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Experimental study of colloidal aggregation in two dimensions. II. Kinetic aspects
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The kinetics of aggregation of colloidal particles at an air-water interface have been investigated.
The cluster size distribution and its various moments exhibited scaling with time and cluster size in
accord with simulations in which the sticking probability for clusters of size i and j w@s proportional
to (ij) . Modification of the growth conditions caused systematic variation of the scaling exponents,
due to changes in the sticking probability exponent ~. The various scaling exponents satisfied
a constraint derived from the critical nature of the nonequilibrium aggregation process. Under
all experimental conditions the observed kinetics exhibited a crossover from slow to rapid growth,
as expected for reaction-limited cluster-cluster aggregation. This implies that the probability of
irreversible particle-particle reaction was always very small.

PACS number(s): 68.70.+w, 82.70.Dd, 81.35.+k

I. INTRODUCTION

The aggregation of small particles to form large clus-
ters is a process of fundamental interest in branches of
science as diverse as biology, polymer chemistry, atmo-
spheric science, and metallurgy. This practical signif-
icance, together with the generally incomplete under-
standing of the nonequilibrium processes involved, has
engendered considerable attention over many years.

There has been a recent resurgence of this interest fol-
lowing discovery of the symmetries associated with the
aggregates: the structures exhibit dilational symmetry
and are well described in terms of fractal geometry [1].
The characteristic scale invariance of such structures re-
sembles that found for systems at their critical points.
There has thus been a hope that an approach to under-
standing the origin of the fractal nature of the aggregates
based on the powerful theoretical techniques developed
for studying critical phenomena might prove fruitful [2].
The morphology of the structures is determined by the
dominant reaction events, which are also involved in the
kinetics of the growth processes. It appears that the ki-
netics of cluster-cluster aggregation can fall into two dis-
tinct regimes, belonging to separate universality classes
[3]. The kinetics are most clearly embodied in the clus-
ter size distribution and its time dependence. The shape
of this distribution is expected to be universal [4), being
independent of the exact nature of the colloidal particles,
and governed solely by the aggregation process involved.
Thus measurement of the size distribution is crucial both
to distinguish the regimes and also to develop a funda-
mental understanding of the kinetic behavior character-
izing them.

A number of models have been proposed to account
for the morphology and dynamics of clusters grown in
a range of coagulation phenomena. Cluster-cluster ag-
gregation and its several variants are particularly suit-
able models for the study of multiparticle aggregation
encountered in colloidal science [5,6]. Two main variants,
diffusion-limited cluster-cluster aggregation (DLCA) and

reaction-limited cluster-cluster aggregation (RLCA) have
been used, giving rise to rather difFerent cluster mor-
phologies [7, 8]. The structural and kinetic aspects
of these phenomena have been investigated in recent
large-scale computer simulations of colloidal aggregation,
which have yielded significant insight into the processes
involved [3, 9—11].

There have been a number of previous experimental
studies of the kinetics of aggregation; we mention a few
typical examples. Light-scattering studies of various ag-
gregating systems indicated that the cluster size distri-
butions appeared to scale in both size and time [1). The
cluster size distribution of antigens cross linked by anti-
bodies in thr==dimensional suspensions was found to be
a monotonically decreasing function of the cluster size
[12]. However, in coagulation of molecular gases the dis-
tributions did not decay monotonically, but rather exhib-
ited a "bell-shaped" form [13].These differences presum-
ably arise from differences in the aggregation conditions,
due to differing particle reaction probabilities. To our
knowledge, apart from a preliminary report of the present
work [14], there has been only one previous investigation
of the kinetics of aggregation in a two-dimensional sys-
tem, in which scaling laws were demonstrated [15].

Colloidal particles may be spread at a liquid inter-
face to form stable, quasi-two-dimensional monolayers.
Our experimental system comprised micrometer-sized
colloidal particles trapped on the surface of an aqueous
solution [16], aggregation being induced by addition of
an electrolyte (CaC12) solution. In the preceding paper
[17] (hereafter referred to as paper I) we have shown that
as the electrolyte concentration was increased the mor-
phology of the aggregates suddenly changed, from that
characteristic of RLCA to DLCA. Here we consider the
corresponding kinetic behavior.

We present measurements of the cluster size distribu-
tion and its time dependence, and show that the shape
of the distribution is somewhat affected by the aggrega-
tion conditions. These results are interpreted in terms of
the proposed scaling relations for cluster-cluster aggrega-
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tion. The experiment probes the inherent link between
the dynamics of aggregation and the resultant structure,
a determination of which is essential for a complete un-

derstanding of the underlying physics.

II. THEORETICAL BACKGROUND

Various theoretical approaches to the kinetics of aggre-
gation phenomena have been pursued. These include di-
rect analyses based on Smoluchowski's coagulation equa-
tion [18, 19], Friedlander's theory of self-preserving spec-
tra [20, 21], and computer simulations [9, 3, 10, 11]. The
latter not only directly lead to predictions of scaling char-
acteristics of the cluster size distribution, some of which
may also be deduced from the Smoluchowski approach,
but also predict morphological characteristics. Here we

concentrate upon the results of simulations.

n, (t). For p ) p, large clusters are more likely to meet
and aggregate. If o ) o, the chance of aggregation occur-
ring when clusters meet is greater when they are larger.
Both cases lead to an increased aggregation rate for large
s, and thus to a monotonic decrease in n, (t) with s [3,
10]. Conversely, if either exponent is below its critical
value the smaller clusters aggregate faster, so that n, (t)
is no longer monotonic, but becomes bell-shaped with a
maximum at a nonzero s [3, 10].

