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I. INTRODUCTION

Our motivation for this work is to explore the spin
effects of relativistic bound states of fermion antifermion
(quark antiquark). This, we hope, will be useful in the in-
corporation of relativistic effects in quark-model building.
Producing the hadron spectrum from quantum chromo-
dynarnics has proven to be a formidable task. In phe-
nornenological approaches, as is well known, it is difticult
to treat the pion in the potential model and bag model.
The pion is composed of the light quarks u and d. Not
only the motion of the pion's center of mass, but also the
inner motion between the quark q and the antiquark q,
are relativistic. In order to consider the relativistic
effects of the inner motion between q and q, the natural
framework is Jacob-Wick helicity formalism [1].

Since hadrons were visualized as relativistic bound
states of quarks, the Bethe-Salpeter (BS) equation has
been extensively studied [2—7] because it has at least a
formal connection with quantum field theory. In this pa-
per we study the general results in the framework of Ref.
[6] in view of its good results. As is well known, in the
BS framework the bound state must be on its mass shell,
since the BS wave function is related to the residue of the
Green function at the pole P = —p, where P is the total
momentum, and p is the mass of the bound system [8].
Using this fact, we obtain the homogeneous BS equation
in the momentum space from the inhomogeneous one [9];
it takes the following form:

[i(P+ ,'P)+m, ]$(p,P—)[i(P——,'P)+m2]

W' 'I ' 'P(p, P)I' ' (l. l)
I=S,P, V, A, T

where P is the meson's four-momentum, p is the relative
four-momentum between the quark and the antiquark,
m

&
and m2 are, respectively, the mass of the quark and

the antiquark, I ' '=I, y~, y„,iy~y„, o„, W' '(p, q;P) is
the BS irreducible kernel, and W' '$(p, P) is defined by
the integral

W' 'ttp(p, P)= f d q W' '(p, q;P)ttp(q, P) .

In the potential approximation, W(p, q;P) only depends
on p —q.

When applying Eq. (1.1) to solve the meson spectrum,
there are two problems which should be properly solved.

First, we must determine the general spinor structures of
the BS wave functions for mesons with natural J
[i.e., the relations P = ( —1)'+ ', C = (

—1)'+',
J= ~l

—s ~, ~l
—s ~+1, . . . , 1+s exist among the total an-

gular momentum Jof the meson, the parity P, the charge
conjugate parity C, the orbital angular momentum /, and
the total spin S of the quark and the antiquark, S=0,1].
The general spinor structures of the meson's BS wave
functions are determined from its properties under the
Lorentz transformation, the space reAection, the charge
conjugation, and the weak space-time inversion. This ap-
proach is discussed by Ref. [6] and by Feldman, Fulton,
and Townsend in Ref. [10]. In Appendix A we summa-
rize the general covariant spinor structure of the BS wave
functions for mesons with natural J following Refs. [6]
and [11] to fix our notations. They are classified into
three categories. In each category the BS wave function
includes eight scalar functions. In the literature some au-
thors only considered two or three terms and ignored the
other terms based on some argument. But the other
terms may also be important, so in the following we will
consider all eight terms.

Second, we must determine the possible types of the ir-
reducible BS kernels from phenomenology. If not only
the single-gluon-exchange mechanism, but also the con-
tributions of all the irreducible diagrams are considered,
then all five types of couplings, S, P, V, A, and T, exist.
In the BS equation, the coupling types of the kernels
determine the spinor structure of the wave functions. By
different choice of the types of the couplings, we obtain
the different spinor structures of the BS wave functions.
In order to determine the correct types of the couplings
from phenomenology, in Appendix B, we review the BS
amplitudes of the natural J states of the free qq system.
We require that not only the motion of the center of
mass, but also the inner motion between q and q, be rela-
tivistic. Thus we cannot adopt the nonrelativistic spin
formalism to construct the natural J states; we must
adopt the Jacob-Wick helicity formalism [1]. The BS am-
plitudes of the natural J states obtained from Jacob-
Wick helicity formalism are independent of dynamics. It
is only determined by kinematics, so the results are quite
general. We emphasize that in the BS approach, in the
vertex with a bound system, from four-momentum con-
servation it follows that it is impossible to have all legs on
their mass shell. This basic feature is represented by the
fact that the BS normalization condition [9] cannot be
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satisfied by the BS amplitudes of the free qq system. The
results in Appendix B only serve as necessary conditions
to determine the possible types of the couplings in the BS
equation from the phenomenology discussed in Sec. II.
Then, we discuss the BS equation of the mesons with nat-
ural J in Sec. II. It is a natural requirement that when
the interaction between q and q approaches zero the solu-
tions of the BS equation should approach the BS ampli-
tudes of the free system obtained in Appendix B [12]. By
trying various possibilities, we determine the possible
types of the BS irreducible kernels. They are a mixture of
S, V, and T types. It is interesting that by the above
choice of the couplings the systems of the eight scalar
equations of mesons are completely decoupled for all
three categories. Thus we obtain three direct results. (1)
The spinor structures of the BS wave functions are com-
pletely determined by the types of the BS irreducible ker-
nels. When the interaction between the quark and the
antiquark approaches zero these BS wave functions ap-
proach the BS amplitudes of the free system. (2) Each BS
wave function thus obtained only includes one arbitrary
scalar function. These scalar functions satisfy the same
scalar dynamical equation for all three categories. (3)
The BS normalization conditions of the BS wave func-
tions for all three categories are the same also. Summar-
izing the above results we obtain a unified relativistic
model of mesons with natural J for all three categories.

