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Bell s-inequality experiments using independent-particle sources
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In the usual Bell s-inequality experiments two particles carrying spin or polarization are prepared in

an entangled state generated from the decay of an unstable quantum-mechanical system. These particles
are then delivered to spin or polarization analyzers. The statistics of the measurements reported by the
analyzers are incompatible with our notions of local realism. Here we show that Bell s-inequality viola-

tions occur even when the initial state is a direct product state. In fact, the two particles can come from
two independent widely separated sources.

PACS number(s): 03.65.Bz, 42.50.Dv, 42.50.Ar

In Einstein-Podolsky-Rosen (EPR) experiments [1] of
the Bohm type [2] two particles carrying spin are
prepared, from the decay of an unstable system, in a spin
eigenstate. Due to angular-momentum conservation, the
spins of the two particles are correlated. The two parti-
cles are in fact in an entangled quantum-mechanical
state, and, as Bell [3,4] has shown, when suitable sets of
spin components of the two particles are measured, the
statistics of the measurements are in conflict with our no-
tions of local realism. Bell formulated this conflict as a
mathematical inequality that is violated by quantum
mechanics. Here we show that Bell' s-inequality viola-
tions can be obtained even if the particles are in a direct
product state. The two particles can originate from wide-
ly separated independent-particle sources. Each particle
is directed to a 50-50 beam splitter and entangled with
the vacuum. The outputs of the two beam splitters are
then directed to two detectors, each consisting of two
phase shifters, a beam splitter, and two particle counters.
There are thus similarities between our apparatus and the
one recently described by Tan, Walls, and Collett in
which they [5] point out that a single particle entangled
with the vacuum gives rise to Bell's inequalities when
homodyne detection with weak local oscillators is em-
ployed. Further, the canfiguration of the experiment de-
scribed here is equivalent to one described by Reid and
Walls [6], although in their case the initial two-particle
state was prepared from a parametric down-converter.
The emphasis of the present paper is that the two parti-
cles can originate from independent widely separated
sources. Also, we give a more rigorous and explicit
derivation of the violation of local realism taking into ac-
count extraneous events that do not occur in the experi-
ment considered by Bell. These spurious events consist of
cases in which one detector reports the arrival of two
particles while the other detector fails to fire.

The apparatus is shown in Fig. 1. The outputs of two
independent-particle sources PS1 and PS2 are fed into the
input ports of the beam splitters S1 and S2, respectively.
Vacuum enters the other inputs of S1 and S2. The out-

puts of these two beam splitters propagate to two detec-
tors De. tector 1 consists of phase shifters PG, and P„„
the beam splitter D1, and the particle counters R 1 and
Gl. Similarly, detector 2 consists of phase shifters PG2
and $„2, the beam splitter D2, and the particle counters
R 2 and 62. The labels R and 6 are chosen to be reminis-
cent of the red and green lights that Mermin employs in
his EPR gedanken experiments [7,8]. Other EPR experi-
ments employing detectors consisting of phase shifters, a
beam splitter, and a pair of particle counters have been
proposed [5,6,9] and even performed [10—12]. An ar-
rangement of beam splitters, phase shifters, and mirrors
like that of Fig. 1 was also discussed by Noh, Fougeres,
and Mandel in their study of homodyne detectors [13].

The annihilation operators of the modes entering the
particle counters are labeled d where here and

PS2

PS1

FIG. 1. Schematic of the present Bell' s-inequality experi-
ment. See text for detailed explanation.
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[d,d, , ]+=0, (2)

where "+"denotes anticornrnutation and "—"denotes
commutation. The beam splitters D1 and D2 perform
the mode transformation

throughout the paper aH [R,G] and m E [1,2]. These
operators satisfy the usual fermion or boson cornmuta-
tion relations:

[d,dt, , ]+=5,5

A = [RR,GG] . (10)

particle counter labeled G counts a single particle, R
denotes the event in which the particle counter labeled R
counts two particles, G denotes the event in which thy
particle counter labeled G counts two particles, and E
denotes the event in which each particle counter of the
detector counts a single particle. Let A denote the set of
firing patterns where both of the R particle counters or
both of the G particle counters fire:

dam

Gm

~ r

Cpm

i 1 CG

Let B denote the set of firing patterns where each detec-
tor counts a single particle and only one of the R particle
counters fires:

'&~m
Cam =e &am . (4)

The phase shifters perform mode transforrnations of the
form

B= [RG, GR ] .

