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Homoclinic bifurcation sets of the parametrically driven DufBng oscillator
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Using the Melnikov-function approach, we obtain the threshold condition for the occurrence of
Smale-horseshoe chaos in the parametrically driven DuSng oscillator. A detailed description of the
homoclinic bifurcation sets in the five-dimensional parameter space involved in the system is provided.
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We consider the Duffing oscillator [1] subjected to (i}
an external periodic force with amplitude F, having cir-
cular frequency coi, and (ii) a parametrically driven force
having amplitude F2 with circular frequency co2. The
resultant equation of motion of the parametrically driven
Duffing oscillator, restricted to the case for which the
external and parametric forcings are in phase, is given by

X+sax —( I+eF2cosco2t)x +x =eF, coscoit,

where a denotes viscous damping and e ( «1) is a per-
turbation parameter and an overdot means differentiation
with respect to t. Apart from various applications of the
Duffing oscillator [Fz =0 in Eq. (1)] which system (1) can
have, it also serves as a model for the driven Rayleigh-
Benard convection [2—5] and nonlinear electrical net-
works and mechanical systems [6].

For F2 =0, Eq. (1) represents the forced Duffing oscil-
lator for which the threshold for the occurrence of
Smale-horseshoe chaos was already studied [7] in detail.
Apart from a single force, the effect of a number of com-
peting external forcing frequencies on the region of chaos
in the quasiperiodically forced Duffing oscillator has also
been investigated [8—10] recently. With F&=0, Eq. (1)
gives the parametrically driven Duffing oscillator, which
has a form similar to the nonlinear Mathieu equation
[11]. We consider here the combined effect of both the
external force and the parametrically driven force in the
Duffing oscillator, along with viscous damping on the
threshold for the occurrence of Smale-horseshoe chaos in
the system.

Considering Eq. (1), when @=0, the system is obviously
integrable and possesses a separatrix orbit [12],which is a
basic requirement for the application of the Melnikov
method [12,13]. In this paper we wish to obtain the cri-
terion for the occurrence of Smale-horseshoe chaos in

system (1) when eAO, and investigate the effect of both
the external forcing and parametric excitation on the
homoclinic bifurcation set in the five-dimensional param-
eter space (a,F„F2,co„co2) obtained from the Melnikov
function. Our study goes much beyond the earlier work
of Newton [5] and gives a complete classification of the
bifurcation sets in the parameter space of Eq. (1) along
the lines of Ide and Wiggins [10]. From these results we
can predict for a given set of parameters whether trans-
verse intersections of the stable and unstable manifolds of

the corresponding Poincare map occur in the parametri-
cally driven Duffing oscillator (1), and can also obtain the
threshold for the occurrence of Smale-horseshoe chaos in
the system.

The Melnikov method [12,13] is perhaps the only
analytical tool currently available to provide a criterion
for the occurrence of Smale-horseshoe chaos in a system.
Since this method has been described many times by
different authors [7—10,12—14], we do not discuss it in de-
tail here, but present only the results. We begin by
rewriting Eq. (1) as two coupled first-order ordinary
differential equations:

x=y,
y =x x+e(F—, costa, t +F2xcosco2t —ay) .

(2)

+F2coscop{1 + to )xp( r)
—ayo(r)]dr . (4)

Using Eq. (3} in Eq. (4) and evaluating the resulting in-
tegrals, we get

M (to }=v'2 F,mo, sech(~co, /2)sinco, to

+Fzn cozcosech(~co2/2)sincozto —4a/3 . (5)

From Eq. (5}one can easily write the criterion for the oc-
currence of Smale-horseshoe chaos as

a &a, =—'ficoisech(mcoi/2)+ ,'f2cozcosech(mco2/—2),

(6)

The unperturbed system has three fixed points: a hyper-
bolic fixed point at (0,0) and two elliptic fixed points at
(+1,0). It also possesses a separatrix solution

(xo,yo ) =(~2 sech r, —&2 sech r tanhr), r = t tz—
(3)

known as the separatrix orbit, passing through the hyper-
bolic fixed point. In order to determine a criterion for
the occurrence of transverse intersections of the stable
and unstable manifolds of the corresponding Poincare
map, we compute the Melnikov function, which in this
case takes the form

M(to)= J
"

yo(t)[Ficoscoi(7+to)
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FIG. 3. The complete homoclinic bifurcation sets of the parametrically driven Duffing oscillator in the XI-X2 plane and co, -co2
plane for the 20 different sections of (a f„f,) space, viz. , (1) a= 4(f,X', +f,Xz), f, &0 f, &0; (2) a= 'f, X'„ f, & f—, &0, (a)
X', &Xz &Xz, (b) Xz=Xz, (c) Xz &Xz', (3) a= 'fzXz, 0& f& &fz—', (4) a= fzXz, f, & fz &0, (—a) 0&Xz &XI, (b) Xz=0, (c) Xz &0; (5)
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the parametrically driven Duffing oscillator.
(i) For the choice of a= —,'(f,X', +fzXz), f& &0, and

fz & 0, homoclinic bifurcation occurs at exactly one point
in the (cot, coz) plane given by (co,, coz) =(cot, co&) (see case 1

in the figure).
(ii) For the choice of a=0, f& &0, and fz &0, trans-

verse homoclinic orbits exist for all values of ~, and ~2
except for co, =coz =0 (see case 6).

(iii) For some choices of (a,f„fz), there are no values
of co, and coz for which homoclinic bifurcation occur (see
cases 7, 13, and 14).

(iv) For many choices of (a,fz, fz), transverse homo-
clinic orbits exist only for the set of values of (co„coz)
which lie within the area enclosed by the bifurcation
curves (see cases 2—5 and 8—12).

(v} For some other choices of (a,f„fz}, transverse
homoclinic orbits exist only for the set of values of
(co„coz) which lie within the area enclosed by the bifurca-
tion lines (see cases 17 and 18).

(vi) For other choices of (a,f, ,fz), homoclinic bifurca-

tion occurs at those values of (cot, coz) which lie on the bi-
furcation line (see cases 15, 16, 19, and 20).

Finally, upon comparing the nature of the bifurcation
curves in the case of two competing external frequencies
as studied by Ide and Wiggins [10], one notes that the
form of X, (co, ) and Xz(coz) are similar where as in our
case they are different [cf. Eq. (7a)] and possess different
maximum values of X& and Xz at co, and co2, respectively.
Correspondingly, the resulting bifurcation sets for system
(1) also vary compared to those obtained by Ide and Wig-
gins [10] for the quasiperiodically forced Duffing oscilla-
tor, leading to different bifurcation sets in the co, -co2 plane
for certain cases and to additional subcases in cases 2, 4,
and 10.
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