In Sec. II we treat the 2++ tensor meson to illustrate
the above ideas. The reason for treating the tensor meson
as the example is that the treatment of the BS wave func-
tion and the BS equation for the tensor meson is more
difficult than that for the scalar meson and the vector
meson. When it is clear how to treat the tensor meson,
then it is easy to treat the scalar meson and the vector
meson. In Appendix C we tabulate the corresponding re-
sults of the other mesons with natural J . In Sec. III we
show the results in instantaneous approximation [13,14]

I

in which unphysical states in the BS framework are, at
least formally, excluded. In Sec. IV we explore the physi-
cal meaning of our Ansatz of the BS kernel. In Sec. V we

show a simple example.

where projection operators P' ' satisfy

P(I)P(J) gIJP(J) P(I)I (J) FIJI (J) (2.2)

V' ' is the linear composition of W( ' in (1.1).
Introducing (A2) into (2.1), we obtain the system of

equations satisfied by the scalar functions g„.. . , g8 as
follows:

II. THE BS EQUATIONS OF MESONS
%'ITH NATURAL J AND THE SQLUTIGNS

(TO TREAT THE 2++ TENSOR MESON
AS THE EXAMPLE)

In this section we determine the possible types of the
irreducible BS kernel from phenomenology. It is a natu-
ral requirement that when the interaction between q and

q approaches zero the solutions of the BS equation should
approach the BS amplitudes of the free system. From the
transformation properties of the BS wave functions under
the Lorentz transformation, space reAection, charge con-
jugation, and weak space-time inversion we can deter-
mine their general form [10,11]. They are classified into
three categories. Generally, the BS wave function P(p, P )

has eight scalar functions for each category, so (1.1) is a
system of eight coupled scalar equations. In general it is
difficult to solve. In order to treat (1.1), we introduce the
projection operator P' ' of the I matrices and the projec-
tion potential V' ' [15]. Thus (1.1) can be rewritten as

[i(P+ (P)+m i ](—t)(p, P)[i(P —
—,(P)+mz]

V(I)[P(I)y(p P)] (2 1)
I=S,P, V, A, T

(mimz+ V' ' —p —
—,'p )p g, + ((m(+mz)gz+p [(m(+mz)po+ —,'p(mz —m, )]ppg3

+[(mi+mz)p —
—,'p(mz —mi)pp]g4+p (g5 —p(86 —p gz)]p =0, (2.3)

(mimz+ V'"' —p ——'p )p gs+[gz+(mi+mz)g5+ —,'p(mz —mi)ppg&]p =0,
p'(mimz+ V'"+p'+po 4p')pop'—g3 (mimz+ —V' p' —4p')p—op'g4

(2.4)

+ [ [(mi +mz )pp+ &p(mz m i )]gi+2ppgz+p(mz m i )( g5+ppg6+p g7)]p =0 (2 ~ 5)

(mimz+ V' ' —p'+-,'p')p'p(, g4+ [
—(m(+mz)g(+p'g(( —2gz —2p'pog3

p(mz m i )pog6 p[(p/2)(m i + mz )+(mz m i )po]gz ]p 'pk =0, (2.6)

(m, mz+ V' '+p + ,'p )pkgz+ [
—p p g((+p[ —,'p(m, +mz)—+(mz—m, )p()]g5

+p[(mz —
m) )ppp' —

—,'p(m i+mz)pQ]g, ]p/, =o, (2.7)

—p(m i m z+ V'"+p'+-.'p')pkp 46+p(m i mz+ V'"—p
'—pa+-.'p')pkg~

+ [
—p(m i+mz)p'g8+ [—,'p(m i+mz)+(mz —m i )po]gz]pk =0, (2.8)

—(m, mz+ V' '+p +—,'p )pkp g7+[ —gi+(mi+mz)g((+ —,'(m, +mz)g4+2g~+p(mz —mi)ppg3]pkp =0,
p(mimz+ V' '+p —

—,'p )ppp g6+ [p[(mi+mz)pp+ —,'p(mz —mi)]g((+2pppg& —(mz m()gz]p =0 . —
(2.9)

(2.10)
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In the above equations, p is the meson mass, and
V' 'g pkpI is defined by the integral

gjpkpl = d q V p~q~P gj q~P qkql~

so in (2.3)—(2.10) we cannot omit the overall factor p&,
p, pkp, etc. Only for the free system, V' '=0, can
these overall factors be omitted.