Let C denote the set of firing patterns in which both
counters of one detector fire and, as a consequence, none
of the particle counters of the other detector fires:

Finally, the mode transformations performed by the
beam splitters S1 and S2 are, respectively, C= [OE,EO] . (12)

b

bg2 i 1 aG2
(5)

Let D denote the set of firing patterns in which one of the
particle counters counts two particles and, as a conse-
quence, none of the other particle counters fires:

bGi

1

v'2 l 1 aG)
(6)

For the moment, it will be convenient to think of the
experiment being operated in the following manner: At a
particular instant of time each of the two independent
sources emits a single particle. One then observes which
particle counters fire. By performing an ensemble of such
experiments one can accumulate data of the firing statis-
tics of the particle counters. The state vector for the sys-
tem is the direct product of the state vector for each indi-
vidual source. In second quantized notation the state
vector is given by

By substituting Eqs. (7) and (8) into Eq (9) it is s. traight-
forward to read off the probability amplitudes and, conse-
quently, the probabilities for the various particle counter
firing patterns. Let P(/31/32) denote the probability that
event /3, occurs at detector 1 and event /32 occurs at
detector 2. The events /3 are elements of the set

IO, R, G,R,G,E] where 0 represents the event in which
none of the particle counters of the detector fired, R
denotes the event in which the particle counter labeled R
counts a single particle, G denotes the event in which the

Each of these beam splitters entangles the particle enter-
ing one input port with the vacuum entering the other in-

put port [5].
The mode transformations Eqs. (3)—(6) can be solved to

express the modes entering the beam splitters S1 and S2
in terms of the modes entering the particle counters. In
particular, one finds

. '&G2-
aR, = ,' [e '—(d„,+idg, )+ie '(idR2+dg2 ) ], (7)

G1aR2= —,'[e '(dR2+idg2)+ie '(idR, +dgi )] . (8)

D= IOR OG, R O, G 0] (13)

For fermions, the Pauli exclusion principle prevents a
given mode from being doubly occupied and, hence,
events in which one particle counter counts more than
one particle (events belonging to D) do not occur. For
the fermion case, the probabilities for the particle firing
patterns are given by

—,'sin p if /3, p2E A

—,'cos p if /3, /32EB
P(/3/3 )=, ;f/3, /3, ec

0 otherwise,

(14)

where

2 ['PR1 4'Gl+NR2 NG2] (15)

—,'cos P if /3, /32E A

—,'sin'y if /3, /32mB
P(/3/3 )=;f/3, P, ED

8

0 otherwise,

(16)

where 1)) is again given by Eq. (15). In order to facilitate
the comparison of this Bell s-inequality experiment with
previously described experiments, we introduce the detec-
tor phases p, and $2 which are defined as

01 PR1 Pgl (17)

For bosons, because of a destructive interference effect,
events for which both particle counters of a given detec-
tor fire (events belonging to the set C) cannot occur. For
the boson case, the probabilities for the particle firing
patterns are given by
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—(Paz —Paz)+m/. 2 for fermions

(—Paz P—oz) for bosons . (18)

With this definition of P, and Pz the fermion and boson
cases can be treated in a unified way and Eqs. (14} and
(16) can be summarized as

,'co—s (P, —Pz) if P,PzE A

—,'sin (P, —Pz) if P,Pz&B

I'(pi, pz) = '
—,
' for fermions if p,pz & C

for bosons if P,PzED

0 otherwise .

(19)

(a)

R( ~ ~ 3G(4 t 13)R
)G

To derive Bell s inequalities it is useful to consider a topo-
logical distortion of the apparatus depicted in Figs. 1 and
2(a) to the form depicted in Fig. 2(b}. That is, by bringing
the two sources together the apparatus resembles that
used in the usual Bell' s-inequality experiments. One can
then ignore the details of how messages are generated by
the two sources and simply talk about messages received
by the detectors from a central source. Demonstrations
of the violation of local realism then can be put forth fol-
lowing arguments that have been presented in the past.
It is clear that, if the device of Fig. 2(b) violates local real-
ism, the device of Fig. 2(a) also must violate local realism.
Otherwise, one would have a local realistic explanation
for how the device of Fig. 2(b} operates. That the stan-
dard Bell's inequalities [14,15] follow from Eq. (19) is
seen by the following observation. Regardless of the set-
tings of the detector phases P, or Pz, from an observation

of what happens at one detector one can predict whether
the firing pattern belongs to the set A UB or C (in the

case of fermions) or D (in the case of bosons). Since
A —D are disjoint sets, one concludes from a local realism
point of view that, if one detector reports the event G or
R, a definite instruction has been sent to the other detec-
tor to also fire 6 or R, i.e., the other detector cannot ex-
hibit the event 0, E, R, or 6 . This is simply a conse-
quence of the fact that the number of particles is con-
served by the phase shifters and beam splitters. Since,
from the observation of the outcome at a given detector,
one can determine whether or not the firing pattern be-
longs to 3 UB, one can restrict one's attention to only
those events in which both detectors fire to see if there is
something peculiar about this subset of events. One can
then follow standard procedures for obtaining the usual

