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A Robinson-type theorem concerning beam damping is proved, based directly on Liouville s theorem.
The theorem so obtained is somewhat general: The radiating particles need not be relativistic, and they
need not form a beam, the emitted radiation may be arbitrary (not necessarily electromagnetic), provided
only that the emission process is short enough and not too violent. The proof makes no reference to
transfer matrices, nor to properties of the guiding forces (which need not be electromagnetic), except
that they are derivable from a Hamiltonian. Then in general the sum of the instantaneous damping
coefficients is X=+', ,a; = —'+3,Bk;/Bp; =—'7 k, where k is the time rate of momentum given up by a

particle of momentum P and i =1,2, 3 denotes the three components. %'hen k is parallel to p, and
k=g~ Mk(n), where k(n) p",-then X=+„(2+n)k(n)/2p If,.further, the emitting and emitted par-
ticles are both ultrarelativistic, and the sum of powers reduces to a single second-order term (as during
photon emission by ultrarelativistic electrons in storage rings), then X =4i /2E, where i is the power ra-
diated out by particles of energy E. Taking the usual time average for quasi-harmonically oscillating
beams gives (X)r=4e/2E: Robinson s original result. Special cases are discussed, including certain
ones where the sum of the damping partition numbers A4.

PACS number(s): 41.75.Ht, 41.50.+h

A well-known theorem due to Robinson [1], concern-
ing the radiation damping of relativistic electron beams,
states that the sum of the damping partition numbers
equals 4. The original proof of this theorem is based on
the fact that the electrons to be damped form a beam,
that they are ultrarelativistic, and that the guiding fields
are produced by static magnets of rf cavities. The proof
further makes use of the properties of beam transfer ma-
trices and assumes that the radiation emitted by the elec-
trons is electromagnetic in nature; i.e., photons are being
radiated.

It turns out that a theorem of this type can be proven
in an alternative way, considering directly the sum of the
damping constants, and basing the argument on
Liouville's theorem. The result so obtained is more gen-
eral than the original one: The guiding forces may be ar-
bitrary (need not be caused by static magnets or rf fields,
indeed, they need not be electromagnetic in origin); the
particles radiated away need not be photons, but may be
arbitrary; the radiating particles need not be electrons,
may be nonrelativistic, and they do not have to form a
beam, provided that certain conditions hold. Indeed, a
Robinson-type theorem of increasingly restrictive form
can be proven, if enough of the conditions listed below
hold.

(i) The guiding forces can be derived from a Hamiltoni-
an.

(ii) The decay process is short enough, and not too
violent:

(a) To evaluate a change in the phase-space volume
of the radiating particles during the time 5t that a
radiated particle is emitted, it su%ces to calculate to
first order; higher-order terms can be neglected.

(b) During emission the momentum of a radiating

b, V, =Ax, hp; (i =1,2, 3),

where p; is the ith momentum component. A six-
dimensional phase-space element can then be written as

EV=EV)EV2AV3 .

The fractional variation of 5V can be expressed as

55V
hV

=[(5b,V, )b, V2b, V3+6V, (5b V2)b, V3

+5V, D, V25b V3]IEV, 5V2.6, V3

(2)

(3)

particle changes, but any variation in position of the
radiating particles, as a result of this change, can be
neglected.

(c) The fractional change in the momentum of the
emitting particles is small during the time 5t

(iii) The momentum 5k given up by the radiating parti-
cles during the emission of (a) radiated particle(s) is paral-
lel to the direction ofp during the emission process.

(iv) 5k is proportional to a polynomial ofp.
(v) The radiating particles are relativistic, so that their

energy E satisfies p =E/c, and 5k is related to the energy,
5s, radiated out by 5k =5s/c.

%hen the polynomial reduces to a single second-order
term, the original form of Robinson's theorem emerges.