In order to determine the types of the BS kernels from
phenomenology, we demanded that the solutions of the
BS equation should reduce to the BS amplitudes of the
free qq system when the interaction between q and q ap-
proaches zero. To ensure this, we examine the system of
equations (2.3)—(2.10) and try difFerent possibilities. No-
tice that if we take g& =0, p g3

—g4=0 and choose the
projected potential such that

V( &)—V( T) —0 (2. 1 1)

then we obtain

gi=(m, mi+p + —,'p )g, ,

p g4= —(m, mi+p +—„'p )gs,

g5 = —
—,'(m, +m~)gs, (2.12)

z 1 1—g~+pog& = —(m, +mz)+ —(m2 —m, )po gs,

1
p g7= — —(m2 —m, )pa+ —,'(m, +m~) gs,

and the scalar function g8 satisfies the following equation:

[(m, m2+ V' '+p + —,'p )(m, m2+p + —,'p )+(mz —m, ) p
—p p

—ppo(m2 —m f ) ,'p, (—m—,+mi) ]pkg, =O . (2.13)

Finally, the BS wave function for the 2++ meson is

P(p, P) = [ipej4k(E~ipi)pi, ysy +(m, mz+p + ,'iJ )[EJp,—p;(Ek&nk—n&)]y,

+i[—,'p(m, +m2)+pc(m2 —m, )][E&kpk p&(E;—n;n )cr4&
—(m2 —m, )(E&p&)p cr, ]]gs ." (2.14)

(2.15)

By using (2.14), (2.15) is reduced to

E f d p [p(p +m&mz+ —,'p )
—p(p +mim2)[4p +(mi+m2) ]—p(m& —m

& )p

The BS wave function should satisfy the BS normalization condition [9]. When the BS irreducible kernel W' ' in (1.1)
does not explicitly contain Po it is easy to show that the BS normalization condition takes the following form:

i(2ir) f d pTr(P(p, P)[ ,' y$4(p, P—)[i—(P ,'P)+m2]—+—[i(p+,'P)+m, ]P(—p,P)—,'y~])=1 .

—2po(m2 —m, )(p +m, m2 ,'p )]g (p, P—)—=1, (2.16)

where N is the normalization constant.
It is easy to show that when V' '~0, up to a common

scalar factor of du, , m„mz, and p, (2.14) is reduced to
the Fi term in (B23) and corresponds to the p waves.

Taking V' "'=V' '=0 in the BS equation (2.1) we solve
the BS wave functions of the other mesons which are tab-
ulated in Appendix C.

III. THE INSTANTANEOUS APPROXIMATION

associated with the excitation of the relative time degree
of freedom. In the following, we simply adopt the instan-
taneous approximation to examine qualitatively the phys-
ical results of the model. The instantaneous approxima-
tion is extensively treated in the literature for example,
the work of Cung and co-workers [13,14].

In the instantaneous approximation V' ' is independent
of po and po', then (2.1) can be changed into [16]

When applying the results obtained in the previous sec-
tions, we must rule out the unphysical states which are

pe(p) Hl(p)4(p)+4(p)H2( p)

I=S,P, V, A, T
f d q V' '(p, q;P)y I ' ' H, (q)P(q) — P(q)H2( —q) I ' 'y&, (3.1)

c. ,(q) '
Ez(q)

where p is the meson mass, H(p)= ap +ym, , Hz( —p)= —a p+y~m~, E, (p)=(p +m, )'~ (i =1,2). The center-
of-mass wave function P(p) is independent of po, and it is called the three-wave-function in the following. The general
forms of the three-wave-functions are tabulated in Appendix A.

Introducing (A4) —(A6) into (3.1), we obtain the systems of equations satisfied by the scalar functions f, , g, , and h, for
three categories as follows: (1) S=0, J + (J=2n ), and J+ (J=2n+ I):



46 SPINOR STRUCTURE OF THE BETHE-SALPETER. . . 2253

(E.p)f, —2(E.p)(p f3 f—4) —V' ' —+—(E p)(p f3 —f4) —(m, +m2)(E-p)f2
1 2

—V' ' + (E p)f2=0, (32)
E) E2

(m &+ m2)(E p)f &

—V'"' + (E.p)f &

—p (E.p)fq =0, (3.3)

2p «p)f + V'" —+—p (E p)f —V'[p (E p)f —(E p)f ]=01 1
(3.4)

(2) S=I,J (J=2n+1), and J++ (J=2n):

(E'P)gl+2(E'P)(p g5+g6)+V' +—(E'P)(P g5+g6)=0(s) 1 1

E) E2
(3.5)

[p (E p)gz+(E p)g3] —2[p (E p) —
p (E p)]g~ —V' ' —+—[p (E p) —p (E p)]g~

E,2

r

—(m, +mz)[p (E p)g5+(E p)g6] —V'"' + [p (E p)g&+(E p)g6]=0,
E( E2

(3.6)

1 1V'"' —+—pj[pk(E p)g2+(Ek. p)g3]+2pj(Ek p)g3+p pj(Ek p)g4=0,
EZ

(3.7)

2p~(E p)g&
—V' ' —+—pr(E p)g, —(m&+m2)[p&(E p)gz+(E&.p)g3]

1 1

E) E2

+p [pI(E p)g5+(EI p)g6]+ V' ', +, [p~(E p)gz+(El p)g3]=0,
E) E2

(3.8)

(3) S=1,J [J=2(n+1)],and J++ (J=2n+1):

p p (Ek p)h&+2p (Ek p)h3+ V' ' —+—(Ek p)p h3 —
—,'(m&+m2)p (Ek p)h4

E) E2

1y( m& m2+ p (Ek p)h4=0,
2 k

1 2

2[p (E p) —p (E p)]h)+ V'"' —+—[p (E p) —p (E p)]h +[p (E p)h +(E p)h ]=0(q) 1 1

E) E2

(3.9)