Bells-inequalities. Here, to give specific examples, we
will rederive an inequality due to Wigner [16] and Belin-
fante [17] and the Clauser-Horne inequality [18] taking
special note of the extra events 0, E, R, and G which do
not occur in the usual Bell' s-inequality experiments.

To derive the Wigner-Belinfante inequality [16,17], we
restrict the settings of the phase shifters so that the detec-
tor phases P& and Pz can only take on one of three values

P„Pb, and P, . We will refer to these detector phase set-
tings as setting 1, 2, and 3, respectively. Consider now
the case when P, =Pz, that is, when the detector phase
settings are 11, 22, or 33. In this case, if one of the detec-
tors reports R, the other detector also reports R and,
similarly, if one detector reports G, the other detector re-
ports G. Since the detector phases can be randomly
changed up to the instant before the particle enters the
detector and since if one detector reports an R or 6 the
other detector will report an R or 6, one concludes from
a local realism point of view that it is because definite in-
structions of the form y &y2y3, y &yzy3 have been sent,
where the y; with i E I1,2, 3] are elements of the set

[R,G ]. y; is the instruction to detector 1 telling it which
particle counter to fire when the detector switch position
is i. Similarly, y,

' is the instruction to detector 2 telling it
which particle counter to fire when the detector switch
position is i. The allowed instruction sets for the case
when a detector reports R or 6 are

(b)

R( i ~ 3G(4 3)R
)G

FIG. 2. An abstraction of the apparatus shown in Fig. 1.
The particle sources are labeled S. The detectors are represent-
ed as boxes with red R and green G lights. The switches which
can point to 1, 2, or 3 select the detector phases. The
configuration depicted in (a) can be topologically distorted into
the configuration depicted in (b). Configuration (b) is like that
for conventional EPR experiments where particle pairs are
emitted from a central source.

For the fermion case when one detector fails to fire (a 0
event), each particle counter of the other detector fires
(an E event) and vice versa. Hence, in addition to the in-
structions Eq. (20) one has the instruction sets

000;EEE, EEE;000 . (21}

The instructions, Eqs. (20) and (21), form the complete
set of legal instructions for the fermion case. The boson
case is rn.ore complicated. If one detector fails to fire, the
other detector will report an R or a 6 . There is more
than one way by which this could arise. One possibility is

RRR;RRR, RRG;RRG, RGR;RGR, RGG;RGG,

(20)

GRR; GRR, GRG; GRG, GGR; GGR, GGG; GGG .
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that a message has been sent telling the detector which of the two possible events R or G to report, in which case, in
addition to Eq. (20) one has the following legal instructions:

000 R R R 000 R R G 000 R 6 R 000 R 6 G

000 6 R R 000 G R G 000 6 G R 000'G G G

RRR 000 RR 62000 R GR 000 R 66 000
(22)

GR R 000, GR G '000, G GR 000

Another possibility is that a message has been sent to the
second detector telling it to report either R or G, but it
is left up to the detector to decide which of the two to re-
port. That is, one attributes the firing of R or 6 to
detector noise. In this case the legal instruction set, in
addition to Eq. (20), would contain the instructions

0,0,0;R xor G,R xor G,R xor G

R xor G,R xor G,R xor 6;0,0,0,
(23)

where xor denotes exclusive or and commas have been in-
serted between entries for clarity. %e can, of course, im-
agine intermediate situations in which whether the
second detector reports R or 6 is determined by a com-
bination of a message sent to the detector and detector
noise. As we will see, instruction sets Eqs. (21)—(23) do
not enter into the derivation of the Bell's inequality.