To obtain the result, choose three orthogonal coordi-
nate axes [2] x„x2, and x3. Denote by b V, an
infinitesimal phase-space element associated with the x&
direction, etc.,
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Consider the variation of AV during the time interval
5t. Assume that during this time the ensemble of "origi-
nal" objects, whose phase-space points are located within
4 V, are acted upon by two kinds of forces: first, by exter-
nal guiding forces; second, by forces acting as a result of
the original objects emitting certain particles. These em-
itted particles will be referred to as "radiation. " The two
kinds of forces will cause variations in AV, denoted by
5,6V and 526, V, respectively. Condition (iia) guarantees
that the total variation is simply the sum of these two:

5A V=5)h V+526 V . (4)

It follows from condition (iib) that, during 5t, any varia-
tion in position caused by the emission process is negligi-
ble; therefore so is the variation of any difference of posi-
tions: 5hx, =0. Consequently, now

5ZV ' 5~P; 5(~Pi ~P~ ~P3)

;=i ~p;
(6)

The right-hand side of Eq. (6) is the fractional volume
change of a three-dimensional element in (p„p2,p3)
space. To evaluate it, first consider a space element in

any three-dimensional Euclidean space, denote its volume

by U, and its surface by S. When the space element is
distorted, each point on its surface may be moved by a
displacement vector d, where d in general depends on the
surface point under consideration. As a result of these
displacements, U changes by 5U, where clearly 5U is the
surface integral over S of the normal coinponent (point-
ing outward) of d. By the divergence theorem this, in
turn, equals the integral of V' d over the volume U, en-
closed by S:

5U= f dVd=f duVd.
S U

When the volume element is small enough so that the
fractional variation of V.d across the volume is negligi-
ble, then the right-hand side of the above equation is
U Vd, thus

6U
U

Applying this result to Eq. (6), we are dealing with a
three-dimensional Euclidean momentum space, in which
a vector has components p,- (i = 1,2,3), therefore the
divergence operator has components 8/Bp, - (i=1,2,3).
We are considering an infinitesimal momentum-space ele-

According to condition (i), the guiding forces are deriv-
able from a Hamiltonian. Therefore, by Liou ville's
theorem 5&h V=O. Consequently, one only needs to deal
with 526 V, and henceforth the subscript 2 will be omitted
from the 5.

Write the variation of 6 V, as

5b V, =(5bx, )hp, +Ex,5bp, ,

etc. , so that

5hx; 5hp,+
hx;

ment that suffers distortion as a result of particles being
radiated, which may cause any point p on the surface of
the space element to move by 6p, depending on the value
of p. If the particle with momentum p gives up a net
momentum 5k during the time interval 6t as a result of
radiation, then 5p = —6k. Therefore the fractional varia-
tion of the volume 6 V is

AV;X—:gu;= ——g = —— =—V~k.2
&

AV 2 5V 2

Here 5V and k are the time rate of phase-space volume
change and of momentum given up by a radiating parti-
cle, respectively, and the n, = —,'hV;/AV; are the three
damping coefticients. The factor —,

' is included to con-
form to customary notation.

In these equations one may assign two different mean-
ings to 5k. First, one can denote by 5k the net momen-
tum actually given up during the time interval 5t. In that
case the a,. in Eq. (10) characterize the phase-space
volume change that actually occurs during 5t. Alterna-
tively, one can denote by 5k the expected net momentum
given up during 5t, in which case the calculated a;
characterize the expected phase-space volume change
during 5t. By "expected" here we mean the average tak-
en over many events with identical initial conditions
occurring during 5t. For storage ring related applica-
tions, where the momenta of emitted photons fluctuate
according to the laws of quantum mechanics, the latter
interpretation is more useful, and in the following that
will be the meaning assigned to 5k.

Under special circumstances the above result can be
made more specific.

