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Iterative supersymmetric construction of phase-equivalent potentials
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Potentials providing the same phase shifts as a given potential, but possibly different bound spectra,
are constructed by successive supersymmetric transformations. Three situations are considered:
suppression of several lowest bound states, addition of a number of bound states below the ground state,
and no modification to the bound spectrum. Compact formulas involving physical or nonphysical solu-

tions of the initial Schrodinger equation are established for the phase-equivalent potentials as well as for
their bound or free wave functions. Such expressions, referring only to the initial problem, allow a com-

parison with other methods. The unchanged-spectrum case is shown to be a combination of the other
two; it leads to a well-known result of inverse scattering. A general technique of classification of poten-
tials arising from supersymmetry transformations is proposed. The method is illustrated by the
Coulomb potential example, for which elementary analytical forms exist for the phase-equivalent poten-
tials.

PACS number(s): 03.65.Nk, 11.30.Pb, 03.65.Ge

I. INTRODUCTION

The interest manifested for supersymmetry [1—4] has
given a new impetus to well-known methods in quantum
mechanics. Indeed, a supersymmetry transformation
does not differ basically from a Darboux transformation
of the Schrodinger equation [5,6) or from the factoriza-
tion method [7]. Whatever the motivation, this renewed
interest has led to a wealth of papers on applications of
supersymmetry.

The inverse-scattering problem [8,4] and in particular
the construction of phase-equivalent potentials [9] are
among the most interesting fields of application for super-
symmetry. The construction of phase-equivalent poten-
tials without modification of the bound spectrum is well
known [8]. On the contrary, methods employed for add-
ing or removing one or several bound states often modify
the scattering properties of the potentials [5,4]. In Ref.
[10], an iterative procedure is proposed for removing a
number of bound states from the spectrum of a given
Hamiltonian withaut modifying the phase shifts. In this
case, the Levinson theorem and its generalizations [11]
impose that the singularity of phase-equivalent potentials
at the origin changes since the number of bound states
varies. This property helped clarify the relations between
diff'erent nucleus-nucleus potentials [10,12]. The two-step
procedure of Ref. [10] is simplified in Ref. [13] and ex-
tended to phase-equivalent potentials obtained by adding
a new ground state to the spectrum. More recently, the
general problem of using supersymmetry for constructing
iteratively phase-equivalent potentials without modifying
the spectrum has been reconsidered (Ref. [14], and refer-
ences therein). However, phase-equivalent potentials ap-
pearing in these methods depend on wave functions of
several potentials. Relating them with other approaches
is difficult. A canonical presentation, based on a refer-
ence Hamiltonian, is necessary.

The aim of the present paper is to provide compact for-
mulas for phase-equivalent potentials and their associated
wave functions obtained from supersymmetry transfor-
m ations. Three different cases will be considered:
suppression of several lowest bound states, addition of a
number of bound states, and no modification to the spec-
trum. The latter case allows a comparison with literature
results [8]. Potentials are constructed by iterating the
three procedures proposed in Ref. [13] and by eventually
expressing them only as a function of solutions of the ini-
tial Schrodinger equation. Our purpose is to clarify the
contents of the supersymmetric method and to allow an
easy comparison with other approaches to the inverse-
scattering problem.

We also explore paths towards more general transfor-
mations of the spectrum. Indeed, only the lowest bound
states are affected in the formulas that we derive. In fact,
the principle of the method can be extended to more gen-
eral modifications of the spectrum, such as removing or
adding a single bound state anywhere in the spectrum.

In order to avoid ambiguities with the notion of phase
equivalence, we focus here on the radial Schrodinger
problem but the presented techniques could be applied as
well to the one-dimensional problem on the full line.
Indeed, in the radial problem, phase equivalence is
uniquely defined with the phase shifts. On the line,
difFerent reflection and transmission amplitudes may lead
to identical reflection and transmission probabilities
[15,16]. Several types of phase equivalence therefore ex-
ist.

In Sec. II the principle of supersymmetric transforma-
tions [3] is recalled and notations are introduced. In Sec.
III the basic phase-equivalent transformations [13]are re-
viewed and their properties are extended to nonphysical
solutions of the Schrodinger equation. Suppression and
addition of several bound states are, respectively, studied
in Secs. IV and V. The suppression of bound states and
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We consider a radial potential Vo(r), vanishing at
infinity, which includes possible Coulomb and centrifugal
terms. This potential is allowed to be singular at the ori-
gin in the following way:

Vp(r) =n (n +1)r, r~0
where n is a non-negative integer which may or may not
be equal to the orbital momentum l of a given partial
wave. Usually, the potential is considered as nonsingular
for n =l and as singular otherwise. The subscript 0 in Vp
refers to the initial potential, i.e., the potential to which
transformations are applied.

After elimination of the first-order derivative in the ra-
dial part of the Laplacian, the Schrodinger equation for
partial wave I reads

/

Hollo= — 2+ Vo(&) Po= 4o
GT

(2)

where units are chosen in such a way that R /2m =1.
Considered as a differential equation, (2) possesses two
linearly independent real solutions. Because of the nature
(1) of the singularity at the origin, these solutions may
behave as I""+' or as r " at small-r values. At infinity,
negative-energy solutions either increase or decrease ex-
ponentially. The study of phase equivalence presented in
the next sections will require detailed information on the
different types of solutions to (2).