(3.10)

2(m, +m2)pj(Ek p)h, —2V' ' + p. (Ek.p)h, —p (Ek p)h~=O .
E) E2

(3.11)

By the same method illustrated in Sec II, examining (3.2)-(3.11), we fnd that if the choice of the potential for the
three classes is

y( &)—y(T) —
O (3.12)

then we can solve (3.2) —(3.11) for all the three classes listed in Appendix A. The space wave functions f, g, and h for
the three classes satisfy the same scalar equation:

p —(m&+m2) —4p —(m, +m2)V" +
E) E2

—2V" —+—
p Fq~(p) =0 (i = 1,2, 3),(i) 1 1 2

E) E2
(3.13)
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where

+EM(p) =P '~~M(~ 4)f(P

FJ~(p) =P 'I'J —i,M(() 4)g(p

FJM(P ) p ~JM( ~~ O)~ (P

(3.14)

the bound-state quarkonium energy levels are sensitive to
the form of the potential mainly in the region 0. 1 & r ~ 1

fm. In this region the various potentials proposed in the
literature are close to each other, so in order to examine
the qualitative character of our model, for simplicity we
take the V'+ to be a linear potential

and V'+= Vo+r/a (5.1)

V( & ) —V(P) V(2) —V(3)—V( v) (3.15)

In (3.13) V"(1/s&+1/s2)p FJM(p) is defined by the in-

tegral

—+—p F"(p)=—Jd q V"(p q P)1 1

C2

1 1

s&(q) s&(q)

x q 'FJM(q)

the angles (8,$) refer to the direction of n. p = ~p~.

In (3.14) for classes (1) and (3) l=J, for class (2)
l =J—1. The factor p Y&, representing the contribution
of the orbital angular momentum, comes from the factor
(E p)—:E,. . . . , p, p,. in the three-wave-function $(p)

1 J 1 J
(c.f. Appendixes A and C).

Equations (3.1) and (3.13) contain the quark's energy
denominator term s, '(q) (i =1,2). We adopt the heavy-
quark approximation to solve it.

IV. SPINOR STRUCTURES OF THE BS KERNELS

V. A SIMPLE EXAMPLE

We now consider the potentials V' ' and V' '.
It has been observed by Buchmiiller and Tye [18] that

By the Ansiitze (2.11) and (3.12) only the "projection
potentials" V' ' and V' ' appear in the equations. The
projection potentials V' ' are the composition of the BS
kernel W' ' (I=S,P, V, A, T). One possible result ob-
tained by the Ansatze (2.11) and (3.12) is that only the
composition of the scalar 8' ', the vector 8' ', and the
tensor 8" ' appears in the equations. 8"+ can be taken
as the Coulomb potentia1, 8" ' as the linear
(confinement) potential, and IV' ' as the spin-spin cou-
pling. Just W' ' leads to the mass splitting between the
S=0 meson and S= 1 meson. In fact in (1) in the nonre-
lativistic approximation the term y4r' "r'"y4-~.~
which is just the spin-spin coupling. Thus the results
presented here incorporate the phenomenologically
reasonable spinor structure of the BS kernel which is use-
ful in the study of the bound system in quark models.
There is another interesting approach to incorporate spin
effects in a relativistic bound system [17]. The spin
effects are found to be phenomenologically large in the
hadron spectrum, therefore they are important for
quark-model building. Our results are sensitive to the
spinor structures of the BS kernels, and give all the spin
effects. In the following we consider a simplified poten-
tial to show that our model works well.

where a and Vo are constants. This assumption should
be a good one if at least one of the quarks in the meson is
not too heavy (u, d, or s). This is because the mean dis-
tance of u, d, or s quark from the other (anti) quark is
large enough so that the wave function is most sensitive
to the potential at distances where the linear approxima-
tion is a good one. However, if both quarks are heavy,
we may underestimate the splitting between the 1S and
2S levels with a linear potential. This is because the wave
function in the 1S level is particularly sensitive to the
short-distance behavior of the potential, which, accord-
ing to perturbative QCD, is Coulomb-like, rather than
linear as we have assumed.

The splittings between S= 1 and 0 mesons are deter-
mined by

V( v) V(P) —Pr( T) (5.2)

which is just the tensor-type BS irreducible kernel. In or-
der to estimate these splittings we treat 8" ' as a con-
stant perturbation, which is in qualitative agreement with
the observation of Martin [19] that the difference of the
mass-squared values between S=0 and 1 mesons are ap-
proximately constant in the 1S level.

Thus we obtain the following eigenequation for the
S = 1 meson by using (3.13) and (5.1):

[p —(rn&+m2) —2(m&+mz) Vc+4aV
—2(m &+m2)r/a ]f(r)=0 . (5.3)

The mass-squared eigenvalues are

p« = ( ]m+ m 2 ) +2( m ] +m z ) Vp

+ [16a(m
&
+m 2 ) /a ]' g« . (5.4)

The mass-squared splittings between S = 1 and 0 mesons
are

bp = —a ' (m, +mz)5. (5.5)

In (5.3)—(5.5) m, and mz are, respectively, the quark and
antiquark mass,

a = 1+[(m, +m z )(4m, m z
—m f

—m 2 ) /8m, m p ]Vo

(5.6)

n and l are the radial and orbital quantum numbers. The
scaleless quantities g„& are eigenvalues of the equation

fd /dp l(1+1)/p —p+g„&—]U«(p) =0 .