Let P(p„pz, p„pz) denote the probability that detector
1 reports the event pt and detector 2 reports the event pz,
given that the detector phase of detector 1 is set to P, and
the detector phase of detector 2 is set to Pz. Further, let

P(y&yzy3, 'y&yzy3) denote the probability that the instruc-
tion set y, yzy3;y', yzy3 is sent. Then, one has

P(R, G, p„pb ) =P(RGR;RGR )+P(RGG;RGG ),
(24)

sin (28) & 2 sin (8) (32)

which is violated, for example, when 0 & ~9~ & m /4.
We now derive the Clauser-Horne [18] inequality for

this system, using the methods of Wigner [16] and Belin-
fante [17], following Clauser and Shimony [14]. In this
case, the number of detector phase settings to be con-
sidered is increased to four. The detector phases P, and

Pz will now be allowed to take on the values P„Pb, P„
and Pd. We will refer to these phase settings as 1, 2, 3,
and 4 respectively. For notational simplicity, we will

consider only the fermion case. By considering the phase
settings 11, 22, 33, and 44 and using local realism argu-
ments similar to those used above, one again concludes
that instruction sets are transmitted to the detectors tel-

ling them how to fire. These instruction sets can be
~ep~ese~ted in tabular form y, y,y, y4, y', y,'y3y4 ~h~~~
again y, represents the instruction for what detector 1 is
to do if its detector phase setting is i where i E I 1,3, 3,4]
and y,'. is the instruction for what detector 2 is to do
when its detector phase setting is i. By considering
switch settings of the form 12, 13, 14, 23, 24, and 34, one
concludes that the only instruction sets allowed in which
one detector fails to fire or both counters in one detector
fire are

P(R, G, P„P, ) =P(RRG;RRG )+P(R GG;RGG ),
0000;EEEE EEEE;0000 . (33)

(25)

P(G, R, Qb, p, ) =P(RGR;RGR )+P(GGR; GGR ) .

(26)

From Eqs. (24) and (26) one thus has

P(R, G, p„pb ) ~ P(RGG;RGG ),
P(G, R,pb, p, ) ~ P(RGR;RGR ) .

(27)

(28)

From these last two equations and Eq. (25) one then ob-
tains the Bell's inequality:

P(R, G, p„pb) &P(R, G, Q, , Q, )+P(G,R, pb, p, ) . (29)

Substituting Eq. (19) into this, one obtains

In addition, the only instruction sets allowed in which
one of the detectors reports an R or a 6 are those for
which y, =y,' and y, E IR, G] for alii E [1,2, 3,4]. Con-

sequently, one can shorten the notation for the instruc-
tion set for this class to y, y2y, y4. There are 16 such in-

struction sets, examples of which are RRRR, RRRG,
RRGG, RGRR, and GGGG. These 16 instructions to-
gether with the two instructions Eq. (33) form the com-
plete list of legal instructions. Let P(P, ,Pz, g, , gz) denote
the probability that detector 1 reports the event P, when
its detector phase is set to P, and detector 2 reports the
event Pz when its detector phase is set to Pz. Similarly,
let P(y, yzy3} 4) denote the probability that the instruc-
tion set y, y2y3y4 is sent. Then, one has

sin (P, Pb) &sin (P, —P, )—+sin (Pb —P, ) .

Taking

this inequality becomes

(30)

(3 &)

P(R, R, Q„Q, ) =P(RRRR )+P(RRRG)

+P(RGRR ) +P(RGRG ), (34)

P(R, R, p„pd ) =P(RRRR )+P(RRGR )

+P(RGRR )+P(RGGR ), (35)
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P(R, R, pb, p, )=P(RRRR )+P(RRRG)

+P( GRRR )+P( GRR G ), (36)

P) (R,pb ) =P(RRRR )+P(RRR G )+P(RRGR }

+P(RRGG )+P(GRRR )+P(GRRG )

P(R, R, pb, pd ) =P(RRRR)+P(RRGR ) +P(GRGR )+P (GRGG), (3&)

+P (GRRR)+P(GRGR ) . (37)

Further, let P&(p&, p&) denote the probability that detec-
tor 1 reports the event p& when its detector phase is set to

p, and let P2(p2, $2) be the corresponding probability for
detector 2. Then, one has

+P(GGRR )+P(GGRG) .