The notation Pp will be employed to represent arbitrary
(bound or free) physical solutions of (2), i.e., bounded
solutions satisfying

qp-r" +', r 0. (3)

The increasing bound-state energies of Hp are denoted as
E' ',E'",E' ', . . . and the corresponding wave functions
as g~p ', gp", P~o ', . . . . In the following, we always as-
sume that a sufficient number of bound states exists for
the properties that we establish and that bound states are
normalized to unity. Positive-energy wave functions are
denoted without superscript.

At physical negative energies E", solutions of (2)
which are linearly independent of go" behave as r " near
the origin and increase exponentially at infinity. At other
negative energies E, two linearly independent solutions
can be defined as follows. The solution denoted as yp is
bounded at the origin, i.e., behaves as r"+'. At nonphys-
ical negative energies, yp increases exponentially at
infinity. At physical —negative or positive —energies, gp
does not difFer from a physical state Pp. The solution
denoted as fp is bounded at infinity. At nonphysical neg-
ative energies, fp behaves as r near the origin and de-

their reintroduction provide potentials with an un-
changed spectrum (Sec. VI). Section VII is devoted to an
attempt of general classification based on an associativity
property of supersymmetric transformations. The
Coulomb potential provides analytical examples of
phase-equivalent potentials (Sec. VIII). Concluding re-
marks are presented in Sec. IX.

II. SUPERSYMMETRY TRANSFGRMATIGNS

creases exponentially at infinity. At physical negative en-
ergies, fp becomes identical to Pp.

With the method employed to prove the orthogonality
of physical states, one easily obtains, for E & E",

"
p"ypdr=o (4)

V&
= Vp

—2 lnpp .
dr

(9)

The spectrum of H, may differ from the spectrum of Hp
by its ground state according to the choice of pp, as de-
tailed below.

As discussed in Refs. [10] and [13], (9) shows that the
singularity of V& differs from the singularity of Vp
displayed in (1). The wave functions of H, are related to
those of Hp by

=(E —@o) '"Vo 'IV(Wp Vo) . (10)

E
(2)

E
(o) T. T

E'"
FIG. 1. Schematic representation of the sopersymmetry

transformations. The convention for the energy scale is also
displayed.

and, for any E,

p pdr ——E(')—E ' 8' p, p' „p
where W(f, g) =fg' f'g —is the Wronskian off and g.

Now, let us briefly recall the principle of supersym-
metry transformations [3]. The operator Ho is factorized
into two mutually adjoint bounded operators

Ho= Ao+Ao +co
where 8o is a real parameter called the factorization ener-
gy. The first-order differential operators Ap and A p are
given by

Ap =(Ap ) = + Inpo
d
dr dr

where yo is an arbitrary solution of Hpyp=@opp. In
practice, boundedness of Ap+ and Ap requires that pp be
nodeless. Therefore, factorization energies must be
smaller than the ground-state energy E' ' of Hp. The su-
persymmetric partner H

&
of Hp is defined as

H, =Ap Ao +8p

and corresponds to the potential



208 L. U. ANCARANI AND D. BAYE 46

TABLE I. Types of supersymmetric transformations.

(Tl )

T:(T)
(T3)

T+ ( T4)

@p

E{0)

Cp(E
(E{o)

o&E"'

%o

q(0)

+p df' =1
0

Xp

fQ

Action on the spectrum

Suppresses ground state

Adds new ground state (n &0)
None
None (n )0)

Phase-shift
modification

+tan '(~E/E' '~' ')
—tan '()E/6'o('~')
—tan-'( ~E/C, ['")
+tan '(IE/Col'")

This expression can also be written as

Wi=(E —@o)"J mo'Vo '4o« (11)
p

if ro is a value for h the whic. Wronskian W(go, yo) van-
ishes. The study of the asymptotic behavior of g, at a
positive energy E shows that the phase shifts provided by
Vo and V, difFer by a simple monotonic function of E,
i.e., +tan '()E/8o~'/ ), where the sign depends on the
choice of yo.

Different types of Hamiltonians H
&

are found accord-
ing to the choice of the factorization energy ho and of the
type of solution yo [3]. The four possible transformations
are summarized in Table I. We take advantage of the op-
portunity to replace Sukumar's original notations
T„T2,T3 T4 by the more mnemonic notations
T+,T:,T,T+. Before explaining them, let us define
more precisely our convention about the notations of the
bound-state energies. Since we shall be dealing with
Hamiltonians which have the same bound states, we shall
denote all the bound-state energies of those Hamiltonians
by the single notation E", where i is an integer which
may be negative. Of course, the bound spectrum of Ho
does not contain states with negative i values but such
states may appear during the transformation proct:ss.
The definition and main properties [13] of the four trans-
formations T+,T:,T,T+ are recalled in Table I and
their action is depicted schematically in Fig. 1. The su-

perscript in the notation indicates whether the ground-
state energy is raised (+), lowered (

—), or left unchanged
(0). The subscript represents the sign of the phase-shift
modification, i.e., whether the phase shift is increased (+)
or decreased ( —) (note that the signs in the last column of
Table I in Ref. [13] have been inadvertently reversed).
The advantage of the notation is to summarize the action
of the transformation both on the spectrum and on the
phase shifts. Notice that the transformation depends on
a parameter, the factorization energy, which is hidden in
the present notations. Finally, successive transforrna-
tions are written from right to left, in an operatorlike
manner.

