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Fluid hydrogen at high density: Pressure ionization
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In an earlier paper [Phys. Rev. A 44, 5122 (1991)],we presented a Helmholtz-free-energy model for
nonideal mixtures of hydrogen atoms and molecules. In the present paper, we extend this model to de-

scribe an interacting mixture of H&, H, H, and e in chemical equilibrium. This general model de-

scribes the phenomena of dissociation and ionization caused by pressure and temperature effects, as en-

countered in astrophysical situations and high-pressure experiments. The present model is thermo-

dynamically unstable in the pressure-ionization regime and predicts the existence of a plasma phase tran-

sition with a critical point at T, =15300 K, P, =0.614 Mbar, and p, =0.35 g/cm . The transition
occurs between a weakly ionized phase and a partially (=50%) ionized phase. Molecular dissociation

and pressure ionization occur in the same narrow density range; atoms play a minor role in pressure ion-

ization. In the high-density phase, complete pressure ionization is reached gradually. The sensitivity of
the coexistence curve and of the critical point to model parameters and assumptions is discussed in de-

tail.

PACS number(s): 52.25.Jm, 64.70.—p, 05.70.—a, 65.50.+m

I. INTRODUCTION

The similarities between hydrogen and alkali metals
suggest that pressure-ionized hydrogen would behave like
a conducting monovalent "metal" [1] even at zero tem-
perature, and it has often been argued that a first-order
phase transition must occur between the two states given
the large density difference between the insulating molec-
ular and the conducting metallic states [2—4]. Most of
the recent investigations have focused on the zero-
temperature transition, where very sophisticated models
can be developed in the absence of thermal effects [5—9].
These calculations indicate that the zero-temperature
transition occurs between 1 and 4 Mbar. Static compres-
sion experiments are beginning to probe this pressure
range. Shock compression experiments [10,11] have
clearly established the stability of the Quid molecular
phase up to 0.8 Mbar. Measurements of the fundamental
vibration frequency of the molecule at T =77 K indicate
that it is stable at least up to 2 Mbar [12]. A transition
associated with a modification of the electronic structure
of solid H2 has been discovered recently [12,13], with a
critical point around T= 150 K and P = 1.7 Mbar
[14,15], but it is generally agreed that the metallic state,
which is believed to occur around 2—3 Mbar, has not
been observed yet.

Even though the existence of the metal-insulator tran-
sition in hydrogen is well established at 0 K (on theoreti-
cal grounds), little can be said of it at temperatures of a
few thousand degrees and considerable uncertainty
remains concerning the form of the phase diagram. The
existence of a plasma phase transition (PPT) in the fluid
regime between an insulating molecular or atomic phase
and a pressure-ionized, metallic fluid phase, and of the as-

sociated "second critical point, " remains speculative to
this day.

In an earlier paper [16] (hereafter, Paper I), we

developed a free-energy model for a H-H2 mixture to de-

scribe temperature and pressure dissociation of mole-
cules. In this model the configuration free energy arising
from the particle interactions is based on realistic intera-
tomic potentials, and is calculated within the framework
of an extended Quid perturbation theory. The influence
of the interactions on the internal levels of atoms and
molecules is calculated self-consistently with an occupa-
tion probability formalism [17]. This free-energy model

successfully compares with available shock-wave experi-
ments [11]and Monte Carlo simulations [16,18]. It pre-
dicts that pressure dissociation occurs over a narrow den-

sity range above p =0.5 g/cm .3

In the present paper, we extend this so-called "neutral
model" in the pressure and temperature ionization region
and present detailed results on pressure ionization and

the PPT of hydrogen. In Sec. II we summarize briefly the
model developed for the fully ionized part of the phase di-

agram (see Fig. 1 of Paper I). This model has been de-

scribed in detail elsewhere [19] and is summarized here
for completeness. In Secs. III and IV, we present the

free-energy model, which describes partial ionization.
Section V is devoted to an extended analysis of the PPT
predicted by our model. The thermodynamics and the
behavior of our model are discussed in Sec. VI.

II. FULLY IONIZED MODEL

At temperatures such that k T ~ 1 Ry, or for densities

such that the Fermi energy is greater than 1 Ry, hydro-

gen is fully ionized and constitutes a Quid mixture of pro-
tons and electrons subject to Coulomb forces. The model
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we developed in this region [19] relies on the so-called
two-fluid model, used extensively in liquid-state theory
[20]. Within this model, the plasma is equivalent to the
superposition of two uncoupled fluids: a jellium electron
gas and a fluid of pseudoions interacting through the
short-range screened potential

y, tr( )
4m.(Ze)
K e(K)

where Ze is the ionic charge and e(K) denotes the elec-
tron dielectric function for wave number K. This so-
called screened one-component plasma model (SOCP} re-
lies on two assumptions in the treatment of the response
of the electron gas, namely the adiabatic (Born-
Oppenheimer) approximation, and the linear-response
theory (LRT). The validity of the former approximation
has been assessed even in the region of weak degeneracy
for the electron gas by comparison with nonadiabatic cal-
culations [21]. The second approximation assumes that
as long as the ion-electron potential energy e /a, where a
is the ion sphere radius, is smaller than the electron Fer-
mi energy cF, the electron-ion interaction is weak com-
pared with the kinetic contribution of the electrons and
can be treated as a perturbation, retaining the linear con-
tribution only. This point will be discussed in detail
below. Given these approximations, the characteristic
Helmholtz free energy of the SOCP reads

the Pnite te-mperature Lindhard dielectric function [27],
corrected with a temperature-dependent local-field
correction [28,21]. The resulting thermodynamic func-
tions reproduce existing Monte Carlo calculations in the
limit of the rigid electron background (r, =a/a0=0, ao
being the Bohr radius) [24], zero-temperature random-
phase approximation [29], and finite-temperature
random-phase approximation [30] within less than 1%
[19]. In the low-temperature, high-density region of the
phase diagram (see Fig. 1 of Paper I), we can expect
quantum effects on the ions to become important. In the
density domain where pressure ionization occurs, howev-
er, the quantum contribution to the thermodynamics is
small ( &0.3%) and it is described by the Wigner-
Kirkwood A' correction [31).

In the high-temperature (kT) 1 Ry), intermediate-
density (2 & r, & 10) range, the thermodynamic functions
of the plasma were interpolated with the so-called two-
component-plasma model [32,33], which recovers the
Debye-Hiickel limit at low density (see Ref. [19] for de-
tails).

Finally a term Fo was added to the plasma free energy
to make the fully ionized model compatible with the neu-
tral model. Since we have included the proton spin in the
neutral model and we must use the same zero point for
the energy scale, which we have chosen as the ground
state of the H2 molecule, we have

Fsocp= kT ln[Tre ~ ]

=F' +F' +F"' kT ln y d R— 1R e

=ln2+ 127 736.3Phe, (3)

(2)

where the trace of the Hamiltonian H is taken over the
states of the coupled electron-ion system and P= 1/kT.
The superscript id denotes the noninteracting contribu-
tion to the free energy given either by the standard classi-
cal equations for the ions or by the Fermi integrals for
the electrons. The last two terms on the right-hand side
of Eq. (2) denote respectively the nonideal contributions
arising from the electron background and from the
screened ionic fluid. For the electron exchange and
correlation contribution I',"', we used a parametrized
thermodynamic function [22] based on calculations of the
interaction energy of an electron gas at finite temperature,
using the Singwi-Tosi-Land-Sjolander (STLS) theory [23]
to treat the strong-coupling effects between electrons.
The known violation of the compressibility sum rule in
the STLS scheme is taken into consideration by anticipat-
ing similar deviations in the parametrization. The result-
ing free energy and its temperature and density deriva-
tives reproduce the classical results [24] and the zero-
temperature results [25,26] with deviations of less than
0.6%%uo. In the region of intermediate degeneracy
(8=kT/ez = 1), the authors claim a total error of -5%
on I,"'.

The thermodynamic functions of the screened ionic
Quid were calculated within the framework of the
hypernetted-chain theory. The electronic dielectric func-
tion entering the effective screened potential [Eq. (1)] is

where N + is the number of protons and h and c are the

Planck constant and the speed of light, respectively.
The main sources of uncertainty in our free-energy

model for the fully ionized domain of the phase diagram
come essentially from the fit for I',"' and from the ex-
clusion of nonlinear screening efFects in the SOCP model.
Recent calculations using the inherently nonlinear
density-functional theory (DFT} for the ion-electron in-
teraction show that nonlinear efFects in the hydrogen
plasma are already significant for r, =l at 8=0. 1 [34].
Other calculations based on the density-response formal-
ism [35] seem to agree with the DFT results for r, &1,
where no bound states are involved. Comparison be-
tween these calculations and our SOCP model for r, =1
show an appreciable difference ( = 15%) on the excess in
teraction energy for I =e /akT=1 —5, corresponding to
0=0.1 —0.5. This discrepancy drops to =2—5% when
comparing the excess internal and free energies, and then
to =2% on the total free energy. At higher temperatures
the electron cloud becomes more and more uniform, and
the LRT becomes accurate [for I =1 and r, =1, the ion-
ion pair-correlation function and effective potentials de-
rived from Eq. (1}are found to be indistinguishable from
the DFT results [36]]. For lower temperatures, the ki-
netic energy of the electrons is larger than the interaction
energy and we can expect nonlinear effects to be less
significant. In any event, nonlinear calculations for the
ion-electron interaction have been computed over a very
narrow (I', r, ) range, and we must rely on the simpler
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SOCP model for the extensive computations necessary
for the construction of a phase diagram.