The parameters take the values
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TABLE I. The mass spectrum of the S = 1 mesons (in GeV).

Meson Method

Theo r.
Expt. [20]
Theor.
Expt.

0.78
0.768
0.91
0.892

1p' 2$

1.24 1.48
a» 1.260+0.030 1.450+0.008

1.35 1.59
Ko 1.429+0.006

1.64
1.678

+0.064

1.82

1d 2p

1.53 1.70

3$

1.86
1.700+0.020

1.98

1.89 2.15

5$ 6$

Theo r.
Expt.

Theor.
Expt.

1.02
1.019

3.08
3.097

E2, 1.425+0.001
1.45

f„1.425+0.001

3.45
3.511

1.69
1.680

+0.050
3.69
3.686

1.74 1.92

3.73 3.92
3.770

2.09

4.10
4.040

%0.010

4.13 4.44
4.159 4.415

%0.020 +0.006

4.73 4.98

Ds

Theor.
Expt.

Theor.
Expt.
Theor.
Expt.

Theor.
Expt.

2.13
D +, 2.010
D, 2.007

2.18
2.110
9.46
9.460

5.43

2.53

2.58
2.536
9.72
9.892

2.78

2.82

9.90
10.023

9.94 10.10
10.255

10.26
10.355

10.28 10.56 10.82 11.07
10.580 10.865 11.019

+0.003 +0.008 +0.008

'The experimental value refers to the 1++ meson if it is not specified.

Vo= —1.274 GeV, a =1.866 (GeV}

5=0.299 (GeV)u3

m„=md =0.809 GeV, m, =0.879 GeV,
(5.7)

m, =1.850 GeV, mb 5.097 GeV .

Our values of m„, md, and m, are larger than those in

most other models. However, constituent masses are
model dependent, and we choose to make these masses
larger than usual (compensated by a large and negative
Vo) so as to be consistent with our heavy-quark approxi-
mation.

The interesting fact is that the parameters of the poten-
tial Vo, a, and 5 are flavor independent, but the factors a
and (m, +m2) in (5.4} and (5.5} are flavor dependent, so
we can get the unified explanation of the mass spectrum
for all the mesons. Tables I and II show that our model

TABLE II. The mass spectrum of the S =0 mesons (in GeV).

Meson

gc

D,

Method

Theor.
Expt.

Theo r.
Expt.

Theo r.
Expt.
Theo r.
Expt.

Theor.
Expt.
Theor.
Expt.
Theo r.
Expt.

1$

0.14
m+, 0.140
m, 0.135

0.51
K+, 0.494
g0 0 498

2.96
2.980
2.01

D+, 1.869
D, 1.865

2.07
1.969
9.38

5.39
8+, 5.278
8, 5.279

1p

0.97

1.12

Ei, 1.270+0.010

3.33

2.43

2.48

9.64

2$

1.26
1.300

+0.100
1.40

3.57

2.69

2.73

9.83

2p

1.52

1.66

3.82

10.03

3$

1.70

1.84

4.00

10.18
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works well. The success of the model cannot be purely
accidental. There must be some underlying truth behind
it.
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APPENDIX A:
THE GENERAL SPINOR STRUCTURE

OF THE BSWAVE FUNCTIONS FOR MESONS
WITH THE NATURAL J~c QUANTUM NUMBER

From the transformation properties of the BS wave
function under the Lorentz transformation, the space
reflection, the charge conjugation, and the weak space-
tirne reflection [10,11], we obtain the meson BS wave
functions with the natural J quantum number which
are classi5ed into three categories.

(1) S=O, J + (J=2n), and J+ (J=2n+ I):

$(p, P)=ys(Ep)f, +iy„e„„~ (E,p)P&p (Pp)f2+irsr„[P~(Ep)f, +p&(Ep)(Pp)f4+(E~)(Pp)fs]

+''cr„ys[P~ «p)fs+Pp(E p)f7+pp(E p)(Pp)fs] .

(2) S= 1, J (J=2n+1), and J++ (J=2n ):

$(p, P)= )(Ep )gl +y„[P„(Ep)(Pp )gz+p„(Ep )gs+(EQ )g4]+ Y sr„e„„p (E„p )Ppp gs

+~„,[p„p.«p)g6+p„«.p)g7+p„«.p)(pp)gs] .

(3) S =1,J [J=2(n+I)], and J++ (J=2n+1):

P(p, P)=ys(Ep)(Pp)h, +iy„c„(E„p)P~p h, +iysy„[P„(Ep)(Pp)h, +p„(Ep)h4+(E~)hs]
+i cr„„ys[P„p,(Ep )(Pp )h6+ P„(E,p )(Pp )h7 +p„(E„p)h s ] .