III. PHASE-EQUIVALENT POTENTIALS DERIVED
FROM A PAIR OF SUPERSYMMETRY

TRANS FORMATIONS

Performing two successive supersymmetry transforma-
tions allows one to construct potentials V2 which are
phase equivalent to Vo, i.e., which provide the same
phase shifts at all energies [10]. The second step trans-

As indicated by the superscripts, the first pair of transfor-
mations suppresses the ground state E' ' (the ground
state "rises" from E' ' to E'"), the second pair adds a
new ground state at energy E' "&E' ', and the third
pair leaves the spectrum unchanged. The first and third
pairs require 6'o =E ( ' while the second pair is valid for
any vo=E' "(E' '. Now we summarize in turn the
main properties of the three couples of transformations.
Additional information can be found in Ref. [13].

The combined transformation T T+ provides a
phase-equivalent potential whose bound spectrum does
not contain the ground state of Vo. This potential is
given by

d2
V2 = Vo —2 ln f g(o

' dt .
dr

(13)

Expression (13) clearly shows that V2 and Vo only differ

by a short-range term. The eigenstates of H2 also differ
from those of Ho by short-range expressions

e2=eo eo" f "eo'"« —f"eo"Oo«(14)

The wave function gz is normalized to unity if go is

square-integrable and normalized to unity. Another form
of (14) arises from the orthogonality of t)'jo with Po

'.. the
last integral may be replaced by —f Po( )go dt.

Let us recall that Eq. (14) is a consequence of the
Wronskian expression (10) involving the unbound func-
tion, regular at the origin, y&

= [go( '] ' f ohio(
' dt, and f,

given by (11), with go=go( ' and ro=0 Such a s. imple
derivation is obviously not restricted to physical states,
provided that convergence of the integrals is ensured.

forms H
&

and V, into H2 and V2 in a way which depends
on the choice of the factorization energy 6 ) and on a
solution y) of the differential equation H, y, =C,y, . The
phase shifts of Vo and V, differ by +tan '(~E/6o~' )

and those of Vt and Vz by +tan '( ~E/8, ~

' ). There-
fore, phase equivalence immediately imposes 8,= 6o. In
addition, a transformation of the T type must be corn-
bined with a transformation of the T+ type and vice ver-
sa. At first sight, eight combinations seem to be possible.
However, two of them (T+T and T+T:, to be read
from right to left) are forbidden by the condition 8,= ho
and three others (T+T:, T+T, and T T+ ) are trivial
in the sense that V2= Vp ~ The only three interesting
cases are therefore [13]
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f(0) —q(p) q(o)2dr
2 0 0 (16)

The corresponding expressions for the solution regular at
the origin read

and

y(o) f "q(o)2« f "y(o)X dr
0 0

(17)

X(o) f(0) f "f(0)—
2dt (18)

0

The differences in the integration limits are imposed by
the value rp at which the Wronskian of fo or Xo with gI)

'

vanishes. Obviously, (14) is a particular case of (15) or
(17) since go is a common Particular ease of fp and Xo.
Relations (15) and (16) will be useful later on when
several bound states are removed (Sec. IV).

The pair T T+ adds a bound state at energy E'
below the ground state without modifying the phase
shifts. The potential Vz is then

d
Vz=V0 2 zln ap+ 0 "d

r
(19)

where fp
" is an exponentially decreasing irregular solu-

tion of (2) at energy E' ". The potential depends on two
parameters E' "and ap which are arbitrary but for the
conditions E' "& E' ' and ap & 0.

The corresponding physical wave functions are given
for E &E' "by

A=Op fp " ao+ J fo '" f fo "A

Here, we extend (14) to the unbound functions f2 and X2.
For a nonphysical energy E different from E' ', the solu-
tions regular at infinity become

+y(0) f "y(p)2« f y(o)f «
while for the newly nonphysical energy E' ', the function
f z(

' is given by

V&= Vo
—2 ln (1—ao) ' —f ()'Jp(' dt (24)

where the parameter ap must be positive. If ap is larger
than unity, the argument of the logarithm in (24) is nega-
tive but this does not cause any trouble since (lnu}' is
only a convenient notation for u'/u. Notice that the pa-
rameter ap replaces the parameter a appearing in Eq. (19)
of Ref. [13] for reasons which will appear in Sec. VI.
Both parameters are related by a=ap(1 —ap) '. The
cases ap & 1 and ap & 1 lead, respectively, to positive and
negative values of the old parameter a. The limit a0=1
leads to the trivial transformation Vz Vp ~ The limit
ap~ ~ in (24} leads to (13), i.e., to a suppression of the
ground state. The physical wave functions become for
E & E(0)

y(o) (1 a )
—( f "y(0)2dt J y(o)y dr

(25}
and are normalized if Po is normalized. The ground-state
wave function reads

y(0) al/2(1 a )
—ly(o) (1 a )

—) f "y(o)2dr

(26)
Analog expressions for f2 and X2 are given at nonphysi-
cal energies by

y(o) ( 1 )
—) f " y(p)2« J q(p)f «

(27)
and

equation analog to (5) a slightly more complicated expres-
sion without any restrictive condition can readily be
found. Again, (20) is a particular case of (22) and (23).
Notice that at energy E' ",fp

=fp
" introduced in (22)

provides (up to a multiplieative factor) the physical wave
function gz

The couple T:T+ of transformations leads to a poten-
tial Vz, distinct from Vp, but with the same bound spec-
trum and phase shifts. Its expression reads

and for the new ground state by

y(
—1) 1/2f ( —1) +f f ( —1)2dr

(20)

(21)

X=X+lp'o' (1—a) ' —f q'"dt J q''Xdt.
(28)

With (4), (28) can be rewritten in a form very similar to
(25) or (27), if E)E' '. Equation (25) is a particular case
of (27) and (28).