Given the shortcoming of the LRT and the error
claimed on F,"' we estimate the resulting maximum error
from both of the sources to be =5%%uo on the total free en-

ergy of the plasma, a value reached when I =1—5 and
r, =1. On the other hand, the fully ionized free-energy
model represents only one contribution to our general
model, which does include an explicit treatment of bound
states and consequently nonlinear effects in the region of
partial ionization. As will be shown below, our model
predicts bound states for r, & 1, which puts a low-density
limit on the fully ionized model.

III. PARTIAL IONIZATION

In Paper I and in the previous section, we have
presented the two models used for the two extreme limits
of the phase diagram: the fully ionized regime at high
temperatures (log&&T- 5.6) or at high densities

(logKto ~0.5) [37] and the domain where only atoms and
molecules coexist (log&&T & 4.0, log&op & —0.5 ). The
remaining area between these two regions is the domain
of partially ionized matter. At low densities, the gas is

nearly ideal and ionization is a temperature effect de-
scribed by the Saha equations, centered on a roughly con-
stant temperature (log&oT =4.3). At a density of
log, ~=0 and at temperatures below the regime of tem-

perature ionization, pressure effects are responsible for
ionization.

We now combine these two limiting models in a single
model for the Helmholtz free energy of a system of H2,
H, H, and e, intended to describe dissociation and
ionization caused by temperature and pressure effects. In
reality, H2+, H3+, and H ions are also present when

ionization is incomplete. The computations of Hummer
and Mihalas [17,38] reveal that the concentration of H
peaks at log&OT =4.05 and log&~= —3.00 with a value of
1.2X10, while the corresponding values for H2+ are

log, oT =4.20, log&op= —2. 80, and 6.2X10, respec-
tively. Estimates based on our model indicate that the
concentration of H3+ remains everywhere below

2X10 . These concentrations are small and the contri-
butions of these ions can be neglected in an equation of
state (EOS) calculation.

Ecflt

co = P EdE.
0

Here, P(E) is the statistical distribution of the field of
magnitude E and E'"' is the minimum electric field

necessary to induce Stark ionization of level a. Hummer
and Mihalas [17]used the infinite-temperature Holtsmark
microfield distribution, which neglects the correlations
among the charged particles entirely (I =0). While this
is an acceptable approximation in the low-density, high-
temperature regime of the ionized EOS (I «1), it is
inadequate for a description of pressure ionization, where
10&I (40 typically. It is possible to go beyond the
Holtsmark approximation (see, e.g., Ref. [39]) but the
complexity of these calculations makes it virtually impos-
sible to include them in our model. For values of the crit-
ical field typical of the ground state of atomic hydrogen,
we found that the occupation probability given by Eq. (4)
is quite sensitive to the I dependence of the microfield
distribution and could be underestimated by up to an or-
der of magnitude.

Inclusion of Stark ionization in our model, with the
Holtsmark distribution for the microfield, causes the
equilibrium state to jump directly from zero ionization to
full ionization. This is caused by the very rapid rise of
the importance of the microfield term with density, a
coupling so strong as to prevent charged and neutral par-
ticles from coexisting! This behavior persists to tempera-
tures up to and above log, oT=5.5, at which point it is

generally agreed that ionization proceeds smoothly with
increasing density.

Clearly, treating Stark ionization with the Holtsmark
distribution is inappropriate in the regime of pressure
ionization. In Sec. V B 1, we estimate quantitatively ex
post facto the importance of Stark ionization in the re-

gime of pressure ionization and find that it is small.

2. Polarization potential

At high density, the nonideal interactions between
atoms and plasma could be well represented by approxi-
mating atoms by polarizable hard spheres imbedded in a
plasma. A conceptually similar idea is to use pseudopo-
tentials to describe the charged-neutral interactions. We
adopt a simple approach that describes the interaction
between charged and neutral particles with a polarization
potential [40,41]:

A. Coupling between the two models

I. Stark ionization

Vp"(r, R; )=—
21+rK —2vre

r
(5)

An important form of coupling between charged and
neutral particles involves the dissolution of high-lying
states into the continuum of free electrons through Stark
ionization caused by the fluctuating electric microfield of
the plasma. The dissolution of states directly affects the
internal partition function (IPF) of atoms and molecules.
In our model, the effect of interactions on the IPF is de-

scribed with an occupation probability formalism [16,17].
The occupation probability co of state a due to Stark
ionization is given by [17]

3 2

0 I,q2(Pp, ), (6)

where N, is the number of electrons, V is the volume, and

I &&&(Pp, ) is the Fermi integral for a free-electron gas
with chemical potential p, . The potential (5) clearly in-

Here, R, and a; are the hard-core radius of the polariza-
tion potential and the polarizability of species i, respec-
tively, and ~ is the inverse screening length of the plasma
given by [19]
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terpolates between a hard-sphere potential at small dis-
tances, which represents the Pauli exclusion principle,
and the 1/r characteristic behavior of polarization
effects at large distances, weighted by the plasma screen-
ing function. The screening length 1/x is the one enter-
ing the screened Coulomb potential when no local-field
correction is included in the electron dielectric function.
It ensures consistency of the charge-charge screened po-
tential in the fully and partially ionized regions. This ex-
pression clearly reduces to the Deb ye-Huckel and
Thomas-Fermi screening lengths when ( I' « 1 and
8))1) and (r, « 1 and 8 «1), respectively. Given the
arbitrariness of the choice of a characteristic screening
length for the whole plasma in the polarization potential
[Eq. (5)], we examine the sensitivity of our results on this
quantity in Sec. V.

The polarization of atoms and molecules introduces an
additional term in the free energy [41]:

—Pv,. (r, R,. jB =B,H+=. 2m (1—e ' ' ' )r dr—=B; .
t

(8)

Using Eq. (8) and the electroneutrality condition, we
rewrite the polarization free energy as

2kTF,~= g N;(N, B, ,-+N +B, H+), .
i=1

where the sum is over neutral species only, N, is the num-
ber of particles of species i, and 8. and 8. + are the
second virial coefficients of the polarization potential be-
tween neutral species i and electrons or protons, respec-
tively. Since electrons and protons are point charges
with charge ~Z~ = 1, the virial coefficients are given by

2

F,)=4kT g NB; .
i=1

(9)

To proceed, we must specify the R;. Following Ebeling
et al. [41], we elected to use the diameters entering the
configuration energy, given in our case by the Weeks-
Chandler-Andersen criterion (see Sec. III B2 and Fig. 6
of Paper I). There is no physical reason for these diame-
ters to be related, however, and the effect of this choice
on our results is examined in Sec. V.

The hard cores in the charged-neutral interactions ex-
clude charged particles from the volume occupied by the
atoms and molecules, as defined by their hard-sphere di-
ameters. The free energy of a mixture of four types of
hard spheres, two of which having zero diameter (i.e.,
electrons and protons) is [42]

PFHs(N), N2, N3, N4, cr ),o2, o 3=0,o4=0)

=PFHs(N„N2, o „oz)—(N3+N~)ln(1 —ri), (10)

where ri=(n /6) g; N;o; /V is the hard-sphere packing
fraction. The last term on the right-hand side of Eq. (10)
can be combined with the ideal energy of a Maxwell-
Boltzmann gas [first term in Eq. (24) of Paper I] as a
volume renormalization factor (1—ri). Thus charged-
neutral coupling by a polarization potential introduces an
additional term into the free energy and excludes the
charged particles from penetrating the atoms and mole-
cules by reducing the volume available to the plasma in
the kinetic terms only.

In summary, the general form of the adopted free-
energy model for the four-component mixture of Hz, H,
H+, and e reads as follows:

F(V, TNH, NH, N ~,N, )= F' (V, T NH, NH)+F' ((1—ri)V, T N +,N, )

+Flex(V, T NH, NH)+Fle"(V, T N +,N, )+Fp,)(V, T NH, NH, NH+, N, ),

where the superscript id indicates the ideal (kinetic) con-
tribution and Fz" and FI" represent the nonideal contri-
butions from the neutral model and the fully ionized
model, given respectively by Eq. (24) of Paper I and by
Eq. (2).

