
PHYSICAL REVIEW A VOLUME 46, NUMBER 4 15 AUGUST 1992

Exotic behavior of the reaction front in the A +B = C reaction-difFusion system
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A dynamic reaction zone is produced in the A +B~C reaction-diffusion system with initially

separated components. Our perturbation analysis results predict a rich behavior for the kinetics of the
reaction front in the short-time limit, with variety of universality classes. In particular, we show that the
center of the front can change its direction of motion. Our experimental data support this prediction
and demonstrate that this behavior is measurable over a time scale of hours in bimolecular reactions at
room temperature.

PACS number(sj: 82.20.—w, 02.50.+s, 05.40.+j, 82.30.—b

Reaction-diffusion processes of the type A+B~C
with initially separated components are more readily
amenable to experimental studies than similar noncon-
vective systems with initially uniformly mixed reactants,
a condition which is difficult to achieve in a real chemical
system. The initial separation of reactants leads to the
formation of a mobile reaction front, which is a spatially
confined region with nonzero reaction production. The
presence of an interface is a characteristic of many reac-
tions in physics, chemistry, and biology [1—8].

The dynamics of the reaction front can be described by
several quantities such as the location of the center of the
front, the local production rate at that point, or the width
of the reaction zone. Asymptotic scaling arguments for
the properties of such a front, valid only in the long-time
limit, have been suggested by Galfi and Racz [9], based
on a mean-field approximation to the reaction-diffusion
equations. They found that the center (x~) and the width
(w) of the front scale with time as xf- t ~ and w —t '~,
whereas the production rate at xf is proportional to
t . These predictions have been verified both numeri-
cally [10,11] and experimentally [10,12]. A recent study
by Cornell, Droz, and Chopard [13] argues that this
mean-field description is valid above the upper critical di-
mension which is d„p 2.

Galfi and Racz [9], and later Cornell, Droz, and Cho-
pard [13], make the simplifying assumption that the
diffusion constant is identical for both species A and B.
They argue that the ratio of the diffusion constants
D, /Db is an irrelevant parameter with respect to the
asymptotic scaling behavior and provides only unimpor-
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where k is the microscopic reaction constant. The
mean-field nature of these equations is expressed in the
reaction term which is assumed to be proportional to the

tant corrections to the scaling function. Indeed, it has
been shown [10,11] that the asymptotic scaling results are
valid also for unequal diffusion constants and are not
affected by concentration fluctuations or the discrete
(particle) nature of the reactants.

In this paper we study analytically and experimentally
the kinetic behavior of the reaction front for the initially
separated system, focusing on the short-time limit, where
the system parameters have a crucial role in determining
the kinetic properties. Our theoretical results predict a
variety of nontrivial crossovers and different universality
classes for the dynamics of the reaction center. Our ex-
perimental data support the crossover predictions and
show that the so-called short-time limit can range over
scales of hours in real systems with a small microscopic
reaction constant. The interesting behavior in this for-
mal short- (practically quite long) time limit cannot be
described by the earlier asymptotic scaling predictions.

The system under consideration is assumed to obey the
following set of mean-field type reaction-diffusion equa-
tions for the mean local concentrations per unit length
Pa~pb-
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product of the mean particle densities. The equations are
subject to the initial separation condition along the x
axis,

p, (x,O)=apH(x), pb(x, O)=ho[1 H—(x)], (lc)
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where ap and bp are the initial densities, and H(x) is the
Heaviside step function. At early times, due to the rela-
tively small amount of mixing of A's and 8's, reactive
effects are small compared to those of diffusion. Hence
we can describe this behavior using a dimensionless reac-
tion parameter

k
(2)
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which will be assumed to be small in subsequent
analysis. In order to apply perturbation theory, we
define the following dimensionless parameters [14]:
a(x, t)=ao 'p, (x, t), p(x, t)=bp 'pb(x, t), g=xQapbo,
and r=tapbp+D, Db. We also define Parameters in
terms of the ratio of the diffusion constants
D =QD, lDb, and the ratio of initial concentrations

r =Qaolbo, assuming that D and r are O(1). Equation
(1) will now have the dimensionless form

a= a, e', = e',
j=0 j=o

(4)

where ao and pp satisfy an ordinary diffusion equation un-
der the initial separation condition in terms of dimension-
less Heaviside step functions. The solution of Eq. (3) for
the zeroth order in e is then found to be [14]