The wave function P(2 "is normalized to unity, as well as
the other $2 for negative energies. Again, we extend (20)
to nonphysical states as

f2=fo fo " ao+ f f—o
'"« f fo "fp«

(22)

and

X2 X() f() ap+ f f() dr f f() Xpdh .
r

(23)

Equation (23}assumes that the nonPhysieal solution Xo is
calculated at an energy E higher than E' ", with an

IV. SUPPRESSION OF THE m LOWEST BOUND
STATES

The combined transformation T T+ suppresses the
ground state of Ho. A similar transformation (with E'"
as factorization energy) suppresses the ground state of
Hz, which corresponds to the first excited state of Hp.
The potential V4 appearing in 04 is phase equivalent to
Vp. After m steps, one obtains a potential Vz
equivalent to Vp, but without its m lowest bound states
I10]. In the following, we establish a compact formula
providing Vz directly from Vp and from the wave func-
tions of its m lowest bound states.

First we define the integrals

qi(4 J)( r) —f g(&) g(J)« (29)
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where gz'k' is the wave function of the bound state at ener-

gy E"of the Hamiltonian Hzk (i ~ k). Choosing the m
lowest bound states of Hzk (i =k to k +m —1) allows us
to define an m X m symmetric matrix %'zk', depending on
the coordinate r. This matrix vanishes for r =0 and
tends to the unit matrix when r tends to infinity.

d
V2m Vo 2

2
ln det%p (30)

and the wave functions of H2 by

Then, we prove by recurrence that the potential V2 is
given by

qp(0, 0)
0

«s(0, m —1) y(0)

(d ting(m))
—)

«s( m —1,0)
Ko

f "y(0)yet

«g(m —1, m —1)
Mp

f y(m —l)y dt

.I,(m —1)
VQ

4o

(31)

For m =1, (30) and (31) reduce to (13) and (14). Assum-
ing that (30) is valid for removing m —1 states, one may
suppress the m —1 lowest bound states of H2 and write

d2
V2 = V2

—2
2

lndet% 2
dr

gz are easily derived from (30) and (31). Indeed,

rn —1

det%() '-—1 —g f (ii" dt, r~ oo

i=0

leads to

(38)

Now, we express the elements of %z "as a function of
the elements of %0( '. With (29) and (14), one easily shows
with a simple integration that

y(&j ) —gy(&, g) p qg(0, 0) ]—1gp(i, p)qg(0, j)
2 0 ~ 0 ~ 0 0

The determinant property (A2) leads to

det%" "=[(p(') ' '] 'dete() ' (34)

from which (30) follows with (13). In the same way„as-
suming (31) to be valid for removing m —1 states, we em-

ploy it to express gz as a function of the different Pz.
Equation (14) can be rewritten as

[)p(0,0)]—ly(0) f "y(0)q dt2 0 0 0 0 0 (35)

and a simple integration leads to

Vz ——(n +2m)(n +2m +1)r, r ~0 (37)

f "y(i)q dt f "y(i)pent [q((0,0)]—lq)(i, O) f "q(0)y dt
(36)

Equations (33), (35), and (36) show that all the elements of
the determinant appearing in the expression of fz share
the same form (Al) so that (31) results from (A2).

The wave functions gz corresponding to negative en-

ergies are normalized to unity. Equation (31) shows that

gz vanishes if $0 is replaced by any go' (i (m): the m

lowest bound states of Ho disappear in the spectrum of
Hz . This property clarifies the fact that Pz can be
written as a function of determinants.

Near the origin V2 behaves as

V —V = —2 g( ', r +oa-(m —1)2
2m 0 d 0 (39)

V. ADDITION OF m BOUND STATES
BELOW THE GROUND STATE

By successive applications of combined transforma-
tions T:T+ with appropriate factorization energies, we
add bound states at energies E' "& E' ',
E' '&E' ", . . . , E' '&E' +". After m steps, a
potential V2 is obtained which is phase equivalent to Vo
provided that m is not larger than ,'n [13]. —

The addition of bound states necessitates exponentially
decreasing solutions fzk' (i )k) at energy E' ', of the
differential equation involving V2k. Let us introduce the
integrals

Fz'k '( r) =a, 6,.i +f fzk 'f zk 'dt, (40)

where a; is a positive parameter. With the functions
f(zk" "to fz'k " ', we define the m Xm symmetric ma-
trix F(zk' whose general element is given by (40). This
matrix is in general not bounded when r tends towards 0.
At infinity, it becomes a constant diagonal matrix with
the a, as diagonal elements.