I

H, H2, H+, and e, respectively). The specific free ener-

gy thus depends on four variables F=F( &,xxp,2T),
where p is the mass density. The condition for chemical
equilibrium can thus be written as

dF dF
tBX, , T Bx, T

(13)

B. Chemical equilibrium

We now compute the chemical equilibrium of the
four-component mixture of H2, H, H+, and e . As men-
tioned in Sec. VI of Paper I, it is more appropriate to
minimize the specific free energy per proton F with
respect to number concentrations x,. =N,. /2V. The use of
the relations

which is a two-dimensional minimization of F. The
minimization algorithm uses Powell s method [43]. Con-
vergence is achieved when the change in the free energy F
from one iteration to the next is less than one part in 10 .
The corresponding accuracy in the concentrations is
hx; = 10 for the dominant species.

4

x( = 1, XH+ =x~
i=1

(12) IV. MODIFICATION OF THE INTERATOMIC
POTENTIALS

leaves only two independent concentrations, which we
choose to be x

&
and x2 (subscripts 1, 2, 3, and 4 refer to

When we apply the free-energy model [Eq. (11)] with
the polarization potential coupling [Eq. (9)] to the com-
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TABLE I. Points along the deuterium Hugoniot curves of
Fig. 1 (dotted lines), computed from our model after hard repul-
sive cores were added to the interaction potentials. See text.
The last column gives the concentration of D atoms

&D =&D/(&D+&D ).
2

T
(K)

20.23
555
978

1674
2881
4280
4781
6500
7500

V
(cm /mol)

23.600
10.890
9.870
8.856
7.836
7.100
6.895
6.393
6.218

P
(t"Pa)

5.65 X10-'
2.87
4.75
7.83

13.2
19.8
22.2
30.7
35.4

0
0
0

1.2X10-'
8.3 X10-'

0.014
0.025
0.081
0.120

5000
6600

Double shock, reflected from 7.10 cm /mol
5.386 39.4 0.031
4.222 77.3 0.084

putation of pressure ionization, it is found to resist full
ionization, predicting small concentrations (a few per-
cent) of neutral particles at very high density, where the
fluid must be fully ionized. This is an indication that our
model still provides an incomplete description of very
dense hydrogen. This is not too surprising since this
problem occurs in the high-density regime, where the
chemical picture can only provide a caricature of the ac-
tual physics of the fluid. While the nature of the coupling
between the neutral and fully ionized models certainly
affects the degree of ionization, it is wrong to dismiss our
choice (polarization potential) on the grounds that we do
not reach full ionization with increasing density. The
source of the problem lies elsewhere, as shown below.
We found in fact that at high density, the free energy of
H+H2 is still louver than the free energy of the fully ion-
ized plasma, indicating that the minimum of the free en-
ergy (i.e., the chemical equilibrium) lies somewhere in be-
tween, implying partial ionization. It is then impossible
to reach full ionization by simply modifying the nature of
the coupling. The problem arises from the uncertainties
in the interatomic potentials and from a limited
knowledge of the density dependence of the internal par-
tition function. These sources of inaccuracy increase
with density.

In the framework of the chemical picture, it can be ar-
gued that the rather low free energy of the neutral model
is caused by interatomic potentials that are too soft at
short range. Since the form of these potentials in the
inner-core region (r 5 1.5 A) is unknown, we have intro-
duced an ad hoc modification of the interatomic poten-
tials PH H, PH H, and PH H in this region. We choose to

2 2' 2'

introduce hard-sphere cores into all three potentials,
which are now defined by

000 r o

P; (r) otherwise,

where i,j =1,2, cr; is the fixed ad hoc hard-core diameter,

0.8—

0.6—
C3

0.4—

0.2—

0
2 6 8

V(cms/mole of Dz)

FIG. 1. Single- and double-shock Hugoniot curves of D2.
The experimental data is drawn from Nellis et al. [11] ( ),
Dick and Kerley [71] (o), and Van Thiel et al. [10] (6). The
solid line shows the theoretical Hugoniot curve which corre-
sponds to Table IV of Paper I. The dashed curve uses the same
model but with hard cores introduced into the potentials [Eq.
(14)].

and (t,z(r) is the potential between particles of type i and

j, as described in Sec. III A of Paper I. These hard cores
represent a modification of the potentials themselves, and
should not be confounded with the temperature- and
density-dependent hard-sphere reference system used to
compute the configuration free energy. We have arbi-
trarily fixed the cores of the potentials to be o.

H =2.0 a.u. ,
o„=2.7 a.u. , and o„H =(rrH+oH ) j'2. The choice of

2 2 2

diameters relies on the intuitive idea that for the H atom
the atomic electron becomes unbound and hydrogen
atoms lose their identities at distances less than 2 a.u.
We assess the effect that these hard cores have on the
H2-H EOS by verifying how they affect the comparison
with the experimental results presented in Paper I. The
300-K pressure isotherm of Fig. 3 of Paper I is complete-
ly unaffected, for at this temperature the kinetic energy of
the molecules is too low to probe the potential at small
enough distances to feel the hard core. On the other
hand, the presence of the hard cores is felt at the high
temperatures reached in double-shock compression ex-
periments. The resulting deuterium Hugoniot curve is
shown by the dashed line on Fig. 1 and in Table I. As ex-
pected, the theoretical Hugoniot curve is stiffer than be-
fore, but it is still in excellent agreement with the experi-
mental measurements, considering the large error bars on
the latter.

Clearly the modification of the inner part of the poten-
tial has only a minor effect on the comparison of our EOS
with experimental results and has the great advantage of
producing full ionization at a reasonable density of r, = 1.

V. PLASMA PHASE TRANSITION

A. Characteristic of the plasma phase transition

Figure 2 shows the behavior of our free-energy model

for one isotherm. Each point along the curve is in the
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12.5 TI TII PI P II I II i 1 4 (15}

U
12

CL

C)

0

11.5
—.06 —0.4 —0.2

log p (g/cm )

pj pi(x]y x2ix3yx4, P, T) (16)

where x;=N,-/N is the concentration of species &. The
fact that our mixture is in chemical equilibrium imposes
four constraints [pH =2pH, pH=pH++}Lt, and Eq. (12)]

on the six independent variables, reducing Eq. (16}to

p;=p;(P, T) .

where p'; and p,' are the chemical potentials of species i
in phases I and II, respectively. In the most general case,
the chemical potential p,- depends on six variables

FIG. 2. An isotherm in the region of the PPT
(logipT =4.10). Open circles indicate points where the chemi-
cal equilibrium was solved numerically. The transition pres-

sure, the metastable region, and the density discontinuity are in-

dicated. The equilibrium concentration of charged particles

(x„++x,=2x„+ ) along the isotherm is A, 0.0072; 8, 0.015; C,

0.023; D, 0.373; E, 0.517; I', 0.625.

state of chemical equilibrium, which corresponds to the
unique minimum of the free energy [Eq. (11)], obtained
by numerically solving Eq. (13). It reveals a discontinu-
ous behavior of the thermodynamic variables, accom-
panied by a domain of mechanical instability
(r)P/r}p(0), which results from a sudden shift of the
chemical equilibrium toward a high degree of ionization.
We emphasize that this phase change occurs strictly as a
result of the minimization of our free-energy model. It
does not arise from any additional assumption. These are
strong indications of the presence of a first-order phase
transition.

We have accordingly studied the phase equilibrium in
the regime of pressure ionization systematically [44]. The
conditions for equilibrium between phases I and II
(which we identify as the lower-density insulating phase
and the higher-density metallic phase, respectively) are
[31]

In other words, at chemical equilibrium, the system is
completely specified by P and T. Imposing

p'H(P, T) =pH(P, T) (17)

at fixed T uniquely determines the transition pressure P
for that temperature.

The characteristics of the coexistence curve are given
in Table II. The parameters of the critical point are
T, =15300 K, P, =0.614 Mbar, p, =0.347 g/cm. The
slope of the coexistence curve dP/dT is negative, which
is consistent with the positive entropy discontinuity
ES=S"—S', a likely consequence of the increasing con-
tribution of thermal effects at higher temperature. Our
results are compared to other theoretical estimates and to
experimental data in Fig. 3.

For comparison, we have also computed a coexistence
curve between the neutral and the fully ionized models,
where no mixing of plasma and atoms or molecules is al-
lowed. We imposed xH+ =0 in phase I and xH+ =1 in

phase II, using pH= pH to find the phase equilibrium. We
refer to this calculation as the "forced" phase transition.
This approach is rather artificial since it will produce a
phase transition between any two models, and it cannot
predict a critical point. We find that it overestimates the
PPT pressure of our unified model by a factor of 2-3, as
shown in Table III and by the dashed line in Fig. 3.