(A 1)

(A2)

(A3)

=E
~

W
~

V
(symmetry ),

In (Al) —(A3), n =0, 1,2, . . . . The space wave func-
tions f;, g;, and h; (i =1,2, . . . , 8) are real scalar func-
tions of p, (p P) . The polarization tensors E„„.. .„PIP2 PJ
satisfy the following conditions:

(2) S=1,J (J=2n+ I), and J++ (J=2n):

4(P) ='(E'P)gi+ri[pi(E'P)g2+(E! P)g31

+irsr~V~lk4j(Ek P)P g4'
+io4IP[pi(E P)gs+(EI P)g6] . (A5)

E.. .„.. . P„=O (Lorentz condition),

E, .„.. . „.. . =0 (traceless) .

The Greek index runs over 1,2,3,4. We have used the
sytnbols (Pp) =P~„, —

(Ep'= E.p,
—

The angular momentums are included in (Ep ) and (E„p ).
For example, for vector meson J =1, (Ep) is reduced to
e.p- Y,~p (M=+1,0, —1) in the c.m. system. If we
make (Ep ) ~1, (E„p ) ~0, then (Al) —(A3) are reduced
to the J =0 BS wave functions.

In the approximation of the instantaneous interaction,
the general forms of the three wave functions P(p) in the
c.m. system are the following.

(1) S=O, J (J=2n), and J (J=2n+ 1l:

(3) S =1,J [J=2(n+1)],and J++ (J=2n+1):
4(p)= ytl &u~, (Ek—p)p, hi

+&ysyI [pI(E p)hz+(Ei p)h, ]

+icr; ys(E; p)p h. 4 . .

where

(E p)=E pp. p-
;,p, ,

APPENDIX B: TWO-PARTICLE HELICITY STATES
OF THK FREE qq SYSTEM WITH DEFINITE J
AND THE CORRESPONDING BSAMPLITUDES

(TO TREAT THE 2++ TENSOR MESONS
AS THK EXAMPLE)

1. Two-particle helicity states with definite J

P(p)=rs«. p)fi —rsr4 «.p)fz
—~mrs)M[pi«. p)fs (Ei'p)f4] . (A4)

Suppose a spin- —, single-particle helicity state with

mass m and momentum p is described by ~p, p ), where
p=+ —,'. The normalization of the state ~p, p) is
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(p'p'lpp) =(2m) 2s5(p —p')5„„, (81)

Iplp~ & IP2p2& = Ip)p~)p2& .

The c.m. two-particle helicity state is

(82)

where E = (p +m )' is the energy of the particle.
A noninteracting two-particle helicity state can be de-

scribed by the direct product of two single-particle helici-
ty states, i.e.,

1/2

I8&p~p2& = g DM, „(4,8, —p)
J M 4K

X IJMpip2), (88)

The relations between the states I JMp, p2) and

I8yp&p2& are [1]

lp& pplp2 & = Ip8—Cpu 2 &

=(2~)'(4&s ip )
' 18pp~p2) I

P ), (83)

' 1/2
2J+1

I JMp, p2) =
4m

X fdQDM'„($, 8, —$)I8pp, p2), (89)

(O'P'p', p'I8$p, p ) =5(cos8' cos—8)5(P' P)—

X5, 5,
)"&I'i I'z~z

(84)

We write the eigenstates of J and J, with eigenvalue

J(J+ 1) and M as IpJMp&p2) which is represented by

JpJMp, p2) =(4&s /p)' IP) IJMp, p2) . (BS)

Normalization of the state
I JMp&p2) is

& J'M'pIp2l JMpip2& =4J 5~~ 5
PlPl PzPz

Normalization of the state (BS) is

(86)

v'
&pJ'M'p)p2lpJMp)p2& = 5'(P P')5JJ'5MM—

x5,5»» I'Pz
(87)

where p= —,'(p, —p2) is the relative momentum, (8$) are
the polar angles of p, p=lpl, P is the c.m. four-
momentum, s=(m&+p )'~ +(m2+p )' . Normaliza-
tion of the state

I 8' tp2 ) is

where p=p& —p2, D~„($,8, —p) is the complex conju-
gate of the rotation matrix, dQ=sin8d8dg. From (83),
(BS), and (89), we get

1/2
2J+1

4n

1
IpJMp&p2) =

(2n )

X f d f) DM', „(0 8 —4')Ip —
Ppip2 & .

(810)

From the transformation properties under space
reflection P and charge conjugate C of the two-particle
helicity state with definite total angular momentum, we
can determine the two-particle helicity state with J
There is a phase difference between the helicity states
lpp) and

I

—pp). We emphasize that the correct deter-
mination of the phase factor of the two-particle helicity
state under space reflection is very important.