A compact form of the potential V2 is given by

since E' " is the highest energy among the E". Since
%'(o ' tends to the unit matrix and the integrals f 0/0(')godt

tend to zero, (31) clearly shows that (i)z and go have the
same asymptotic behavior and provide therefore the same
phase shifts.

as shown by the iterative process [10]. This behavior
cannot easily be proved from (30). In agreement with
(37), (i' can be shown by iteration to behave as r"+
near the origin. The asymptotic properties of V2 and

d
V2 Vo 2

2
1n detFo™

dr

The corresponding wave functions read for EWE'

(41)
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F(1,1)
0

F(1,m)
0

EtE2 =(detFo '}
0

f "f'( "-ydr

and for E =E'

F(m, m)
0

f f(—m)y dr
r

f( —m)

4o

(42}

' =a i (detF' ')
2m 0

F(1 1)
0

F(1,i —1)
0

F(1,i+1)
0

F(1,m)
0

(43)
F(m, 1)

0
F(m, i —1) F(m, i +1)

0 0
F(m, m) ~( —m)

0 & 0

V2~ = V2
—2

&
ln detF2

dT

Again, a simple integration provides with (22}

F(i,j ) F(',j) ] F(1,1) p
—1F(i,1)F(1~J)

p L 0 J 0 0

With (A2), (45) leads to the relation

(44}

(45)

In the m Xm determinant appearing in (43), the ith
column of matrix F0 ' is missing. The wave functions
(43) are normalized to unity, as well as the wave functions
(42) corresponding to a negative energy.

The proofs of (41) and (42) parallel the proofs encoun-
tered in Sec. IV. Relations (41)-(43) reduce, respectively,
to (19)—(21) for m = 1. Let us assume that they are valid
for the addition of m —1 states. Then, we proceed in two
steps: a state is added at energy E' " below E' ' and
then the m —1 other states are added at energies E' ' toE'™.The potential V2 is given by

Near the origin, V2 behaves as

V2 (n ———2m)(n —2m + 1)r, r ~0 (49)

m& —'n.
2

The asymptotic behavior of Vz is given by

y y f( —1)22 d
2m 0 d 0

CK1

(50)

(51)

because ~E( "~ is smaller than the other ~E' '~ and
therefore fo

"presents the slowest exponential decrease.
From (42), we see that the asymptotic behavior of g2
does not differ from the asymptotic behavior of Po in full
agreement with (51).

Relation (49) is easily proved by iteration from Eq. (17) of
Ref. [13]. Accordingly, g behaves as r" 2 +' for r~0
and is physical only if

detF2 ' = [Fo ' ] 'detF' (46) VI. UNCHANGED SPECTRUM

Employing (19) then completes the proof of (41). The
proof of (42) follows the same pattern: $2 is expressed
as a function of p2. Then (45), (20), (22), and

( —')
t — ( —)

y(1, 1)
]
—lp(i, l) f f( —1)y dr (47)

show that all the elements appearing in the determinant
take the form (Al) so that (A2) is applicable.

Proving (43) requires discussing two subcases. For
i ~ 2, the proof is parallel to the other ones and makes use
of (45), (22), and (A2). For i =1, the situation is different
since gz

"is given as a function of the solutions of H2 by
(42) rather than by (43). However, the property

f( —i)y( —1)dr )/2[F(1, 1)
]
—lp(i, l) (48)

combined with (45), (21), and (22) leads to a determinant
which is equal (except for its sign) to the determinant ap-
pearing in (43), by elementary operations on its rows.

The suppression of the m lowest bound states as in Sec.
IV and their reintroduction as in Sec. V provides a poten-
tial which is equivalent to the initial one, and possesses
the same spectrum. This potential differs from the origi-
nal one by m parameters which appeared during the rein-
troduction of the bound states.

In order to obtain a compact formula for the
equivalent potential, we combine results from the two
preceding paragraphs. Let Vz be the potential obtained
after the suppression of m bound states and V4 the final
potential. From (41), we have

V4~=V2 —2 zlndetFz ',
dT

(52)

where the elements of matrix F(2 ' are given by (40). We
shall employ results from Sec. IV to transform (52) into
an expression involving V0 and its m first wave functions.
For this aim, let us define m Xm symmetric matrices
M2k' for k ~ m. Their elements are

F2'k"(r) (i,j =0, . . . , k —1)

Mz'k '(r)= . f g2'kf2kdt (E =k, . . . , m —1;j =0, . . . , k —1)
r

(1—a;) '5, —%2('kj)(r) (i,j =k, . . . , m —1),
(53)
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M(m) F(m)
2m 2m (54)

where 0'z'kj' is given by (29), F2'kj' by a formula analogous
to (40) but with functions f'2'k with non-negative super-
scripts i, and where the a, are positive parameters. The
functions appearing in the definition of matrix M2k' cor-
respond to a potential V2k for which the k lowest ener-
gies E' ' to E' " are nonphysical and the m —k ener-
gies E' ' to E' " are physical. It is composed of four
blocks: a k Xk diagonal block corresponding to non-
physical functions, a (m —k)X(m —k) diagonal block
formed with physical wave functions, and two mixed
nondiagonal blocks. Two important particular cases of
this matrix are obtained for k =m,

M(i j ) M(i j ) + r @(k,k) q
—lM(i, k)M(k, j)