The range of theoretically predicted PPT pressures
shown in Fig. 3 spans a full order of magnitude. Most of

TABLE II. Characteristics of the plasma phase transition. For each temperature, we give the transi-
tion pressure as well as the density and the ionization fraction for each phase. The change in entropy is
hS =S"—S'. The small differences from Table I of Ref. [44] originate in the correction of an error in

the former calculation.

log io T
(K)

P
(Mbar)

P
(g/cm')

II

(g/cm ) 2x 2x
5S

( kz/proton)

3.70
3.78
3.86
3.94
4.02
4.10
4.18
4.185

2.14
1.95
1.62
1.39
1.13
0.895
0.$31
0.614

0.75
0.70
0.64
0.58
0.51
0.43
0.35

0.35

0.92
0.88
0.80
0.74
0.65
0.55
0.38

1.4x 10-'
2.1x10-'
3.0X 10
5.1x10-'
8.8 X 10
0.020
0.17

0.18

0.48
0.50
0.50
0.51
0.52
0.50
0.33

0.615
0.590
0.544
0.508
0.464
0.421
0.142
0
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this apparent disagreement can be understood in the light
of the somewhat crude approximations used in previous
efforts.

Marley and Hubbard [45] (MH in Fig. 3) also comput-
ed a forced phase transition between a neutral and a fully
ionized model. Compared to other efforts, their two
models are closest to our own in level of accuracy and de-
tail. We attribute most of the difference between the two
forced phase transitions to the cruder treatment of the
internal levels of the molecules in the MH calculations.
From the comparison of the two forced transitions with
the PPT obtained by allowing mixing of neutral particles
and plasma, it is clear that calculations that forbid mix-
ing of charged and neutral particles overestimate the
transition pressure.

The other calculations presented in Fig. 3 allow mixing
of plasma and neutral particles and thus "naturally" pre-

TABLE III. Characteristics of the forced transition between
neutral and fully ionized models. The ionization fraction is 0 in

phase I and 1 in phase II, by construction.

log lP T
(K)

3.60
3.78
3.90
4.00

P
(Mbar)

3.40
3.34
3.15
3.19
3.09

P
(g/crn')

0.90
0.85
0.80
0.77
0.72

II

(g/cm )

1.20
1.15
1.09
1.05
0.99

hS
(k&/proton)

0.168
0.086
0.058
0.043
0.040

FIG. 3. P-T phase diagram for hydrogen in the regime of
pressure ionization. Heavy solid line, the PPT and the critical
point from the calculations reported in this work (Table II).
The dashed line represents the "forced" phase transition given
in Table III. Other theoretical estimates for the PPT are la-
beled MH (Ref. [45]), RK (Ref. [46]), and ER (Ref. [3]). The
zero-temperature calculations of Ref. [5] (X) and Ref. [8] ( ~ ) for
the phase transition are indicated. Dash-dotted curve, theoreti-
cal melting curve of Hz from Ref. [55]. The curves labeled a
and b are experimental single- and double-shock Hugoniot
curves H2 and D2, respectively [55]. Open symbols indicate the
highest pressures reached in static compression experiments:
Ref. [72]; 0, Ref. [12];6, Ref. [73]; 0, Ref. [60]. The critical
point of the 150-Mbar transition [14] is shown by an inverted
triangle (&).

dict a PPT. The model of Robnik and Kundt (RK) [46]
describes a mixture of H, H+, and e . Interactions be-
tween neutral and charged particles are neglected, as are
the excited states of the atoms. Coulombic terms are
computed for a zero-temperature plasma. The H-H in-
teractions are evaluated for both the hard sphere and the
Lennard-Jones potentials; their results are insensitive to
the form of the interaction. Their critical point lies at
T, = 19000 K and P, =0.24 Mbar, shown by the point la-
beled RK on Fig. 3.

Ebeling and Richert published two calculations for the
PPT. Their two models differ in detail but are very sirni-
lar in spirit and give essentially the same critical point.
In Ref. [3], atoms and molecules are present and interact
through hard-sphere potentials with a van der Waals
correction. Molecules are approximated as two atoms in
the hard-sphere free energy. Internal states are not in-
cluded in the treatment, and there is no coupling between
charged and neutral particles. The atomic hard-sphere
diameter is Jinxed by calibrating the EOS with laboratory
data at the first critical point of hydrogen (liquid-vapor
transition, T, =33 K, P, =13 bars). They find the second
critical point at T, = 16 500 K, P, =0.228 Mbar,
p, =0.13 g/cm . The corresponding coexistence curve is
shown as the dotted line in Fig. 3. The approximations
for the molecules and for the configuration term of the
neutral species (see in particular Sec. VIII A of Paper I),
and the absence of internal levels and of coupling be-
tween charged and neutral species, are all very crude ap-
proximations. Thus it is not surprising that their approx-
imate coexistence curve crosses the experimental double-
shock Hugoniot curve for deuterium, where it is general-
ly agreed that there is no evidence for a PPT.

In a second paper, molecules are excluded from the
model [4]. Bound states are introduced in the form of the
Planck-Larkin partition function, which is incompatible
with the chemical picture (see Paper I and Ref. [55]
therein). Coupling between neutral and charged species
is provided in a fashion similar to that described in Sec.
IIIA2. However, they renormalize the volume of the
electron gas as if it were described by a Maxwell-
Boltzmann distribution. This is entirely inappropriate
since the electrons are degenerate in the regime of the
PPT (8 ( 1). They find a second critical point at
T, =16500 K, P, =0.225 Mbar, surprisingly close to
their previous determination.

In all three calculations, the critical pressure P, is
significantly lower than predicted by our model. We at-
tribute this systematic difference to the common use of
excessively repulsive hard-sphere or Lennard-Jones po-
tentials between the neutral particles. As discussed in
Paper I, these potentials are completely inappropriate in

the density range where pressure ionization occurs.
Their unrealistically stiff repulsion leads to a very sharp
increase in the free energy and the pressure of phase I
when the density approaches the value of close packing
of hard spheres, and then to an underestimation of the
transition pressure.

Recently Yan, Tsai, and Ichimaru [47] (hereafter YTI)
also claimed evidence for a PPT at higher temperature.
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FIG. 4. Concentrations of H& and of charged particles
(H++e ) near the PPT. Isotherms are labeled according to
logloT: A 3.70 B 3.86 C 4.02' D 4.18 E 4.34. The left panel
shows the low-density behavior on a log-density scale.

However we find some of the arguments developed in
their conclusion unconvincing. YTI assess the onset of a
PPT on the fact that the compressibility derived from
their model diverges along a line denoted AB (see Figs. 7
and 8 of YTI). Moreover they could not obtain solutions
below a line denoted EF and associated this behavior
with an eventual phase boundary. Line EF lies in a low-
density range where ionization is mostly temperature in-
duced and described by Saha-like equations. We believe
that the divergence of the compressibility in their model
is probably due to the inadequacy of the theory to handle
bound states. The OCP and the SOCP models will show
similar behavior at low enough densities.

Figures (Si) and (Sj) of Ref. [46] and Fig. 4 of Ref. [4]
indicate that for T=T„ full ionization is reached very
abruptly as the density is increased. This is not support-
ed by our calculation. Figure 4 shows the concentrations
xH and x ++x, =2x + for a few isotherms below and

2

above the critical temperature. The degree of ionization
increases very gradually in phase II for most isotherms.
However, in our model, the ionization fraction reaches
unity almost discontinuously in a narrow density range
(p =2.5~3.2 g/cm ) for all isotherms below

log, oT =4.66, with the size of the discontinuity decreas-
ing steadily as the temperature increases. This behavior
is not physical and constitutes a flaw in our model and
the curves shown in Fig. 4 have been smoothed for
p) 2. 5 g/cm for clarity. It is caused by our introduction
of hard cores into the interatomic potentials (Sec. IV) and
mimics the rapid ionization found in Refs. [46] and [4].
It shows that such an abrupt ionization is probably not
physical but rather the consequence of the hard-sphere
potentials in the neutral particles interactions.

Based on the characteristics of the PPT as given in
Table II and Figs. 3 and 4, we draw the following con-
clusions.

(i) The system undergoes a transition between a pri
marily neutral phase (2x + 52%) and a partially ionized

phase (2x + =0.5). Although the degree of ionization

depends on the "free parameters" of the model (hard-core
radii in the charged-neutral interaction polarization po-
tential, radii of the hard cores introduced into the atomic
interaction potentials), this qualitative feature remains
unaffected.