According to condition (iic), any change in the momen-
tum of the radiating particle during 5t is relatively small,
so that both the direction and magnitude of p are well

defined during 5t. Now, if condition (iii) holds, i.e., if k
always points along p, the net momentum given up by the
emitting particle as a result of emission is always parallel
to the momentum of the emitting particle, then it is ad-

vantageous to describe k in terms of its spherical coordi-
nates k, ke, and k . By assumption, only the radial
component k =k is nonzero, and then

1 a(p'k) k apeppy

(10)

This case is often realized, for example, when the aver-
age net momentum carried away by the radiation is zero,
as seen from the rest frame of the emitting particle [3]. It
holds when ultrarelativistic electrons emit photons, in
that case 5k is simply the momentum carried away by the
radiation. If, further, condition (iv) also holds, so that k
is expressible as k= gf Mk(n) where k(n)=a„p" and

a, is independent of p (the n is not necessarily integer,
nor necessarily positive), then

5av —:—Vp5k . (9)av, , ap,

This result can be recast, dividing by the time interval
5t, and denoting time derivatives by dots: 5b V/5t =X V
and 5k; l5t =k;,
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V' k= g (2+n}
n=M

(12)

When, in addition to the above assumptions, the emit-

ting particles are ultrarelativistic, and have energy E,
then p =E/c. If, also, the emitted radiation consists of
electromagnetic radiation, with energy 5c, then the radia-
tion is emitted overwhelmingly in the forward direction,
so that 5k =5e/c. Then condition (v) is satisfied, and one
can write k(n)/p =e(n)/E, and

7~k= g (2+n)
n=M

One recognizes a=g~ Ms(n) as the power radiated out
by a particle of energy E, during 5t

If under these circumstances the electromagnetic radi-
ation is emitted by electrons accelerated by transverse
classical electomagnetic guide fields, then the sum of
powers reduces to a single term: k =k (2)=a 2p, and

depend on p (the n do not necessarily have integer values,

and may be negative},
r 2

„k(n}
~P2 P P „=M P

(17)

so that whenever p2/p is small enough, only the first term
on the right-hand side of the above equation survives,
and

1 k2

2 P2
(18)

For ultrarelativistic electrons radiating photons while cir-
culating in storage rings, p2 is suSciently smaller than p3
(if xz and x3 are chosen along the vertical and the beam
direction, respectively), so that if the above listed condi-
tions hold, then Eq. (18) is valid. One may then also
write k2/p2--e/E. Under these conditions Eq. (14) must
hold too, therefore, one also has

X=—'V k=4
2E

(14) a1+a3=3 (19)

Except for a time averaging, this is the result originally
derived [1] by Robinson; that averaging, usually per-
formed in connection with storage rings, will be discussed
before Eq. (21).

) EV2 ) Bk2
a2=

2 AV2 2 Bp2

If, further, k is parallel to p then k2 =p2k /p, and

(15)

k a(k/p )+p
~P2 P ~P2

If k=gf ~k(n), where k(n)=a„p", and a„does not

VALUES OF THE INDIVIDUAL cz;

The results obtained so far have to do with the sum

g;a; and not with any individual a;. The reason is that
Liouville's theorem concerns itself with the total (six-
dimensional) phase-space volume b, V, rather than the in-
dividual AV;. To be able to make statements about any
particular hV; one would have to consider not only
changes in the volume of the chosen phase-space element,
but also know its changes in shape which, in turn, depend
on the detailed properties of the guide forces. When ad-
ditional information about these properties is available,
then one may be able to make statements about certain
individual a;. Such is the case when the external guide
forces preserve separately the volume of a two-
dimensional phase-space element, say b, V2 (and then also
the remaining four-dimensional volume 6Vi 6 V3 ). This
happens, e.g., when ultrarelativistic electrons circulating
in a storage ring emit photons, while being guided by a
static transverse magnetic field, if the design orbit lies in
the [x,x3] plane and the magnetic field is symmetric
around that plane. Then an argument analogous to the
one given earlier shows that the time rate of change 5V2
caused by the emission process satisfies