The J =2++ helicity state for the free qq system is
[taking the relative inner parity between q and q as —1;
(+)(+) denotes (P=+1)(C=+1)]

Ip2Mp, p2,'(+ )(+ ) ) =
—,
'

t Ip2Mp, p2) + Ip2M, —p, , —p2) +(p,~p2)termsI (2+ state) . (811)

(811)can be represented by the plane wave

IT»Mplp2 (+)(+)&- fd&DM'p, p, (4 8 -0)I IP ——Pplp2&+ IP
—P —pl —p2&+(pl~p2)«rmsI . (812)

Sum the p& and p2, then (812) is reduced to

Ip2M;(+ )(+)&
= g c(p~, p2)lp2Mp~p2, '(+ )(+ ) &

1
P P +

1 MO» P~ Pz z Ps Ps

+&2f d &ID~*i(4 8 —0') lp —p-,' —
—,
' &+D~, —i(4' 8 —4)lp P (813)
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where c, and cz are two independent constants.
The two-particle helicity states with other J values

are

IpOOp, p?, (
—)(+)&

=
—,
'

j IpOOp&pz&
—Ip00, p—„,p—z&

2. BS amplitudes for the free qq system

The BS amplitude for the "meson" is defined as

p(x ] xg )= (Ol TI p:(x, }+p(x~)] lg& (819)

+(p,~p, ) terms],

0 + state (S=0, s wave }, (814)

Ip IM)u )pp,'(+ )( —
) & =-,' [ lp IMiL4))L4~ &

—
Ip IM, —

iM ), —pz &

+(iL4,~@~) terms],

1+ state (S=O, p wave), (815)

lpIMp~p&', (
—)( —

) &
=

—,
'

[ lp IMp~p~&+ lplM, —p~, —
iu~ &

+(it4, ~it4~} terms],

where lg& is the "meson" state, 4(x;) (i =1,2) are the
fermions' local field operators, x, (i = 1,2) are space-time
coordinates, a and b are the flavor and color indices (in
the following we shall omit such indices), and a and P are
the spinor indices. Introducing the c.m. coordinate
X =(x, +x& )/2 and the relative coordinate x =x, —xz,
(819) is reduced to

(x X)=e' 0 T 4iPX X — x
ap a 2 P

1 state (S= 1, s wave), (816} iPXy ( ) (820)

lp00)L4, p, ;(+ )(+ ) &
=

—,
'

I I pOOp, p, &+ Ip00, —p„—14 &

+(iM, AM&) terms) ],
where P is the total four-momentum of the system. In
the momentum representation,

0++ state (S= I, p wave), (817)

lp IMit4)pp', (+ )(+ ) &
=

—,
'

[ lp IMp)pp& lp 1M iu& p~&

P &(p)= fd xe '~P &(x) .
(2~)

(821)

—(p, ~@~) terms] .

1++ state (S=1, p wave) . (818)

In (819)—(821), taking (813) as the "meson" state lp&~

by some tedious calculation, we obtain the BS amplitude
for the free qq

2++ state

P(p, P) =F, (p, P)DM'0[(a&+a&)I+i(1 —a|a&)niyi —(a& —az)y4+(1+a&az)n&o i4]

+Fz(p, P ) [ i ( I+a
&
a

& )
—
( N +DM'& gi +N DM* i gi )y i + ( a

&
+a

& )( N +DM', g& NDM' i '9i )—(i y sy i }

+ (a, —az )(N+DM*, (i NDM', ri—i )Xi —(1—a, az )(N+DM*, si+ N DM*
i r}i )rri4] (822)

where Xi= ,'0&ikojk, F,—(p,P) (i =1,2) are two indepen-

dent scalar functions of p and (pP), ni =pi/p,
a, =p/(e, +m, ), e, =(p +m, )'~ (i =1,2). gi and
(I = 1,2, 3) are two mutual orthogonal unit vectors,

N+DM', ($, 0, —p)g +iN D~", ($,0, $)rii-
=i &2[fi 'n —ni( fk 'nk n )],

N+DM*i ($,0, p)gi ND—M*
i (0—0

(827)

(,=i siniI} —cos0 cosP,

(i cos~I}+co—s0 sing), g, =sin0,

q, =i sinP+cos0cosg,

ri~= —i cosP+cos0 sing, ri3= —sin0 .

(823}

(824}

=i&2[ —i(f k 'nk)e&~/4n ] (M=2, 1,0, —1, —2),
(828)

where f,',
~' are the polarization tensors which can be

represented by the polarization vector as follows:

N+ and N are, respectively, the phase of the Dirac spi-
nor U, &z(p) and u, zz(p); Ref. [18]shows that

N+ = i&21V exp(i/), N— = i&2N exp( ——iP),
(825)

N+ N = —i &21V,

f(+2) + +
V

f,'. i=v'2/3[e, e +(e, e +e, e+)/2] .

(829)

DM*D($, 0, P) =&3/2f, ' n, n— (826)

where N is some constant. In (822), D~'0($, 0, —P} and

N+DM*, ($,0, —P)g +NiDM*, ($,0, —P)gi should be
related to polarization tensor fiik ' and ni The results a.re

The polarization vectors e; (m =+1,0, —1) satisfy the

orthogonal normalization condition e, e,- =5 ~ and the
Lorentz condition PIeI =0. From these conditions it is

easy to show that the polarization tensors f;~,
' satisfy the

following relations:
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f(M) f(M)
ij ji

yf (M) —0

P f(M) f(M)P —0l EJ lJ J

f (M)f (M')
(830)

Using (826)—(828), we rewrite (822}as

$(p, P)=F, (p, P)(fj 'n, n j)[ {a(+az)I+i(1—a, az)niyl —(a, —az)y4+(1+aiaz)"ia'I4]

+F,(p, P)[ —i(1+aiaz)[fi; 'n; nl(—f, 'n;n, )]yi+(a(+az)(fi'k nk)elij4nj ysyi
—i(ai —az){fk 'nk)ei;, 4n, &i —{1—aiaz }[fi' 'n ni{—f~'j~'n n, )]~(4] (831)

where the two independent scalar functions F; (p, P )

(i =1,2) correspond to the component of the p and the f
wave in the 2++ state. Notice that the BS amplitude
(831) for the 2++ state of the free qq system in the
rnomenturn representation is reduced to the 1 BS
wave function if the factor f 'n, is repla. ced by the po-
larization vector e; .