(ii) The PPT persists even in the case where no coupling
is present between the neutral and the fully ionized mod-
els (see V B 1 below). This indicates that the source of the
PPT does not lie in the interaction between neutral and
charged particles but rather in the very nature of the
plasma and the insulating phases.

(iii) The degree of ionization increases drastically and
discontinuously at the transition pressure, corresponding
to an insulator-metal transition. The most striking
feature of this model is that molecular dissociation and
pressure ionization occur almost at the same density for
any temperature. Pressure ionization does not occur by
first dissociating all molecules into atomic hydrogen as
suggested in former calculations [48], but rather directly
from the dense molecular fluid. Atomic hydrogen plays a
minor role in pressure ionization.

(iv) In phase II, the system reaches complete ionization
gradually. The sharp rise in the ionization fraction dis-
cussed above (not shown in Fig. 4) does not invalidate
this conclusion. Instead, this actually points out the
qualitative difference found when treating pressure ion-
ization with more realistic, albeit flawed, potentials as op-
posed to pure hard-sphere potentials. Even though our
model for the neutral species is questionable above the
coexistence curve (up to the density where full ionization
is reached, p=3 g/cm ), our calculations indicate that
full ionization may occur much more gradually than sug-
gested by previous studies using hard-sphere potentials.

(v) Molecules are the dominant neutral species at high
density. Since their configuration energy, derived from a
realistic experimental potential, reproduces both Monte
Carlo results [18) and the shock compression data [16],
we believe that this effect is real, at least in the low-
density phase (phase I). As can be deduced from Fig. 4,
the concentration of atomic hydrogen is small near and
above the PPT (xH ~0. 1). This lends credibility to our
results since it is clear that in reality (e.g., in the physical
picture) it is not possible to distinguish between densely
packed hydrogen "atoms" and a strongly correlated ion-
electron plasma.

The location of the PPT in density can be compared with
the prediction of the simple Herzfeld theory of metalliza-
tion [49]. This phenomenological theory gives valuable
estimates of the metallization densities of a host of ele-
ments and diatomic molecules [50]. For atomic and
molecular hydrogen it gives metallization densities of
0.600 g/cm and 0.994 g/cm, respectively. The Herzfeld
critical densities and our PPT are in close agreement.

B. Uncertainties in the plasma phase transition

In this section, we first discuss a limited set of calcula-
tions of the PPT using variations on our free-energy mod-
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FIG. S. The effects of various assumptions in the free-energy
model upon the plasma phase transition. The solid and dashed
curves are coexistence curves for the PPT and for the forced
phase transition, respectively, as shown in Fig. 3. The forced
phase transition assumes no mixing between the neutral and ful-

ly ionized models. Hard repulsive cores are included in the in-
teratomic potentials. The crosses (X) indicate the PPT ob-
tained in a calculation where F~,i [Eq. (9)] was overestimated by
about a factor of S. The dotted line shows the coexistence curve
obtained when using the polarization radius of Ref [51] i. n F „.
Removing the hard cores leads to the transition pressures
shown by the squares (0). When softened interaction potentials
are used, the PPT occurs at higher pressures, as shown by the
asterisks (+ ). When no coupling is allowed and hard cores are
removed from the interatomic potentials, the transition is
shown by the triangles (6 ). The open circle indicates the effect
of softening the lowest vibrational frequency of the H& molecule
by 4%. See text for details.

el and then estimate the importance of some physical
effects that are not included in the model. Figure 5 sum-
marizes the various PPT results. The solid curve is the
same PPT as presented in Fig. 3.

I. InjFuence of coupling

The first variation on our final model is indicated by
the triangles in Fig. 5. For these calculations, the PPT is
computed without any coupling between the two models
and wi'thout the hard cores that were introduced into the
interatomic potentials. In this model, plasma and neutral
particles are allowed to mix but the two fluids do not in-
teract. This corresponds to the free-energy model of Eq.
(11) with q=0 and F,&=0. The highest temperature
point shown for this calculation (log&oT, =4.215} indi-
cates the corresponding critical point. The second varia-
tion is provided using a different expression for the
screening length of the plasma [Eq. (6)] so that the polar-
ization free energy F,&

[Eq. (9)] is increased by about a
factor of 5. This results in the coexistence curve indicat-
ed by crosses, with the critical point at log]pT =4 175.

The third variation is to use the polarization radius for
atomic H determined by Redmer, Ropke, and Zimmer-

TABLE IV. Effects of Stark ionization coupling between
charged and neutral particles on the total pressure (P) and en-

tropy (S) of the four-component mixing along the limit of sta-

bility of phase I.

logipT
(K)

Stark ionization
AP/P b,S/S

3.70
3.86
4.02
4.185

7.3X10 '
2.4X10-'

0.011
0.38

—8.0X 10
—1.5 X 10
—3.6X 10-'

—0.056

mann [51],RH =1.4565 a.u. The H2 polarization radius
was estimated by scaling the H value with polarizability:
RH =RH(aH /aH)' =1.55 a.u. These radii are =50%%uo

2 "2
smaller than the ones used in the original calculations, in-
creasing F~„by about one order of magnitude. The P(p)
curves computed along six isotherms still display an un-
stable regime (BP/Bp (0) and the resulting phase line is
shown on Fig. 5 (dotted line). The transition pressure is
lowered by =40%. The new critical point lies near
log, pT, =4.0 and P, =0.76 Mbar.

In Sec. IIIA1, we have rejected the process of Stark
ionization by the plasma microfield because the Holts-
mark distribution leads to unrealistic results for I ) 1.
The use of microfield distributions in the strong Coulomb
coupling regime in our free-energy model is not computa-
tionally realistic at present. However this approach is
well behaved up to the PPT. We have therefore estimat-
ed ex post facto the effect of this form of coupling upon
the pressure (P} and the entropy (S) of the four-
component mixture at the limit of stability of phase I. To
keep this calculation simple, we have not computed new
chemical equilibria along the PPT. This approximation
is justified by the very low plasma concentration found in
phase I (see Table II), which decreases the importance of
the coupling terms. At a given temperature, the values of
the density and of the concentrations of each species at
the boundary of phase I are determined with the model
described in Sec. III A 2 [Eq. (11)]. The resulting thermo-
dynamics constitutes the "reference" calculation. We
then modify the model by including Stark ionization as a
coupling between charged and neutral particles, modify-
ing the occupation probability (see Sec. III A 1), and we
recompute the thermodynamics at the same temperature,
density, and chemical equilibrium as for the reference
calculation. The differences found in P and S relative to
the "reference" values are listed in Table IV. We find
that the pressure is more affected than the entropy but
that the effect is negligible for log, pT &4. 10. The impor-
tance rises rapidly near the critical point, however, fol-
lowing the increase in degree of ionization. Table IV in-
dicates that Stark ionization may play an important role
in determining the exact location of the critical point.
Since co is overestimated when using the Holtsrnark
microfield distribution in regimes of strong coupling
(I ) 1 at the critical point), we believe that the values in
Table IV for Stark ionization may be grossly overestimat-
ed.
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2. Hs internal partition function

We have not included the experimentally observed
softening of the vibron frequency in the internal partition
function of the H2 molecules [12]. For log, oT ~ 3.86, the
shift in frequency is less than 4% at the transition pres-
sure for the k=0 phonon mode. At lower temperatures,
the effect becomes more important, and the frequency
shift reaches 10% at the lowest temperature given in

Table II. We have recomputed the transition pressure
with the model given by Eq. (11) for the log, oT =3.86
isotherm, after reducing the constant 8', in the internal
partition function of H2 [Eqs. (20) and (21) of Paper I] by
4%. This raises the transition pressure by 1%, as shown

by the open circle in Fig. 5. Note that if we consider all

phonons in the Brillouin zone, we expect little softening
of the vibron mode and the effect will therefore be entire-

ly negligible.
Another important issue in our calculations is the rota-

tion partition function of H2. The asymmetry of the H2-

H2 potential is expected to hinder rotation at high pres-

sure, which can be interpreted as an increase of the rota-
tion temperature 8,«(see Sec. III A 1 of Paper I). That
could decrease substantially the entropy of the molecular
phase and affect the location and the existence of the
PPT. Our treatment uses the rotation temperature of the
free molecule (=85 K) at all densities. Recent experi-
ments [52] show that Hz rnolecules undergo significant
rotational motion up to 1.6 Mbar at 77 K, a pressure typ-
ical of the PPT coexistence curve. Interestingly, the Ra-
man spectrum of the roton modes does not show any line
shifts of consequence for the EOS: 8„, appears to be
nearly independent of pressure, well above the PPT.
Moreover, in thePuid state, at T ~ 10 K, where there is
no symmetry in the spatial distribution of molecules and
where thermal effects are important, we suspect that rota-
tional modes freeze at much higher pressures than is ob-
served experimentally below room temperature. There-
fore, we feel that our treatment is justified in the lack of
better information.

