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Possible interference efFect in the Stern-Gerlach phenomenon
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We show that if it is possible to manufacture a beam of spin- —, heavy atoms corresponding to a

quantum-mechanical pure state, then the dark lines of the Stern-Gerlach effect should display a fine

structure. The two lips of the open-mouth pattern will each be a doublet; the lighter area between the
two lines of the doublet arises from an interference between silver atoms on opposite sides of the incom-

ing beam. We obtain a simple classical model giving exactly the same angular distribution around the

open mouth. However, this classical model does not give the fine structure.

PACS number(s): 03.65.8z, 41.85.—p

I. INTRODUCTION

The Stern-Gerlach phenomenon is what occurs when a
beam of spin- —,

' atoms (preferably heavy ones; the original

experiment was with silver) pass through a transverse in-

homogeneous magnetic field. A plate, placed some dis-

tance beyond the exit from the magnet, shows a distribu-
tion of atoms resembling the pair of lips of a half-open
mouth.

The phenomenon is important from the point of view

of the quantum theory of measurement for two reasons.
The first, which we intend to discuss in a subsequent arti-
cle, arises from the proposition that the two lips of the
distribution contain atoms whose spins are polarized ei-
ther "up" or "down" with respect to the principal trans-
verse field component. According to such a proposition,
it may be possible to design the beam and the magnet so
that the two lips become completely separated. We
~ould then have a perfect "spin meter, " a device which
would enable us to demonstrate [1],possibly in the most
convincing manner so far, the property known as quan-
tum nonlocality. The second, which we discuss in this ar-
ticle, is that if the properties of the deflected beam are
correctly described by the Pauli-Schrodinger wave equa-
tion, then the phases of atoms in different parts of the
beam should be correlated, thus giving us a particularly
striking illustration of wave interference for such a large
composite object as the silver atom.

Bohm [2] argues that, even with the Pauli-Schrodinger
description, the interaction with the magnetic field is
essentially a "measurement" which destroys the phase
coherence. This is because the magnetic field is not
deterministic; it is an interaction between the silver atom
and the very large array of atoms constituting the mag-

net, and the average field of the latter is necessarily ac-
companied by uncontrollable Auctuations. To test his hy-
pothesis Bohm suggested that the beam be passed
through a second magnet which is a mirror image of the
first. Then on the assumption of a deterministic" Pauli-
Schrodinger evolution (that is one which converts an in-
cident pure state into a final pure state through a unitary
transformation), the initial state should be perfectly
reproduced after the interaction with the two magnets.
For example, if all the incident silver atoms have their
spins in the direction of the beam then so do the atoms
emerging from the second magnet. Wigner [3], and En-
glert, Schwinger, and Scully [4] have argued that, in prin-
ciple, such a process does occur; the latter authors have
called it "putting Humpty Dumpty (who is a broken egg)
together again. " On the Bohm hypothesis the emerging
atoms would be completely unpolarized; the pure state
evolves into a mixture.

The latter authors also find that the degree of exactness
with which the second magnet needs to duplicate the first
is a technological impossibility, so it seems rather unlike-
ly that anyone will attempt the miraculous reconstruction
of Humpty Dumpty by this method. However, we shall
show in the present article that, at least for an inhomo-
geneous field with a certain geometry, an interference
effect is already exhibited, according to the Paul-
Schrodinger theory, by the fine structure of the distribu-
tion after the first magnet.