EXTENSION TO FINITE TIMES
AND PHASE-SPACE SEGMENTS

So far we considered only an infinitesimal phase-space
element, and a short time interval 5t. In this way we ob-
tained information about the instantaneous values of
g, a, (and perhaps certain individual a, ) referring to the
chosen element. By following the evolution of the phase-
space element while various external guide forces act on
it, one can chart the time evaluation of the quantities of
interest, and one can also define their average value cal-
culated over some macroscopic time interval T. The time
average of T of any quantity x will be denoted by (x ) r.
This procedure is particularly useful when the particles
under consideration follow closed orbits located within a
finite configuration volume, e.g., electrons circulating in a
storage ring. Different groups of electrons, of course, fol-
low different orbits around the ring, are subject to
different guide forces, and experience different damping
along the way. However, after a suSciently long time
Tp, all groups of electrons have followed arbitrarily close-
ly to any possible orbit, and experienced guide forces ar-
bitrarily close to all possible values. If one chooses
T) Tp but T not too long, i.e., still short enough so that
during T the fractional change in phase-space volumes is
still small, and so is the net fractional change in the beam
momentum p, then (b, V/b, V) T=(b, V)T/b. V and

(ai, /ap; &T=(ak;)T/ap;, so that the sum rule for the
time-averaged damping coefficients (a; ) T is

y (,&,=v, (ak, &, .
i=1

(20)

Similarly, Eqs. (9)—(19) all hold when, in these equations,
5k;, 56V, hV;, k;, i, a;, and X are replaced by their
respective time-averaged values. These average values
are now the same for all circulating electrons; they do not
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5V;

V;

5A; 50.,
' 56 V,

'~V,

The factor 2 appearing above is canceled by the effect of
time averaging. Since any phase-space point moves along
the ellipse harmonically, and since the change of (2cr,p )

is proportional to the square of p;, time averaging in this
special case is particularly simple: equivalent of taking
the average of cos, which gives a factor —,'. Denoting by

a; the damping coefBcients related to the macroscopic
phase-space volumes V„one obtains from Eq. (14),

3

(r) = g (a;) =4e/2E. (21)

This is Robinson's original result [1].
It may happen that the variables x and p do not satisfy

conditions (ii), but certain related quantities X' and p' do.
In that case the theorem predicts the fractional change in
(x',p') phase space. An example is given at the end of
the next section.

EXAMPLES

Here we list examples for which Eq. (14) does not hold.
First consider a circulating beam of relativistic ions of en-
ergy E and momentum p. Each ion contains at least one
electron bound to the nucleus. Let the first excited state
of the ions have an energy c& above the ground state. The
transition between the ground state and the first excited
state has a line shape as shown in Fig. 1. Damping of

depend on where the phase-space volume to be studied is
located.

When considering an infinitesimal phase-space ele-
ment, a calculation to the lowest order in small quantities
yields exact results. The same calculation will give good
accuracy, even for finite phase-space segments, provided
that its dimensions are small enough. The six-
dimensional phase-space segment, occupied by an elec-
tron bunch circulating in a storage ring, usually satisfies
this condition. One can then describe the volume change
of this entire finite segment using the formulas given
above. One defines the surface of this segment by some
means [4], and observes its change as a function of time.
Usually these surfaces are ellipses in each of the two-
dimensional phase spaces, and any point on the cir-
cumference of an ellipse moves along that surface as a re-
sult of interactions with the guide forces. As discussed
earlier, photon emission leaves the ellipse diameter paral-
lel to x; unchanged, but alters the diameter parallel to p;.
This process is fastest when the emitting point is at the
end points of the largest diameter along the p; direction
(denoted by 2cr,'p), slower otherwise, smallest when the
point is where the tangent to the ellipse is parallel to the

p; axis. The finite phase-space volume V;, associated with
the ith direction is now the area of the ellipse A, . The A,
is proportional to (o,' ) . The change in o,' at any moment
is, in turn, proportional to the change in that infinitesimal
phase volume 5V; which moves along the perimeter of
the ellipse, therefore
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FIG. 1. The photon excitation cross section as a function of
the photon energy c~. The maximum is located at c~ =c&. The
solid section of the line shape (in region 1) varies as the nth
power with energy, the dashed section (in region 2) varies with
inverse mth power.

