a scattering spectrum for the cubic NSE with periodic
boundary, however, it may be very tedious and difficult
work.

On the other hand, a periodic solution and a solitary-
wave solution have been obtained analytically. The
parameteric values of periodic solutions can be given in
virtue of pseudoenergy Ho. It is shown that the effects of
high-order nonlinear terms enhance the amplitude and
width of the solitary wave, and weaken the density de-
pletion as compared with those for the cubic NSE. The
recurrence solutions could be associated with a class of
periodic solutions, but our results on recurrence do not
correspond to our periodic solution. The reason is that
the periodic solution in Sec. II is a traveling-wave solu-
tion, but the recurrence solution is derived from the
initial-value problem with periodic boundary condition.
Such a recurrence behavior which sensitively depends on
the initial conditions is a general feature of Hamiltonian
systems but is not necessarily associated with complete
integrability.

It is worthwhile for us to analyze the detailed relation-
ship between recurrence and stochasticity. In subsequent
study, we expect that some theoretical work can be ob-
tained. In addition, we plan to discuss some more in-

teresting phenomena, for example, critical value g„ener-
gy spectrum, etc.
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