From Eqs. (34)—(39) one obtains

(39)

P2(R, P, ) =P(RRRR )+P(RRRG )+P(RGRR )

+P(RGRG)+P(GRRR)+P(GRRG)

P(R, R,p„p, ) P(R—,R,p„pd )+P(R,R, pb, p, )+P(R,R,ps, pd )
—P, (R,pb ) —P2(R, $, )

P(RR—GR) P(RG—RR ) P(RR—GG) P(RG—GR ) P(GR—RG) P(GG—RR ) P(GRG—G) P(GG—RG) . (40)

Now, the sum over the probabilities of all legal instruc-
tion sets is 1:

set is sent telling the detectors to report R or 6:

(rir2Y3r4 YIY23 3Y4)
over all

(41)
g P(rrrr )=

over all

(43)

However, from Eq. (19) one sees that the probability that
one detector will report a 0 or an E is —,', that is,

P(O, E)+P(E,O)=1 . (42)

It thus follows that half the time an instruction set will be
emitted telling one of the detectors not to fire, that is,
P (0000;EEEE ) +P (EEEE;0000) =—,'. From Eqs. (41)
and (42) it thus follows that half the time an instruction

From this and from the fact that the probabilities are
positive, one obtains from Eq. (40) the inequalities

—
—,
' ~ P(R,R,p„p, ) P(R, R,p—„pq)+P(R, R, pb, p, )

+P(R,R, Pi„gd ) —P)(R, pb ) —P2(R, P, ) ~0 . (44)

From the right-hand inequality of Eq. (40}one obtains

P(P, R, p„Q, ) —P(R, R, p, pd )+P(R,R,Qs, p, )+P(RR, Q, b, pd )

P, (R, Pq )+P2(R,$, )
( 1 (45)

P, (R,Pq )+P2(R, P, ) = —,',
P(R, R, P„P2)=—,'cos (P&

—P2) .

(46)

(47)

Substituting Eqs. (46} and (47) into Eq. (45), and making
the following choice for the angles:

(4&)

(49)

(50)

(51}

one obtains

3 cos (8)—cos (30)~ 2 . (52)

This inequality is violated over a range of 0. The max-
imum violation occurs when O=n. /8, in which case Eq.
(52}becomes 1+&2 ~ 2.

One can evaluate the various probabilities appearing in
this expression using Eq. (19). In particular, one has

We have shown that the apparatus appearing in Figs. 1

and 2 gives rise to Bell s-inequality violations when the
input state consists of the direct product state Eq. (9).
Such states are generated from a parametric down-
converter having separate signal and idler modes, provid-
ed that the pump intensity is low enough that events, in
which more than one signal-idler photon pair is emitted
during a coherence time, are sufficiently rare that they
can be neglected. The state Eq. (9) need not be generated
from a single source, however. Two independent sources
each of which emits a particle at the same time will do.
In fact, two free-running sources will work. A detailed
treatment of this situation requires a wideband analysis
[9] in which multitime correlation functions for the four
counters employed are evaluated. We have carried out
such an analysis for the case when the particle sources
emit a beam of thermal fermions that has been momen-
tum selected [19]. Here, however, we will confine our-
selves to a qualitative discussion.

Consider first the fermion case. For each source, let
the mean time between the emission of a particle be T
and the coherence time be ~. The probability of the emis-
sion of a particle in a coherence time w is thus ~/T. Be-
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cause of the Pauli exclusion principle no more than two
particles will arrive at the detectors in coincidence. In
fact, if two particles arrive in coincidence, one infers that
each particle carne from a separate source (this can, in
principle, be verified by monitoring the change in the
number of particles in each source) and, consequently,
one infers that the input state was of the form Eq. (9). In
order for Eq. (9) to apply, the two particles must arrive
within a time that is of the order of the coherence time ~.
The rate at which such particle pairs arrive is (r/T) .
Hence, provided one has detectors that can resolve the
arrival of individual fermions on a time scale comparable
to the coherence time, one can accumulate statistics ex-
hibiting violations of local realism even if two indepen-
dent free-running fermion sources are employed.

For the boson case, one no longer has a Pauli exclusion
principle to take advantage of. However, the experiment

will still work provided the light sources are sufficiently
antibunched that one can certify that only one particle is
emitted from the source during a coherence time ~. Al-
ternatively, one could use two parametric down-
converters in which the idler modes are monitored to
determine when a particle is present in each signal mode
[20,21].

In summary, we have shown that violations of local
realism can occur even when the particles originate from
independent-particle sources. An entangled state gen-
erated from the decay of an unstable quantum-
mechanical system is not a prerequisite for a Bell' s-

inequality violation experiment. EPR effects are thus
more ubiquitous than previously realized. In addition,
we have recently shown that EPR effects of the
Greenberger-Horne-Zeilinger type can also be performed
with independent well-separated particle sources [19].
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