3. Repulsive cores

The only ad hoc feature of our free-energy model con-
sists of the arbitrary stiffening of the interatomic poten-
tials by introducing infinitely repulsive cores [Eq. (14)] in
order to obtain complete pressure ionization at the

highest densities. We have therefore computed the tran-
sition pressure for the log, oT =3.86 and 4.10 isotherms,
using the same model as the "original" PPT (solid curve)
but with no hard cores in the interatomic potentials
[o.;J =0 in Eq. (14)]. In this case, we find that the transi-
tion pressure is barely affected, as shown by the squares
on Fig. 5. Because the equation of state is softer, the
values of the density of each phase at the transition are
increased by about 8%. As a final variation, we indicate
the forced phase transition by the dashed line in Fig. 5.
The results of these various calculations are summarized
in Table V.

4. Softening of the potentials

Recently Hemley et al. [53] derived a new experimen-
tally determined H2-H2 potential based on X-ray-
diffraction measurements of solid H2 at T =300 K and
P 50.26 Mbar [54]. This potential is slightly softer than
the potential we have used [55,16]. Given the lack of in-

formation for the H-H and H-H2 potentials at high densi-

ty, we mimicked many-body effects by softening arbitrari-
ly the repulsive part of the potentials by =20% for H-H
and =35% for H-Hz, as discussed in Paper I.

We recomputed the chemical equilibrium with these
three pair potentials for four isotherms. Results are
shown by asterisks in Fig. 5. In all cases, Ptggps p and
p" increase slightly, as expected for a softened EOS in
phase I. The degree of ionization in phase II is raised by
=5%. Ionization occurs in the same abrupt fashion as
with the original potentials, and full ionization is reached
in the same density range. In summary, the softened po-
tentials do not change any of the qualitative features of
the PPT and the inagnitude of the effect is less than 5%%uo.

5. Strong ion-electron coupling

Finally we tried to evaluate the consequence of strong
coupling effects between ions and electrons in the fully
ionized plasma on the PPT. We performed additional
calculations using the fit of Tanaka, Yan, and Ichimaru

[35] (hereafter, TYI) for the free energy of the plasma
phase. That led to completely nonrealistic results, in-
cluding full pressure ionization at very low densities,

TABLE V. Summary of the various plasma phase transition calculations displayed in Fig. 5.

Hard
Symbol

0

cores

yes
yes
yes
no
no
yes
yes
yes

Coupling

No mixing

Fp, ]

5Fpo

Fp, )

none

Fp, ]

Fp]

log io T

4.185
4.175

?
4.215

?
?

=4.0

Comments

Forced transition
PPT, Eq. (11)
Ref. [44]

4% vibron softening
Softened potentials
Pol. radius of Ref. [51]
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where the validity of our free-energy model for H-H2
mixtures has been demonstrated by comparison with ex-
perimental results. A forced phase transition computed
between our neutral H-H2 model and the TYI EOS gives
a pressure transition P =0.008 —0.06 Mbar for
logipT 3.9—4. 1, at densities so low that the Quid is
barely nonideal. That clearly shows that the TYI theory
is not compatible with a theory that includes bound states
explicitly, most probably because strong nonlinear effects
in the TYI theory mimic in fact the presence of bound
states. Moreover, the ion-electron pair-correlation func-
tion and the plasma total interaction energy per particle
in the TYI model recovers the isolated atom limit (in its
ground state) for I = 1 and 8= 1, where thermal excita-
tion of H atoms as well as interactions with the surround-
ing plasma (see Fig. 8) are significant. Therefore we do
not understand why their model reaches a limit charac-
teristic of the isolated atom.

In any event, an exact theory for describing strong
ion-electron correlations in a plasma has not been issued
yet, and the existing theories break down when a
significant number of bound states is involved [56]. We
expect the ion-electron's nonlinear effects in the plasma
phase to lower slightly its free energy (by a few percent
around the critical point, see Sec. II), favoring ionization.
The same effect is expected from a proper inclusion of
microfield effects in the ionized phase. Therefore the crit-
ical temperature shown in Fig. 3 may be overestimated.

In conclusion, within the general framework of our
free-energy model, the PPT appears to stand on firm
ground. Not only do we find a phase transition in all
cases studied here (it is conceivable that the modified
models described above could have predicted gradual
pressure ionization}, but also the five conclusions of Sec.
VA remain valid. In addition to these qualitative as-

pects, Fig. 5 indicates that the location of the coexistence
curve and of the critical point in particular are fairly in-

sensitive to a number of important features of the free-
energy model. The main quantitative effect arises from a
modification of the hard cores entering the polarization
potential of Eq. (5).

A potentially important aspect of pressure ionization
we have ignored is the onset of delocalization of the elec-
tronic wave functions at high density, leading to possible
electronic "conduction bands" in the neutral mixture.
This phenomena is similar to the narrowing of band gaps
in solids. Friedli and Ashcroft [5] have performed zero-
temperature band-structure calculations for the hydrogen
molecule (assuming fixed molecular bond length). How-
ever, the computation of electron delocalization in a
finite-temperature Quid is a very difficult task. We es-
timated the size of the efFect in an ex post facto calcula-
tion. We used the zero-temperature band-gap calculation
of Friedli and Ashcroft as fitted by Ross and Lee [57].
The fraction of electrons thermally excited into the con-
duction band varies from less than 10% at 8000 K to 2%
at the critical point. Consequently we find the effect on
the PPT to be small. Moreover, as discussed previously,
the H2 molecule is likely to undergo substantial rotation
at pressures characteristic of the PPT, which probably
widens the band gap.

C. High-pressure experiments and the plasma phase
transition

The behavior of solid hydrogen under high pressure is
a rapidly unfolding experimental field, thanks to consid-
erable progress in the technique of static compression
with diamond anvil cells over the past few years. It ap-
pears that early claims of observation of a metallic phase
of hydrogen are not readily supported by more recent evi-
dence. %hile the observed behavior is usually found to
be consistent with a metallic state, no incontrovertible
evidence for metallization has been presented.

Hemley and Mao [14] have reported measurements of
the frequency of intramolecular vibration of H2 in the
fundamental mode (the "vibron frequency") under pres-
sures up to and above 2 Mbar and temperatures up to 300
K. These authors found a discontinuity in the vibron fre-
quency for pressures above —1.5 Mbar, which is associ-
ated with a phase transition with a critical point at
T, =150 K and P, =1.5 —1.7 Mbar [14]. This transition
appears to be electronic in nature, rather than structural,
and could be due to the closure of the indirect band gap
[52,58], characterizing a semimetal state. These experi-
ments have not probed the metallic regime so far and it is
possible that the vibron discontinuity is associated with a
low-temperature excitonic phase or, alternatively, with
an orientational transition [59]. Closure of the direct gap,
and hence metallization, is believed to occur at P ~ 3
Mbar [59—61]. This does not put a strong constraint on
our estimate of the PPT, since these are essentially zero-
temperature experiments, but we note that our coex-
istence curve is consistent with the observed high-
pressure behavior of hydrogen.

The general concept of a first-order PPT has received
some experimental support from liquid-state and solid-
state physics. Dielectric anomalies and an abrupt varia-
tion of the electrical conductivity, figuring a metal-
insulator transition, have been observed along the liquid-
vapor curve in Cs and Rb [62]. The electron-hole liquid
observed in cooled silicon and germanium [63,64) does
exhibit such a metal-insulator phase transition. As densi-

ty increases, the excitons photogenerated in the semicon-
ductor pass through a gas-liquid transition, forming the
so-called electron-hole liquid in which electrons and holes
become unbound (excitons are "ionized, " in our
language). This suggests that a metal-insulator transition
is also taking place. Smith and Wolfe [65] have in fact
observed this transition directly in silicon and have found
a second critical point at T, =45+5 K and density of
n, =2.3 X 10' cm . Exploiting the similarities between
excitons and hydrogen atoms [40], one can use simple
scaling relations for the second critical point to relate the
measurements for the electron-hole liquid to theoretical
predictions for pressure ionization of hydrogen. Assum-

ing that kT, scales as the ionization energy of the system
(H atom or exciton) and that the critical density n, is

given by equating the Fermi energy of the free electrons
to the ionization energy, one obtains

(18}

where e, is the dielectric constant of the medium and m,
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TABLE VI. Equation of state along the log, oT=3.86 isotherm. For each density p, we give the
number concentrations of atoms, molecules, and protons as we11 as the pressure, the internal energy,
and the entropy. Recall that 0 ~ x + & 0.5.

log leap

(g/cm )