2k+2 2k 4 2k & 2k 2k (59)

valid for all iAk and jAk. The proof of (59) involves
three sectors corresponding to the three kinds of elements
in (53). Each proof is based on (14) and/or (15) and leads
to a very simple integration as in (33) or (45). With the
additional equation (16), one easily proves

so that (57) is valid for any k (m. Hence, (55) leads to
the final result

ln det[(I'™—a' ') ' —)I)'™] (58)
2

T

In order to establish (57) from (56), we employ the rela-
tion

and for k =0
M(m) (1(m) (m)) —( )Ii(m)

0 0

M(ik) , ()Ii(k, k)] —)M(i k)
2k+2 & 2k

for any i Ak, and

(60)

d
V4 = V2k+2 —2

2
ln detM2k+2, (56)

where I' ' is the m Xm unit matrix and a' ' is an arbi-
trary positive-definite constant diagonal matrix.

Equation (54) shows that (52) can be written as

~(k, k) a 1+[)P(k,k)] —(
2k+2 +k 2k (61)

detM( ) =(1—ak )[)Ii'"'")] 'detM2k' . (62)

By subtracting row k of detM2k+2, multiplied by M2'k ',
from any row i, one obtains

Equation (57) follows from (62) and (13) applied to
V2k+2 ~

The wave functions of H4 are given for E )E'
d

V4 = V2k
—2

2
ln detM2k'

df
(57) by

where k =m —1. We shall now prove that if (56) holds
for some k & m, one also has

M(o, o)
0

M(o, m —1)
0

q(0)

=[detM(') ']

and for E" (i (m) by

g~(m —1,0)
iYL p

f P()'godt

g~(m —l, m —1)
LYL p

f y(m —1)q dt
r

.I.( m —1)
pp

40

(63)

q" = a' (1—a;) '[detM() ']
0

x~(o, i —1)
ilL p

M(o, i+1)
0

a~(o, m —1)
CYi p

q(0)

(64)
g~(m —1,0)
ilX p

q~(m —l, i —1) q~(m —l, i +1) g~(m —1, m —1)
CYL p

.].( m —1)
9'0

At negative energies, these wave functions are normal-
ized to unity. These relations follow from (42) and (43)
by a simple proof, completely analogous to the proof of
(58), making use of relations such as

f2'k+26k+2 = f fZ'k02k [ Z"k" ] ' Z'k"
r r

f gzkg2kdt (65)
0

for i &k.
The potential V4 possesses the same behavior as Vp

near the origin, as shown by combining (37) and (49). For
large distances, (58) indicates that

V~
—

V()
-—2(1—a, ) )t)() ", r ~ ~

r
(66)

because ~E( 1)~ is smaller than the other ~E"~. Again
V4 and Vo only di6'er by short-range terms.

Before closing this section, we would like to emphasize
that (58) is a classical result of the inverse problem: see,
e.g. , Eq. (IV.2.14b) in Ref. [8]. Therefore, in the present
case, the supersymmetric approach is only a rather sim-

ple way of deriving known results. Notice, however, that
the wave functions corresponding to the phase-equivalent
potentials are provided simultaneously without additional
difficulties.
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VII. DISCUSSION

T+T:=T+T =T T+ =1 (67)

provided that both transformations in each pair share the
same factorization energy. With the associativity proper-
ty and (67), the equivalence discussed above becomes ob-
vious

(T:T+)(T T+ )=T:(T+T )T+ =T:T+ . (68)

Note that while the right-hand side of (68) can always be
decomposed into the left-hand side, the opposite is true
only if the added bound state has the same energy as the
removed one. Hence, in the search. for the most general
transformations involving the pairs T T+, T:T+, and

T:T+, the latter pair can be disregarded since it can be
obtained by combining the other two.

Taking account of the trivial character of T+T: and
T T+, the most general transformation obtainable from
T T+ and T T+ can be written symbolically as

Let us first observe that for m =1, the potential V4

provided by (58) is identical to the potential V2 displayed
in (24}. Simultaneously, the wave functions (63) and (64)
reduce, respectively, to (25) and (26}. This identity
justifies the change of parameter between Sec. 3.3 of Ref.
[13] and the present equations (24)—(26). In fact, we ob-
serve here that T:T+ is completely equivalent to
( T:T+ )( T T+ ). This property is the basis of a general
classification of the transformations leading to phase-
equivalent potentials.

Now, we complement the basic properties of supersym-
metric transformations, explained in Sec. II, by observing
that they satisfy an associatioity property. Indeed, each
modification of the potential introduces an additive term
written as the second derivative of the logarithm of a
function po [see (9)]. Successive transformations will in-

volve the product of the different functions y0, which is

associative. The same associativity holds for the trans-
formation of wave functions since they involve a product
of the successive differential operators A

As discussed at the beginning of Sec. III, some couples
of transformations are equivalent to an identity and can
be written

Notice that the transformations (69) are the most gen-
eral ones for which the potential is phase equivalent at
each intermediate step. Other cases where only the final
potential is phase equivalent to V0 can be thought of,
such as

(70)

This type of transformation has been proposed recently
by Keung et al. [14]. These authors did not try to ex-
press the potential only with solutions of the initial prob-
lem. Expressing transformations such as (70) or more
general ones as a function of the initial Hamiltonian is a
difficult task.