II. THE MODEL HAMILTONIAN

We base our study on the magnetic field

B(x,y, x) =( —B'x,O, Bo+B'z) (0&y & 1')
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where the beam of silver atoms is traveling along the y
axis, and the field is zero for values of y outside the inter-
val (0, Y). We remark that this is the simplest inhomo-
geneous field which satisfies the (static) Maxwell equa-
tions

We shall work in polar coordinates and so write

—r cosO r sinO

r sinO r cosO

Let us write the state at t =0 as

(3.2)

diva=0, curlB =0, (2.2)

(except of course at the transition points y =0, Y; we post-
pone discussion of these to a later article), and that, since
we may move the origin to the point (0,0, Bo/—B'),
there is no loss of generality in putting Bo =0. Then the
Pauli-Schrodinger equation is

i Ag = (%0+%()f, (2 3)

cos( 8/2)
g( r)8)0)=g+(r&8) (g/2)

sin(8/2)
cos(8/2), (3.3)

0

—pB'z pB'x
pB'x pB'z

+
2M ()x ' gz'

where g(x, z) is a two-component spinor and

(2.4)

(2.5)

so that g+ (P ) may be regarded as the component of g
with spin parallel (antiparallel) to the local field, whose
direction is (

—sing, 0, cosg). Then the solution of (3.1) is

cos(8/2)
p(r)8)t)=g+. (r)8)e'" .

(g/2)

p being the magnetic moment and M the mass of the
silver atom. We have assumed that the initial state is an
eigenstate of the momentum p, and so the y-dependent
part of the wave function has been factored out. Now,
defining

b'= f g (x,z, t)P(x, z, t)(x'+z')dx dz, (2.6)

we rescale Eq. (2.3) by expressing x and z in units of b„t
in units of (R/pB'i() ), and M in units of (R /pB'i(), ). This
then gives

sin(8/2 )+ t)/ ( r ) 8 )e
( g /2 )

(3.4)

If the plate is placed a large distance away from the mag-
net, it is legitimate to regard the beam issuing from the
magnet as a point source, so that the trace on the plate is
a picture of the momentum (p) distribution in the outgo-
ing beams, that is

i p= (Ho+ H, )g,
where

(2 &) W(R, B,t) =P(R,B,t)g(R, B,t),

(p =R sinB, p, =R cosB), (3.5)

and

z x
x z (2.8)

where g is the two-dimensional Fourier transform of g,
that is

(2.9)

We shall confine ourselves, in the present article, to con-
sidering the limiting case M~ ~, so that H =Ho. This
approximation is equivalent to assuming that the silver
atoms spend a sufficiently short time in the magnetic field
for us to take account of changes in their momentum
while neglecting the consequent changes in position. It
may be called a nonconvective approximation and has
been made many times before. For example, Bohm [2]
and, more recently, Scully, Lamb, and Barut [5] (who
also considered a magnetic field similar to ours) made this
approximation in a quantum context, while Singh and
Sharma [6) made it in an attempted classical treatment.

P(R, B,t)= f ™rdr f dgg(r, g, t)e
277 0 0

(3.6)

—iRr COS(O —0)

1/2
2M
Rr [

( /4() —))iRrfi( 8

—(i))/4)+iRrfi( g B ~) ]

and t, which should be put equal to MY/p, is the transit
time of the silver atoms through the magnetic field.

Now we anticipate, and will shortly confirm, that, for
large values of t, the distribution 8' will be zero except
for large R. We therefore use the stationary-phase
asymptotic approximation [7] for the phase factor in this
latter equation, that is

III. THE PAULI-SCHRODINGER EVOLUTION

We thus consider the Pauli-Schrodinger equation

i/=HO/ . (3.1)

(3.7)

Put g=R —t and g=R+t Then for large R a.nd t we

may retain just the terms in e —'&" giving
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cos(8/2)
g(R 8 t) (21TR ) (8/2)

x 1/2[ i—rg+i(m/4. )y ( 8)
0

+

+e'"~ ' iP (r, 8+m))d. r

(3.8)

cos(8/2)
[0+(k 8)+0—(4 8})

(3.9)

be written

h(8)= f dylan (g, 8}+y ((,8)l'

—f" dykey (g, 8)+y (g, 8)l'.

By Parseval's theorem, therefore,

h(8)- f dr~/+(r, 8)+P (r, 8)~

=f rdr[~@ (r, 8)~ +(f (r, 8+m)) ],
0

since the cross term is zero.