this ion beam can be induced by irradiation with a beam
of photons of appropriate energy s~ [5]. To be effective,

should be chosen such that as seen from the rest frame
of the circulating ions, the photon energy c' = e&. In that
case, if the ions are originally in the first excited state, the
photon beam will induce stimulated emission. As seen
from the laboratory, the emitted photon will carry away
an expected momentum 5k essentially parallel to p, the
momentum of the emitting ion. To achieve significant
damping in this manner requires high-intensity photon
beams. However, the same result can be accomplished
without energy investment, if one replaces the photons by
an undulating transverse static magnetic field [6] of ap-
propriate wavelength A.„. To be effective, the A, „has to
be chosen so that as seen from the rest frame of the circu-
lating ions, it has the wavelength of photons with energy
c,. Again 5k is expected to be essentially parallel to p.
Since the emitting particles are ultrarelativistic, and the
emitted particles are photons, k/p =e/E The in. tensity
of stimulated photon emission is proportional to the
square of the transverse field intensity as seen in the ion's
rest frame, i.e., to E ~ If this were the whole story one
could now substitute n=2 in Eq. (13) and obtain Eq. (14).
But the emission is also proportional to the cross section,
which varies as shown in Fig. 1. When the energies of all
the ions lie in the interval (E+b,E /2), so that in the ionic
rest frame the magnetic undulator field is perceived as a
(virtual) photon with energy s' lying in region 1 in the
figure, then the cross section varies as (e' )", and from Eq.
(13) one obtains X=(4+n)r., /2E, where E, is the power
radiated out due to stimulated emission. If, on the other
hand, the c.

' lies in region 2, the result is
X= (4—m )e, /2E: for m = 1, 2, 3 one has damping, for
m=4 there is no damping, and for m )4 the X is nega-
tive, the ion beam is antidarnped.

So far we neglected spontaneous emission, which
would be there, even in the absence of an external field.
The spontaneously emitted power i, is essentially a
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Lorentz invariant [7], so that now n=0, and this process
contributes a term X, =2e, /2E.

Even if spontaneous processes are neglected, one may
have to take into account several terms in Eq. (13). That
happens, for example, whenever in the energy region of
interest, the cross section is approximated not by a single
power of c~ but a sum of them. Indeed, the wider the en-

ergy region of interest, the more likely it is that a single
term approximation will not suffice [8].

As a second example, consider an ensemble of relativis-
tic electrons, whose rest mass, momentum, and energy
will be denoted by m, p, and E, respectively. The elec-
trons initially move in arbitrary directions in a static
magnetic field Bz, which is parallel to the x2 direction,
and oscillates harmonically as a function of x3. The am-

plitude of B2 is sufficiently small, so that changes in the

electron momentum are small. Again, k is parallel to p,
and its magnitude is e/c. The radiated power is propor-
tional to the square of the force acting on the electron,
i.e., to (p sine), where 6 is the angle between p and the
2 axis. Therefore, now n=2 in Eq. (13), and X=4E/2E.
Since i varies as sin e, the X is a function of the direc-
tion in which the phase-space element under considera-

tion is moving.
When the electrons are nonrelativistic, then a similar

argument holds, except now k=E(m/p). That leads to
k-p, so that n=l, and X=3k/2p. One can express this
in terms of the electron kinetic energy, E =p /2m, as
X=

—,
' i/E.

Finally, consider the example of a classical electron os-
cillating linearly and harmonically in a potential well
with periodic ~. During the typical photon emission time
5t, the electron oscillates many times, and neither 5p nor
5x is negligible. However, one may select one moment
during each oscillation period when x =0 and p points in
one chosen direction (as opposed to the other) and has
the value p =po. Looking only at these moments
(separated by integer multiples of r), one can describe the
state of the electron by the variables x0=0 and po. As a
result of photon emission, the change 5po during 5t will

be small compared to po, and 5x0=0, so that these vari-
ables satisfy conditions (iib) and (iic). As in the previous
example, i-p, and k -p. Therefore the fractional
change of the phase-space volume filled by an ensemble of
such oscillating electrons will be determined by
(X ) =3k/2p.
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