—6.0
—5.0
—4.0
—3.0
—2.0
—1.0
—0.5

0.0
0.5
1.0

9.9766X 10
9.9464 X 10-'
9.5726 X10-'
7.6760X10-'
4.2695 X10-'
1.7095 X 10
1 1115X 10
7.4500 X 10

0
0

+H
2

4.8178X10-'
4.7654 X 10
4.2555 X10-'
2.3234X 10-'
5.7303 X 10-'
8.2904 X 10
8.8870 X 10
3.4297 X 10-'

0
0

9.3053 X 10
2.9560X 10
9.4418 X 10
3.0221 X 10
9.5974 X 10
6.5601 X 10
7.8931X 10
2.9126X 10

0.5

0.5

log|OP
(erg/cm )

5.7766
6.7745
7.7585
8.6872
9.5954

10.6830
11.5183
12.4101
13.4987
14.4616

ogIOU

(erg/g)

12.4844
12.4807
12.4590
12.3589
12.1999
12.1059
12.1542
12.5237
12.9457
13.4581

logiP
(erg/g K)

9.2782
9.2315
9.1753
9.0952
9.0043
8.9235
8.8760
8.8462
8.7067
8.5786

is the effective mass of the electron. Scaling down our
second critical point for hydrogen ( T, = 15 300 K,
n, =1.86X10 cm ) to the electron-hole liquid in sil-
icon, we get T, =27.4 K and n, =1.8X10' cm, close
to the experimental values, adding titillating support to
the existence of a plasma phase transition in hydrogen.

VI. RELATIVE IMPORTANCE
OF THE DIFFERENT CONTRIBUTIONS

TO THE FREE ENERGY

A small subset of our EOS results is presented in
Tables VI-VIII and Figs. 6—8, each corresponding to an
isotherm. For each density point in the tables, we give
the abundances of H, H2, and H+ at chemical equilibri-
um, along with the total pressure, internal energy, and
entropy.

Figures 6-8 show the relative importance of the
different contributions to the free energy along represen-
tative isotherms. The vertical scale is the logarithm of
the absolute value of the dimensionless free energy per
proton (bound or unbound). To keep the figures relatively
simple, we have grouped the various contributions (all di-
mensionless) to the total free energy as follows Fis the.

total free energy (thick solid line); F& (short-dashed line)

is the ideal contribution from all species present, including
electron degeneracy; Fz (dot-short-dashed line) is the
internal free energy of hydrogen molecules and atoms,
treated within the occupation probability formalism; F3
(long-dashed line) is the configuration free energy of the
H+H2 mixture (hard-sphere free energy and perturba-
tion), without the linear, excluded-volume part of the
hard-sphere free energy (see Sec. IV A of Paper I), which
is implicitly included in F2, F4 (dot-long-dashed line) is
the R quantum correction for atoms and molecules [Eq.
(23) of Paper I]; F5 (short-dashed —long-dashed line) in-
cludes all nonideal terms of the plasma free energy (2)
[note that this term also includes the contribution given
in Eq. (3) so that it eventually becomes positive]. Finally,
Fs (thin solid line) is the polarization free energy [Eq.
(9)]. The behavior of these curves reflects not only the
density dependence of the corresponding term but also
the varying chemical equilibrium along the isotherm.

Figure 6 shows the log]pT=3. 86 isotherm, which
crosses very different physical regimes. At low density
(logtop( —4), the fluid is almost entirely composed of
atoms and as the density rises, the chemical equilibrium
shifts toward a molecular state. This behavior, together
with the density dependence of F2, F3, and F4, is corn-

TABLE VII. Same as Table VI for log&OT =4.18.

log IPP
(g/cm')

—6.0
—5.0
—4.0
—3.0
—2.0
—1.0
—05

0.0
0.5
1.0
1.5

4.5181X10-'
7.4860X 10-'
9.0387 X10-'
9.5227 X 10
8.7353X10-'
5.6894X10-'
3.6790 X 10
1.1551X 10

0
0
0

XH
2

4.0391X 10
9.4652 X 10-'
1.2760X10-'
1.3641 X 10
1.0730X 10-'
4.1542 X 10
5.8654X 10-'
1.9116X 10

0
0
0

2.7409 X 10-'
1.2565 X 10-'
4.7428 X 10
1.7045 X 10-'
9.5856 X 10
7.8193X 10
2.2780 X 10
3.4667 X 10-'

0.5
0.5
0.5

log IOP

(erg/cm )

6.2363
7.1544
8.1165
9.0985

10.0656
11.0588
11.7530
12.4900
13.5374
14.4747
15.3729

logloU
(erg/g)

12.9932
12.7956
12.6805
12.6270
12.5743
12.4683
12.4566
12.6649
13.0091
13.4786
13.9280

log|0
(erg/g K)

9.3881
9.2943
9.2219
9.1570
9.0859
8.9979
8.9479
8.9169
8.8053
8.7056
8.5801
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TABLE VIII. Same as Table VI for log]pT=4. 50

log )pp
(g/cm')

—6.0
—5.0
—4.0
—3.0
—2.0
—1.0

0.0
1.0
2.0

3.6218x 10
8.4550x 10-'
1.9754x 10-'
4.0466x10 '

5.6095 X 10
4.3791x10-'
1.4876 x10-'

0
0

XH
2

9.0288 x 10-"
2.6043 X 10
7.2618x 10-'
5.4169x 10-'
1.0472 X 10-'
6.0387 x 10-'
8.4305 x10-'

0
0

X
H

4.8189x10-'
4.5773 x10-'
4.0123x 10-'
2.9740 x 10-'
2.1429x 10-'
2.5085 x 10-'
3.8347 X 10

0.5

0.5

logic
(erg/cm')

6.7079
7.6919
8.6374
9.5490

10.4837
11.4274
12.6841
14.5006
16.2523

log)p U

(erg/g)

13.3548
13.3396
13.2785
13.1443
13.0038
12.9000
12.8577
13.5185
14.3481

logioS
(erg/g K)

9.4929
9.4346
9.3607
9.2670
9.1731
9.0849
8.9736
8.8044
8.5938

Ft(0
F(0

0 — FB&0

o —2 —~ Fs&0
tt0
0

F,&D

t ',

/

F3&0j
/ j

—4 —2

&Ogio P (g/@III )

FIG. 6. Individual contributions to the free energy along the
log~oT = 3.86 isotherm. The quantity plotted is log, o~PF ~,

where F is the free energy per proton The value o.f log, o~PF~

diverges negatively where the free energy changes sign, indicat-
ed by a gap in some curves, as for F3 near logl~= —1.2. The
total free energy is shown by the thick solid line. Contributions
to the free energy are labeled as follows. F„kinetic; F2, bound
states; F3, neutral interactions; F4, neutral quantum correction;
F5, all nonideal plasma terms; F6, polarization. The gap in all

curves at logl~ = —0. 15 corresponds to the PPT.

mented on in Paper I. Up to log&~= —1, the main con-
tribution to the free energy arises from the kinetic terms
and eventually from the internal structure contribution of
atoms and molecules. Above this density, the
configuration term F3 in the H-H2 mixture becomes
significant, and ultimately dominant. The contributions
of the H-H2 mixture largely dominate ionic contribu-
tions, given the very low degree of ionization (see Table
VI).

Near log&~= —0. 15, all curves show a common gap
that corresponds to the PPT. Above the PPT, full ioniza-
tion is reached rapidly, as shown by the dramatic drop in
the neutral particle contributions F2, F3, F4, and also the
coupling term F6. Above log&~=0. 5, we are in the
strongly coupled (I ) 10), strongly degenerate (8 &0.1)
plasma, where the nonideal terms (Fs &0) are compara-
ble to the kinetic contribution (F, ). Note that the sud-

den jump in ionization fraction across the PPT (see Fig.

4) is reflected in the large discontinuity in Fs. The quan-
tum correction is everywhere negligible, except in the
high-density limit of phase I.

The second isotherm shown is just below the critical
temperature at log, oT =4. 18 (Fig.7). Again, the fluid is
nearly ideal below the PPT, the main nonkinetic contri-
bution still coming from the internal free energy F2.
Note that the density dependence of F2, reflecting the
recombination of atoms into molecules, is now more im-
portant. As the temperature increases for a given densi-

ty, the fluid becomes more ideal and the occupation prob-
abilities co, and therefore the degree of excitation, also
increase [see Eq. (16) and Fig. 6 of Paper I].