(3.13)

(3.14)

where

P+($,8)=(2n. )
' f P+(r, 8)e '&'dr, (3.10}

and

(r, 8)= '

(r,8)=

1/2y (r 8) (n/4)
( & 0)

0 (r ~0),
0 (r &0)

( r, 8+~—)e ' /4' (r &0) .

(3.11)

h(8)= f' "W(R,8, t)R dR .
0

(3.12)

Formally we expect h to be a function of t, but it is
asymptotically independent of t since, from (3.8), it may

The form of (3.8) confirms what we anticipated; given
that 1Lis zero for r »1 (or r »6 in the original units)
then 1{i is small for ~R t~ &&1—(or ~R pB't

~

&—&Pi/b in
the original units}. So, crudely speaking, the distribution
on the plate is confined to a region close to the circle
R = t (the half-open mouth is now fully open). This is, of
course, all in the asymptotic regime t &&1. In this same
regime there is a perfect correlation between spin and
momentum; the spin pattern around the circle R =t is
shown in Fig. 1.

The fine structure in (3.8) is exhibited by the interfer-
ence between P+ and P, and we shall discuss it in Sec.
V. But first we propose to examine the coarse structure,
that is the distribution around the circle R =t. To this
end let us form the integral

IV. A CLASSICAL MODEL

In spite of the title which Stern gave to his original pa-
per [8] on the Stern-Gerlach phenomenon ("Experimen-
tal demonstration of directional quantization in a mag-
netic field" ) his discussion was really classical, as has been
pointed out in the more recent literature [9]. However,
this more recent literature has established that Stern's
classical model, at least for the values of 80 and 8' used
in the Stern-Gerlach experiment [10] and its modern
refinements [11],does not give a satisfactory explanation
of the phenomenon.

We now propose a model, which is as classical in spirit
as Stern's, but which reproduces the coarse-structure dis-
tribution h(8) of (3.13), and also the associated spin dis-
tribution of Fig. 1. We suppose that, more or less im-
mediately on entering the magnetic field, a silver atom
has position x, momentum p and spin parallel [antiparal-
lel] to the local magnetic field with probability density
W+(x, p) [W (x,p)]. To establish the correspondence
with the model in Sec. III we shall suppose that

f ~ (x,p)ld'p=lg (x)l'. (4.1)

This means that a kind of "collapse" occurs to the silver
atoms as they enter the magnetic field, their spins align-
ing either parallel or antiparallel to the local field. As a
consequence of this alignment, no subsequent precession
of the spins occurs inside the magnetic field, and the
momentum change is determined by the standard classi-
cal magnetic force (It, V)B.

The magnetic force acting on a parallel (antiparallel)
aligned atom is of a constant unit magnitude (in the units
we are using) and in the direction x( —x), that is the unit
vector in the outward (inward) radial direction. Hence
the momentum distribution at time t is

8;i(p, t)= f [W'+(x, p —xt)+ ~ (x,p+xt)]d x (4.2)

—f [8'+(rp, p —xt)+ W ( —rp, p —xt)]d x

as t~~ . (4.3)

FIG. 1. The pattern of spin orientations in a beam of silver
atoms deflected by the magnetic field (2.1).

This last step follows because, for large t, the argument

p —xt(p+xt ) has large modulus, and therefore negligible
probability, unless x=p (or —p). Hence
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8;1 p, tRdR
0

—f r dr f R dR f d8[W+(rp, p —xt)
0 0 0

+W (
—rp, p

—xt)] .

(4.4)

Now

Then, using the integral

f r' e '' " cos r( ——dr
0 4

' 1/2

(g)e
—()/4g

2 1/2 (5.3)

R dR dO p —xt = RJ dR' de* p'

(4.5)

where J is the Jacobian for the change of coordinates
p'=p —xt, for which we find

W(R, 6, t) —(24rR) '[1+ cos@(6)]

X [D„(g)]2e-"/2)~

where, as before, g=R —t, and

(5.4}

where D, /2 is the parabolic cylinder function, (3.8) gives

J=R't '~ sec(8 —6)~ . (4.6) cosc)(6)= cos6 cos8p —sin6 sin8p cosPp, (5.5)

But, again for large t, the integrand is small except for R
close to t and 0 close to e. Hence J-R'/R and

f W„(p,t)R dR
0

—f r dr f [W+(rp, p')+ W (
—rp, p')]d p' .