1
ap(g, r) =—1+erf

2
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where erf(z) is the error function. The next order terms
can be shown to be approximated by

On the assumption e((1, we can apply perturbation
theory to solve Eq. (3), by expanding a and P in the series

a, (g, r) = — —r exp
r D v 4rr 4 v'Dr v'D
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The local production rate of C in this system is assumed
to be given through the reaction term in Eqs. (la) and
(lb), namely

R(g, r)=apbo(D, Db)' ea(g, r)P(g, r),
with the suitable series expansions for a(g, r) and p(g, r)

The center of the reaction front gf is defined as the po-
sition at which the local production rate R (g, r) is a tnax-
imum. Previous studies [9,13] claim that this is
equivalent to the point at which the concentration
profiles of the two species are equal. This alternative
definition is true when the diffusion constants are equal,
and the initial densities do not differ too much, but these
conditions are not necessarily satisfied for real systems.
The consequence of such a mathematical simplification is
that the center of the front moves with a velocity propor-
tional to t' which is naturally expected on the basis of
the diffusion mechanism [5,6,9,13], and is indeed valid in
the asymptotic regime. It should also be noted that Cor-
nell, Droz, and Chopard [13] have considered only the
case in which the initial concentrations are also equal,
and the front is stationary.

In the following we show that the perturbation analysis
for gf yields an unexpectedly rich kinetic behavior, with
variety of universality classes, depending on the system
parameters. The general expression for gf is found after

maximization of R(g, r) and expansion around (=0 due
to the short-time limit. The result is

gf(r) =
VD r ' +—eMr'~

D
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where M and N are time-independent constants, related
to the coefftcients of the expansion for small g, and are
found to depend in a nontrivial manner on the values of
D and r To lowest .order in e, gf -r'~z, but this occurs
only provided that D&1.

For D= 1 (and r+1), the first term in the numerator
vanishes, and the center of the front remains fixed in po-
sition at the earliest times. As time increases, the second
term in the numerator becomes significant, so that

gf -er, finally changing to the asymptotic r' behav-
ior. Thus, practically, there can be as many as three dis-
tinct regions for the kinetic behavior of gf for D =1 and
r&1. If also r = 1, then M is found to vanish as it should,
yielding gf =0 for all r, due to the symmetry.

The most striking feature of gf is the possibility of a
change in its direction of motion along the separation
axis. The mathematical expression of this feature is that
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the function gf (r) possesses an extremum point for some
positive time (~)0) .The time r', for which gf(~) has an
extremum point, depends in a complicated manner on D
and r, through the rather cumbersome expressions for M
and N. These indicate that ~' will be positive, provided
that the parameters D and r satisfy the conditions [D & 1

and r & 1] or, equivalently, [D & 1 and r & 1]. However,
when D is greater than 2+v'3 =3.73 or less than
2 —&3=0.27, r* will be negative, and gf will not have a
physical extremum point, no matter the value of r. But if
we restrict ourselves to values of —,

' &D &2 [recall that
D =O(1)], then the extremum condition [D & 1, r & 1]
(or the opposite) ensures a change of the direction of
motion of the front.

This result can be physically understood. Suppose, for
example, that D, & Db and a0 & b0. At very early times
diffusion effects are dominant, and the direction of
motion is determined by the penetration of the A species
to the left, 8 side of the system. Later on, the reaction
comes into play, and the species with higher concentra-
tion 8 will govern the direction of motion, which will be
towards the right, A side. This result is based on an ex-
pansion to second order in e. Therefore one expects that
the transition of the front from one direction to the other
will occur at a rate proportional to ~

We confirmed our theoretical analysis by solving Eq.
(1) numerically, using a split-step algorithm that uncou-
ples the diffusion and the reaction at each time unit
[14,15]. The diffusion part was solved by the exact
enumeration method [16], which is equivalent to discre-
tizing the evolution equation, whereas the reaction effect
was calculated according to the reaction term in Eq. (1).