The behavior of F2 above log&~= —2 deserves more
comments. As the density rises, F2 first decreases
(remember that F2 & 0 for molecules), a direct conse-
quence of molecular recombination (see Sec. VIIID of
Paper I) and of the removal of states from the internal
partition function (IPF). Then, above the PPT, ioniza-
tion proceeds rapidly, causing F2 to decrease abruptly.
The plasma correlation energy, the dominant nonideal
contribution at very low density, first decreases with in-

creasing density due to recombination, but it overcomes
all the other contributions above the PPT except for the
kinetic terms (note that Fs &0 for logtop) —0.3). Of

ID 2
tip0

1 F(0 F,&0

t

Fs&0

r

B

I

F,&0 /
u'

I ii I

—4 —2

&Og P (g/~~ )

FIG. 7. Same as Fig. 6, for loglpT =4.18. The narrow gap in

all curves at log, ~= —0.45 corresponds to the PPT.
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0—

g7 2
b00

F &0 I

F&0 Fi

Fs)
7-~

F~&0 i /
/ 6t

log&gp

(g/cm )

—4.0
—3.0
—2.0
—1.5
—1.0
—0.5

0.0

H2

N2/Ni
H

N2/Ni

1.000
0.996
0.959
0.882
0.697
0.435
0.275

0.702
0.702
0.700
0.698
0.691
0.677
0.664

1.000
0.997
0.972
0.919
0.781
0.550
0.396

1.60x 10-'
1.56x10-'
1.21x 10-'
7.10x 10-'
1.65 x 10-'
7.45 X 10
3.98x 10

TABLE X. Same as Table IX for logipT =4.18.

—4 —2

log„p (s/cm')

FIG. 8. Same as Fig. 6, for log&pT=4. 50.

TABLE IX. Details of the internal partition function of H
and H2 along the log&pT =3.86 isotherm. The occupation prob-
ability of the ground state is col. A measure of the degree of ex-
citation is given by N2/N&, the ratio of the population of the
first excited state to that of the ground state. For the molecule,
level 2 is the first excited vibrational state.

log I PP

(g/cm )

H2

N2/N,
H

N2/N,

—4.0
—3.0
—2.0
—1.5
—1.0
—0.5

0.0

0.999
0.995
0.953
0.865
0.646
0.370
0.210

0.470
0.470
0.469
0.467
0.461
0.451
0.440

1.000
0.996
0.967
0.902
0.734
0.475
0.307

3.20 X 10
3.09x10-'
2.37x 10-'
1.32 x10-'
2.31 X 10
4.88 X 10
8.86 x 10-»

course, F5 and the polarization contribution F6 increase
with temperature, reflecting temperature ionization.

Figure 8 shows the log&DT =4.50 isotherm, a tempera-
ture above the critical temperature of the PPT. Temper-
ature ionization becomes important (Table VIII) and the

plasma energy is the main nonideal contribution over the
whole density range. The plasma coupling is small at low
density (I 1), and F coincides with the ideal term F, .
As soon as pressure ionization occurs (log|,to) 0), I') 3
and the nonideal terms dominant in the plasma until elec-
tron degeneracy takes precedence. Note that iF5i in-
creases with density. Finally, the contributions F2, F3,
and F6 initially increase in magnitude as the concentra-
tion of atoms increases but quickly vanish above
log, ~=0 because of pressure ionization.

In summary, hydrogen is nearly ideal at densities
below log&~= —2, where approximate theories for the
interactions can be used successfully for most practical
applications. Nonideal contributions arise principally
from the internal level contributions of H and H2 at low

temperature, and from the plasma contribution as tem-
perature ionization proceeds. At higher densities, howev-
er, interactions become so strong that detailed theories

VII. CONCLUSION

Despite the shortcomings of the chemical picture, our
model represents a reasonable description of pressure ion-
ization of hydrogen in the high-temperature fluid with a
single model based on first principles. We have made
significant progress in the study of the plasma phase tran-
sition. Limited exploration of the sensitivity of the PPT
to various model parameters and forms of neutral-
charged coupling indicate that its existence is rather well
established within the general framework of our model.
However, we cannot exclude the possibility that the PPT
may be an inherent feature of the model or a consequence
of applying the chemical picture in a regime where it fails
to account adequately for the actual physical behavior of
matter. For instance, it is still conceivable that pressure

TABLE XI. Same as Table IX for log&pT=4. 50.

logic
(g/cm )

H2
N2/N i

H
N2/N,

—4.0
—3.0
—2.0
—1.5
—1.0
—0.5

0.0
0.5

1.000
0.998
0.975
0.922
0.799
0.597
0.355

0.832
0.832
0.831
0.829
0.824
0.813
0.795

1.000
0.999
0.984
0.949
0.863
0.706
0.493
0.999

9.47 x10-'
9.35 x 10
8.00x10-'
5.55 x 10
2.19x 10-'
3.30x10-'
1.28 x 10-'
9.38 X 10

and models are required if we aim at a realistic descrip-
tion of pressure ionization.

Tables IX-XI display the relative contributions of the
first excited states of H and Hz to the IPF along the same
three isotherms. For the two lowest temperatures, the
atom is found to remain in its ground state, while the first
excited vibrational state of H2 contributes appreciably to
the IPF. As the temperature increases, N2/N, increases
due to thermal excitation and also because the occupa-
tion probability co increases as the fluid becomes more
ideal. For the highest isotherm, about 10%%uo of the H
atoms are in the first excited state at lowest density.
Then the contribution decreases as the atomic packing
fraction increases. The sudden increase in N2/N, at
log&~=0. 5 is clearly not physical and stems from the ab-
sence of Stark ionization in our theory, leading to an un-
derestirnation of the degree of ionization when it ap-
proaches unity.
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ionization may occur smoothly by closure of a "conduc-
tion gap. " Experimental studies will be necessary to
resolve these issues and to verify the existence of the
PPT.

Within the framework of our model, the following pic-
ture emerges for pressure dissociation and ionization of
fluid hydrogen. Below pressure ionization, the system is
essentially neutral and mostly in a molecular state; the
maximum of molecular concentration is reached for
log]gp 0.5. Dissociation occurs mainly because of
temperature effects. Partial ionization occurs as the PPT
is crossed, most of the ionization occurring at the expense
of the molecules. The concentration of atoms remains
small (xH ~ 10%), so that only two main states coexist
(H2 and H+), in agreement with pressure ionization as
described by the physical picture [66]. As the density is
further increased, molecules disappear and ionization
proceeds smoothly over a relatively narrow density range.

A question still remains: what causes the PPT, if it ex-
ists? As discussed in Sec. V, the nature of the PPT ap-
pears to be based on the nature of the potential of mean
force felt by the particles in the neutral and plasma

0.6

0.4
A

0.2

t
t

0.04 —',

t t
I

\

I

0.03—
t

't

0.01

phases. As the density increases, this potential will
change from a strongly repulsive interatomic potential
into a softer Yukawa-type potential, increasing appreci-
ably the phase space available to the particles. Figure 9
shows a comparison between effective interatomic and in-
terionic potentials near the critical density for two iso-
therms below and above the critical temperature. The
figure clearly shows the large differences between the H2-

H2 potential, characteristic of the neutral phase (recall
that xH ( 10% along the PPT), and the effective screened
interionic potential given by Eq. (1). The linear screening
theory overestimates the extent of screening, and as a re-
sult, the interionic potential is too repulsive [67,19], as
seen in Fig. 9(b). The actual difference between the two
types of potentials is certainly more pronounced than
suggested by Fig. 9(a). Given the large difference be-
tween these two potentials, we can expect a discontinuity
in the average interaction energy, and then an abrupt
change in the two-particle distribution function. At high
temperature (Fig. 9(b)), the dominant neutral species is
atomic hydrogen. The repulsive part of the H-H poten-
tial is similar to the screened interionic potential and ion-
ization occurs smoothly. In terms of correlation lengths
that characterize the many-body effects, the system will
collapse from a dense molecular phase characterized by a
length A.H into a metallic phase characterized by a new

screening length A,, «k„. In this sense the PPT can be
2

related to the metal-insulator transition in metals associ-
ated with the liquid-vapor transition [62]. In the metal,
the bare ion-ion interactions are screened by the delocal-
ized electrons and differ considerably from the interac-
tions between the electron-bound ions in the vapor. This
crucial difference between the two effective interactions
in the metallic and insulating phases, which reflects a
change of the nature of the electronic states, leads even-

tually to a polarization catastrophe and the impending
insulator-metal transition [68].

Besides its intrinsic theoretical interest, the phase dia-

gram of hydrogen is also of major interest for astrophysi-
cal applications. Indeed, hydrogen is the major constitu-
ent of stellar matter and pressure ionization occurs in

various astrophysical objects. If this phenomenon occurs
through a erst-order phase transition, it will have impor-
tant consequences on the interior structure of giant pla-
nets and the evolution of low-mass stars [2,69,70]. There-
fore the experimental quest for pressure ionization of hy-

drogen and an understanding of the very nature of its
insulator-metal transition remain one of the most impor-
tant problems of dense-matter physics.

r/a,
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