VIII. AN EXAMPLE: THE COULOMB POTENTIAL

The attractive Coulomb potential provides an interest-
ing application in which equivalent potentials with ele-
mentary analytical expressions can be derived. Though
sometimes complicated, such expressions are easily ob-
tained with symbolic computer calculations [17].

First, we consider the suppression of bound states.
Amado [18] has already discussed the suppression of the
lowest bound state of the Coulomb potential for an arbi-
trary I value. Let us start from the potential

2 1(1+1)
0 r r2

(71)

(r —1)+(1+r)e
V2 = V0+16re

[1—(1+2r +2r }e "]
(72)

and is a particular case of Amado's Eq. (28). The poten-
tials V2 and V4 are strongly repulsive at small distances
because of their respective singular behaviors 6r and
20r [Eq. (37)]. They tend to Vo beyond r=6 for V2

of the 1th partial wave. The 1=0 potentials obtained by
removing the ground state (V2} and the two lowest s
states ( V4) are displayed in Fig. 2. The analytic expres-
sion of V2 reads

m+

II ( T:T' ) II (T' T+ ) .
1 1

(69)

This corresponds to removing the m+ lowest bound
states followed by adding m new bound states. Sections
IV—VI describe, respectively, the cases m =0, m+ =0,
and m+ =m (where the energies of the suppressed and
added states are chosen equal). Moreover, the intermedi-
ate steps in the proof of the case m+ =m provide a
solution to the case m+ )m (again with common ener-
gies for the states suppressed and reintroduced). Most
probably, general formulas corresponding to the most ar-
bitrary cases should be derivable in a rather similar way.
With m =m+ + 1, the expression (69}allows one for ex-
ample to add a bound state anywhere in the bound spec-
trum without modifying the other bound-state energies.

,!, p

/ V,

FIG. 2. Suppression of bound states of the I =0 Coulomb po-
tential ( Vp). Phase-equivalent potentials are obtained after re-
moving the ground state ( V& } or the two lowest bound states
( V4).
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and r = 14 for V4 [see (39)]. Notice that they tend to Vo
from above in agreement with the sign displayed in (39)
[see also (72)].

Adding bound states is more complicated since two
free parameters appear at each addition and because of
the restrictive condition (50). Indeed, a single bound
state can be added —without modifying the phase
shifts —only if the potential singularity is at least 6r
i.e., for l ~ 2 in the present case. Two bound states can be
added only if 1~4, and so on. The functions ffI

' ap-
pearing in (19) or (41) are given by the Whittaker func-
tions [19]

fo '(r)=W . . . (2y, r)

= (2y;r)'+'exp( y, r—)

0.5

10
I

15
I t

20
I

X U(1+1—y, ', 2l+2, 2y;r), (73)

where E = —y; and U is an hypergeometric function.( —i) 2

Notice that while the normalization chosen for fo
' is

physically irrelevant, it affects the definition, and there-
fore the meaning, of parameter a;. The expression (73)
takes an especially simple form if y, is the inverse of an
integer

y;=1/n; . (74)

Xexp( r/n, —)L&+„'. "(2rln;) . (75)

Hence analytic expressions can be derived for the poten-
tials, which only involve polynomial, exponential, and ex-
ponential integral functions. Because even the simplest
case is rather complicated, we do not display it here.

In Fig. 3 we display potentials equivalent to Vo, with a
bound state added at energy —1. The new ground state
is related to a potential pocket whose location depends on

In this case, fo ' can be expressed as a function of gen-
eralized Laguerre polynomials as

fo '(r)= (
—1) '(I+n, )!(2r/n, )

FIG. 4. Addition of a bound state at energy ——' to the 1=2
4

Coulomb potential (Vo): phase-equivalent potentials V~ for
a0=0. 1, 1, 10, 100.

ao. For ao=0. 1 and 1, this pocket appears between 2
and 4. For the larger parameter 10, the pocket starts fus-
ing with the 2/r —singularity near the origin. The po-
tentials V2 tend to Vo from below in agreement with (51).
In Fig. 4, the bound state is added to the other energy
satisfying (74), i.e., —

—,'. The properties observed in Fig.
3 remain true for Fig. 4 but the potential pockets are
broader and located at larger distances. The fact that the
potentials V2 tend more slowly towards Vo for a smaller
energy is also explained by (51). Two bound states are
added to Vo in Fig. 5, at the energies —1 and ——'. The4'
potential depends on two parameters ao and a, . For the
fixed value a0=10, the deeper potential pocket contain-
ing the state at energy —1 depends on the value of the
corresponding parameter a&. On the contrary, the shal-
low potential pocket associated with the bound state at
energy ——„' is rather insensitive to a&. The sensitivity to

/2
V

7

0 L
8

FIG. 3. Addition of a bound state at energy —1 to the 1=2
Coulomb potential (Vo): phase-equivalent potentials V& for
a0=0. 1, 1, 10.

FIG. 5. Addition of two bound states at energies —1 and ——'
4

to the 1=4 Coulomb potential (Vo): phase-equivalent poten-

tials V4 for a0=10 and a, =0.01, 1, 100 (solid lines) and for
ao= a& =0.01 (dashed line).