The experimental system used to test this intriguing
phenomenon is composed of the reactants xylenol orange
and Cr + in a 0.9% gel solution at room temperature, in-
itially totally separated along a 500-mm glass reactor
with 4X2 mm cross section. Further details about the
experimental technique are described for related systems
in Ref. [12]. We used 5 X 10 M xylenol orange
(diffusion constant 3.5X10 ' m /sec), and 7.5X10 M
Cr + (diffusion constant 2.7X 10 ' m /sec), so that
D = 1.14 and r =0.26 in accord with the requirements for
an extremum position. The results are shown in Fig. 1.
One can clearly see that the change of direction occurs at
a rate much higher than the asymptotic ~' . This formal
short-time limit behavior takes place at time t =223 min,
which is definitely quite long. This is because of the small
reaction constant k in the system, so that the correspond-
ing dimensionless parameter e defined in Eq. (2) is very
small, and the short-time limit is extended over a long
measurable time interval.

The small reaction constant is typical for a class of ex-
perimental systems [12]. It is also refiected in a crossover
of the global reaction rate from ~' to ~ ' which
occurs at time inversely proportional to the reaction con-
stant [14], thus providing a possibility of eliminating this
microscopic reaction constant from crossover behavior in
macroscopic measurements.

For D ) 1 and r ) 1, we found from Eq. (8) that gf is
monotonic in time. However, for small values of k, there
are three regions of different kinetic behavior: at the very
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earliest times gf -r', at later times r (corresponding
to the order of the perturbation expansion), and finally
one obtains the asymptotic ~'

In Table I we summarize the various possibilities for
the time dependences of gf, as a function of the parame-
ters D and r. We can see that apart from the symmetric
trivial case (gf =0 for all times), there are four different
universality classes describing the kinetics of the front
center in the formal short-time limit. All these results
were confirmed by the numerical solution of Eq. (1), with
appropriate parameter combinations.

The local production rate at the center of the front
R(gf, r) is calculated by substituting gf into Eq. (7). An
immediate consequence of the previous results for gf is
that the general form of the time dependence of R(gf, r)
1s

R (gf r) =Coho(D Db ) e[Ep+e+) r] (9)

where the specific values of the constants K0 and E& de-
pend on D and r For most. sets of [D,r] only the
lowest-order constant regime is observed (prior to the
asymptotic solution), but for some other sets it would be
possible to observe deviations from the constant to the
next-order linear term of Eq. (9). The numerical solution
for the entire time scale confirms the crossover from the
result (9) to the asymptotic r ~~3 found by Cxalfi and
Racz on the basis of a scaling ansatz.

Before concluding, we note that further aspects of the
reaction front properties in similar and related systems
have been studied very recently by several investigators
[17,18].

In summary, we have studied analytically, numerically,
and experimentally, the kinetics of the reaction front in

time (min)

FIG. 1. Experimental results of the reaction center location
xf (in units of 0.1 mm), as a function of time (min). The initial
position is xf(t =0)=0, and the system parameters are
D=1.14) 1 and r =0.26&1, which give risc to an extremum
point of xf. The change of direction is seen to occur at a higher
rate than the asymptotic behavior.
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TABLE I. A summary of the various time dependences of (f, the center of the reaction front, as a
function of the system parameters D and r.

fD, r}

{D=1,r=l}
{D=I,r&1}

{DPI,r=1}
{2++3 &D & l, r & I}

or

f 1&D &2—&3,r & 1}

{D&l, r & 1}
or

{D& 1,r &1}

Short times

1/2

1/2

1/2

Intermediate times

3/2

1/2

' with extremum

3/2

Long times

1/2

1/2

1/2

1/2

the A+S~C reaction-diffusion system with initially
separated components. We found that the motion of the
reaction center can be classified into four different univer-
sality classes, depending on the system parameters.
These classes describe the kinetic behavior over times
which are within easy experimental reach. In particular,
we showed that under appropriate choice of the diffusion
constants and initial densities, the front exhibits a change
of its movement direction, a phenomenon which we have
experimentally confirmed.
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