The BS amplitudes for the free qq system with other
J are, for theO + state,

P(p, P)=f, (p, P)ys[(1+a, az)I —(1—a, az)y4

and for the 1+ state,

—{1—aia, )y,

(a, +—az)n, ~«] . (833)

P(p, P)=fz(p, P)(e n)ys[ (1+a,az)I+i(a, —az)nlyl

+i(ai —az)nlyl

{a i +az )"iir4i ] (832)
The 1 state has two components, the s wave and the d
wave; 1 s wave:

p(p, P)=f&(p, P)[(1+a,az)[ei (e n}nl]yi —i(ai+az)(eXn)lylys —(ai —az)(eXn)lX(

+i( 1 —a i az }[ei {en)nl ]—ir4i ]. (834)

+'{ai az }y4

+i(1+a,az )ni~4, ],
O++ state:

0(p }=fs{pP)[ i(ai+az)I+(1 aiaz}nlyi-
+i(a, —az)y4

+i ( 1+a iaz )nl04/}'
1++ state:

$(p, P}=f6(p, P }[—(1+a,az)(eXn)iyi

+i(a, +az)[el (e.n)nl ]ysyl-
—(a, —az )[el —(e.n)nl ]Xi

+i(1—a, az)(eXn)io(4] .

(835)

(837)

1 d wave:

$(p, P ) =f4(p, P)(e.n) [ i(a, +—az )I+(1—a, az)nlyl

As we emphasized in the Introduction, in the BS
framework the BS wave function is related to the residue
of Green function at the pole I' = —p, so the bound
state must be on its mass shell. From four-mornenturn
conservation it follows that in the vertex with bound state
it is impossible to have all legs on their mass shells. This
basic feature is represented by the fact that the BS nor-
malization condition [9] cannot be satisfied by the BS am-
plitude of the free qq system. In fact, it is easy to show
that (2.15) cannot be satisfied by (831)—(837).

APPENDIX C: THK BSWAVE FUNCTIONS
OF MESONS WITH NATURAL J

Assuming the types of coupling in (3.12)—(3.14), by the
same method as in Sec. II, we obtain the BS wave func-
tions of mesons with natural J as follows (in the c.m.
system).

(1) S=O, J + (J=2n), and J+ (J=2n+1):

y(p, P) =ys[(p +m i mz+ ,'p, )+i(mz —m, —)plyl

[ (M(m) +mz }+{mz mi }pa]y4 j4pla4)](E p)f(p, P) (Cl)
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(2) S=1,J (J=2n+1), and J++ (J=2n):

$(P,P)= [
—ijzeij4k(Ej p.)pkysYI+(p +mlm2+-, Itt')[(El p) nlnl(El. p)]YI —(m2 —m, )(El p)pktrI

+i[ ,'p—(m1+m2)+(m2 —m, )po][(EI p). n—lnl(El p)]o4I)g(p, P) .

(3) S=1,J [J=2(n+1)],and J++ (J=2n+1):

j [( I p)P ( p)PI ]Y5YI+(P + lm2+ p )elj4k( j p)Pk Yl ( 2 ™1)[(EIp)P ( p)PI ]~l

+ I [ g p™1™2 ) + ( m 2 m
1 )po ] Ij 4k ( Ej p )PI ~41 I h (p &

(C2)

(C3)

It is easy to show that for the above three categories (C 1)—(C3) the BS normalization condition (2.15) is reduced to

N, J d p[p(p +mlm2+ —,'Itt )
—p(p +m, m2)[4p +(m, +m2) ] jt(—m2 —m1)p

—2po(m', m21 —)(p'+m, m, —
—,'itt') j [FJ"(p,P)]'=1, (C4)

where Ã, is the normalization constant. For i = 1,

fori =3, (FJ ') =p h (p, P).
The corresponding three-wave-functions in the instan-

taneous approximation are the following.
(1) S =0, J + (J=2n), and J+ (J=2n+1):

1 2
4(p)=Y5 1 —(ml™2)Y4 pi&4I —(E—p)f(p') .

. 1
YI+i (m—, +m2)04I elk4~(Ek'p)PI

p

—I—r sr i [pi(E p) —P'(E p)] "(p (C7)

(3) S=1,J [J=2(n+1)],and J++ (J=2n+ I):

where
(C5)

(2) S=1,J (J=2n+1), and J + (J=2n):

. 1
II)(p)= Yi+i (m, +—m2)o41 [nl(E p) —(El p)]

(E p)—=E;,;, ,,p;,p;,

(El p)—=Ei, . . . , p, .
p,

2
. . 2+i YsYI&tk4j—(Ek p)P, g(p ) .

p
(C6)

In (Cl) —(C3), (C5)—(C7), taking (E p) ~1, (El p) —+0, we
obtain the J =0 BS wave functions.
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