46 ITERATIVE SUPERSYMMETRIC CONSTRUCTION OF PHASE-. . . 215

10

V8
20

M10 10
I

15
I

20

FIG. 6. One-parameter phase-equivalent potentials V4 to the
l =0 Coulomb potential Vp for ap=0. 001,0.01,0. 1. For ap=0,
the potential (dashed curve) is not equivalent to Vp.

a (and the insensitivity of the other pocket) is illustratedao an
by the dashed curve (ap=0. 01).

Now, we apply the techniques of Sec. VI in order to
construct potentials, equivalent to Vo, which possess the
usual hydrogenic spectrum. Equation (58},or its particu-
lar case (24), provides the potential

V4= Vo+ 16re

ao(1 —ao} '(1 —r)+( I+r)e
[ao(1—ao) '+(I+2r+2r )e "]

(76)

Notice the similarity of (76}with (72). In fact, the poten-
tial in (72) is the limit of (76) for ao tending to infinity, as
expected from a comparison of (58) and (30). Equation
(76) is illustrated by Fig. 6 for 0 & ao & 1 and by Fig. 7 for
ao) 1. The different potentials in Fig. 6 are successively

FIG. 8. Two-parameter phase-equivalent potentials V, to the
l =0 Coulomb potential Vp for ap =0.01 and
ap=0. 001 0.01 0. 1 5 10 20.

larger and smaller than Vo and tend to it from below [see
(66)]. A potential pocket moves towards large-r values
when ao tends to zero. The limit au=0 (dashed curve} is

the envelope of the other curves but is not phase
equivalent to Vo. For ao&1, the curves cross Vo at0 0

small-r values, become larger, and tend to it from above.
The envelope obtained when ao tends to infinity (dashed
curve) corresponds to (72) as discussed above. Potentials
V involving two parameters ao and a& are presented in8

Figs. 8 and 9. In Fig. 8 the parameter ao is smaller than
unity (au=0. 01} and different a& are chosen. All the
curves display deep pockets around 3.8 (a& &1} or 5

(a, ) 1). These pockets correspond to the removal and
reintroduction of the ground state. A shallow pocket as-
sociated with the first excited state appears at large dis-
tances for a& &1. If ao is modified, the location of the
deeper pocket varies as shown by Fig. 9 (au= 10). Other-
wise, the qualitative behavior of the different curves in
Fig. 9 is very close to the one observed in Fig. 8. As in
the case of addition of bound states, we see that each pa-

20
Uo

20

5

FIG. 7. One-parameter phase-equivalent potentials V4 to the
1=0 Coulomb potential Vo for ao=5, 10,20. The limit uo~~

p(dashed curve) corresponds to removing the ground state (see V2

in Fig. 2).

FIG. 9. Two-parameter phase-equivalent potentials Vs to the
l =0 Coulomb potential Vp for ap = 10 and

a& =0.001 0.01 0. 1 5 10 20.
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rameter controls essentially one of the qualitative proper-
ties of the potential. Phase-equivalent potentials to Vo
are displayed in Fig. 3 of Ref. [14]but they correspond to
the scheme (70) and involve different parameter
definitions.

IX. CONCLUSION

The supersymmetric factorization is an efficient tool
for establishing potentials which are phase equivalent to a
given potential. The present derivation only involves ele-
mentary properties of determinants and of second-order
differential equations. For all types of spectrum
modifications considered in the present paper, compact
formulas involving determinants of simple integrals are
obtained for the potentials. Furthermore, the wave func-
tions are derived almost as easily as the potentials and
also involve determinants. The reasons for a systematic
apparition of determinants remain unclear except in the
case of a suppression of bound states (Sec. IV). The com-
pact formulas are not necessarily more efficient in numer-
ical calculations than the original iterative procedure [10]
but allow an easy comparison with other approaches.
For example, potentials with an unchanged spectrum
(Sec. VI) are already known from the traditional treat-
ment of the inverse-scattering problem [8].

One of the three cases considered here (unchanged
spectrum) is in fact a consequence of the other two. Each
parameter appearing in a phase-equivalent potential with
an unchanged spectrum is due to the reintroduction of a
bound state after its suppression. Convenient notations
for the four basic supersymmetry transformations [3] and
an associativity property allow us to perform a general
classification of supersymmetric transformations which
leave the phase shifts unchanged at each step of the
transformation. More general spectrum modifications
should be derivable along the lines of the proofs encoun-

tered in the paper. Such extensions would provide trans-
formations of the spectrum which are forbidden until
now to the supersymmetric approach, such as removing
or adding a bound state above the ground state.

More general combinations of transformations exist, in
which only the final potential is phase equivalent to the
initial one. The present notations easily allow us to write
such transformations and to classify them. However,
whether these more general combinations lead to new
families of equivalent potentials, i.e., provide more free-
dom in adding or removing bound states, remains an
open question.
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APPENDIX

In this appendix we present the simple determinant
property on which the proofs in Secs. IV and V are based.
Consider an IX m matrix A™with elements a, .

(i,j =1, . . . , m). With these elements and the assump-
tion a»%0, we define the (m —1)X(m —1) matrix
B' "whose elements are defined for i,j = 1, . . . , m —1

as

b,, =(a„) '+ ll '+1J+1
(Al)

det A' '= a detB'11 (A2)

In det A' ', we subtract from row i (i ) 1) the product of
the first row by the ratio a;1/a11. The i ) 1 elements of
the first column vanish and one obtains the property
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