0

(4.7)

With the identification made in (4.1), this is just Eq.
(3.13).

Now as to the organization of the spin distribution,
leading to Fig. 1, this is clearly obtained from the latter
equation, because the antiparallel spin direction at —rp
is the same as the parallel direction at rp. The corre-
sponding process in the quantum evolution is more com-
plex; it is explained as a phase cancellation of those com-
ponents of g having the "wrong" spin direction. We con-
clude that there is nothing really wavelike in the coarse
structure of (3.13) nor in the spin pattern of Fig. 1; any
wavelike properties which silver atoms may have must be
sought in the fine structure of (3.8).

V. THE FINE STRUCTURE

To see an example of this structure, we consider the
special case of a minimal Gaussian state with spin aligned
in the direction (sin8p cosfp sin8p, sin(()p, cos8p). The
wave function for this state is

W+(x, p) = [1+cos4(8)]e1

2772
(5.6)

This is just the Wigner distribution [12] for a spinless,
Gaussian packet multiplied by the standard "collapse fac-
tor" of —,'(1+ cos4), for which there is a well-known clas-
sical model [13]. Substituted into (4.2), this gives

W,)(p, t)= —exp( —R —t )[Ip(2Rt)
1

7T

+I, (2Rt) cos@(6)],

(5.7)

where I„is the Bessel function of imaginary argument.
This has the asymptotic behavior, as t ~~, of

W,)(p, t )- —e ~ [1+cosc (6) ] .
24rR m

(5.8)

A comparison of (5.4) and (5.8) shows that both of them,
in agreement with the result of Sec. IV, have the form

so that 4(6) is the angle between the incident spin direc-
tion and the local field direction (

—sin8, 0, cos8) for
o=e.

By way of comparison, we consider also a classical
model. It is by no means unique; the only constraint on
such models is that they should satisfy Eq. (4.1). Howev-
er, one model which does this very naturally is

W(p, t ) =R 'h(6)f(g), (5.9)
cos(8p/2)

8 0)
—1/2 —() /2)r

sin( 8()/2 )e
(5.1) where h(6) gives the same coarse structure for both

models, that is

h(6)=(2m. ) '[1+ cos@(6)] . (5.10)

—1/2 —(1/2)r

0X cos
2

00
cos

0—sin
2

00
sin e

2

for which

P+(r, 8) =1( (r, 8+~)

(5.2)

However, the fine structure, given by f(g), is diff'erent for
the quantum (Q) and classical (cl) cases, that is

f (g) —[D (g)]2e
—()/2)g (5.11}

f,)(()=sr '/ e (5.12)

In Fig. 2 we plot these two "line shapes. " The striking
diff'erence is that, because D, /2(() has a zero at
g= —0.76, there are, according to the quantum theory,
two concentric dark circles with a lighter area between
them.
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phenomenon that the parameter a is of order 1; the total
magnetic field must, of necessity, vary significantly over
the cross section of the packet. This is another point we
propose to treat in our subsequent article. For the effect
we predict here, the implication is that any magnetic field
which is capable of producing a Stern-Gerlach
phenomenon also produces the interference effect.

The achievement of a magnetic field with the above
property, combined with a near-minimal packet of silver
atoms, is likely to be a severe technological challenge.
But, by way of compensation, Fig. 3 indicates that the
field intensity itself does not need to be very big; if B'6 is

of the order of Bo, then t =10 corresponds, in ordinary
units, to cot =10, where co=eBo/2mc, m being the elec-
tron mass. In standard Stern-Gerlach experiments, using
"thermal" packets of atoms, cot is [9] of the order of 10 .
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