Regime 1. Simulations for p ) p, or o ) cr, demon-
strate that, in the limit of large t and s and for low par-
ticle densities, n, (t) reduces to a scaling form, which is a
function of a single combination of t and s. This regime
obviously includes classic DLCA: p = o = 0 and P = 1.
The cluster size distribution can be represented by a form
incorporating both dynamic (a and z) and static (7 ) scal-
ing exponents [9]:

Scaling theory

We briefiy summarize the salient features of the scaling
phenomena of aggregation kinetics, as revealed by some
of the simulations [9, 3, 10].

In "classic" DLCA particles and clusters difFuse at a
constant, size-independent rate aggregating irreversibly
on first contact (i.e. , the probability of reaction is 1).
RLCA only difFers in that the reaction probability is « 1,
allowing more contacts to be explored before irreversible
aggregation occurs. In studies of the kinetics of aggre-
gation these two models have been extended to include
a cluster diffusivity or reaction probability which is size
dependent [9, 3, 10].

It is assumed that, ignoring shape effects, the diffusion
coefficient 'D, scales with the cluster size s as [9]

+s = +os~)

where 'Dp is a constant and p is the difFusivity exponent.
While there are theoretical arguments fixing p ( —1/D,
where D is the fractal dimension) in three-dimensional
colloidal suspensions [11], the situation is less clear for
clusters trapped in two dimensions.

Similarly, the probability that a cluster of size i reacts
on contact with a cluster of size j to form a cluster of
size i + j may also be size dependent [10]:

P,,(o)= Pp(ij), . (2)

where Pp is a constant (& 1), o is the sticking probability
exponent, and P,~ is set to unity if Pp(ij) & 1.

The aggregation kinetics fall into two qualitatively dif-

ferent classes, depending on whether p or o. lies above
or below critical values [3, 10]. The critical value p, (or
o,) at which crossover occurs depends upon the space
dimensionality d. For d = 2, as here, p, —0.25 (for
o = 0) and cr, —0.60 (for p = 0). These critical values

vary with the magnitude of the other exponent, the ef-
fects of the two exponents being similar (and appearing
to be additive) [3, 10]. We will call the case where either
exponent (or their combination) exceeds the appropriate
critical value regime 1, the opposite case being regime 2.

The mass dependences of 'Vs and of P,~ have similar ef-

fects on the form of the cluster size distribution function

n, (t) oc t s h(s/t'),

where the cutoff function h(z) 1 for z « 1 and h(z) «
1 for z )) 1. The exponents u, z, and 7. are connected by
a scaling relation. Assuming that the monolayer density
is constant, this scaling form yields [9]

u) = (2 —~)z. (4)

n, (t) oc s 2f(s/t') (8)

continues to hold, but with a different cutoff function:

f(z) = z~g(z) where g(z) && 1 for z && 1 and g(z) && 1

for z )& 1. Thus f(z) goes to zero for both small and

large z and n, (t) exhibits a maximum, often described
as a bell-shaped curve. There is no 7 exponent, as Eq. (3)
no longer applies.

Equation (8) can be written as

n, (t) oc t "g(s/t'), (9)

As w and z must be positive this implies r & 2.
Equation (3) leads to characteristic scaling behavior

for the total number of clusters and the average cluster
size. The weight average cluster size S(t) diverges as

S(t) oc t',

while the total number of clusters in the system N(t)
scales ss [9]

N(t) tx (
The temporal scaling of N(t) thus depends upon the ex-

ponent r, while the exponent for S(t) is always z.
Equation (3) can be written in the alternative form [9]

n, (t) oc s ~f(s/t'),

with f(z) zs for z « 1 or f(z) « 1 for z)) 1, where'
is usually called the crossover exponent: 6 = 2 —~. Thus
n, (t) falls algebraically with s, with exponent 7, up to
the cutoff at x 1.

Regime 8. In regime 2, where p & p, (or o & o,), the
scaling form [3, 10]
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where id = 2z [cf. Eq. (4) with 7 = 0]. The scaling laws
quoted above for S(t) and N(t) remain valid in regime 2,
as they derive from the denominator of x, namely t'

Predictions The form of the scaling function depends
on the dynamics of the aggregation process and is dif-
ferent in the two regimes. For g & g, the cluster size
distribution function decays algebraically with 8, deter-
mined by the static exponent ~, whereas for p ( p, this
changes qualitatively, n, (t) becoming bell-shaped [3, 10].

A common tangent to the cluster size distributions
touches n, (t) in the region where the cutoff behavior of
f(x) appears: x 1. Both cutoff functions f(x) and

f(x) are about unity at this point. Scaling theory pre-
dicts the slope of this common tangent to be —2 in both
regimes.

The various scaling laws mentioned above will be ex-
amined below. Although the simulations involved very
low particle densities it may be hoped that they apply to
physically realistic situations. The scaling applies asymp-
totically, in the limit of large clusters and long times.
However, for real systems t is subject to an upper bound
because in a system of finite size N(t) eventually becomes
so low that n, (t) loses its meaning, and a crossover to
gelation must occur at some time tz. In this limit the
dynamic scaling breaks down.

III. EXPERIMENTAL DETAILS

Most of the experimental procedures have been de-
tailed in paper I, and only a brief summary of the proce-
dures, concentrating on those aspects which are most rel-
evant to the kinetic studies, is required. In the preceding
paper we have shown that as the molarity of the aque-
ous CaClq subphase was increased, the fractal structure
of the aggregates suddenly changed, from a value com-
patible with RLCA to one closer to DLCA. The change
occurred within the molarity range 0.45—0.55M, and was
accompanied by an increase in cluster anisotropy, as ex-
pected.

Colloidal particles were spread on the surface of a aque-
ous solution of 0.001M NaC1, where they were effectively
trapped. Such monolayers were stable against aggrega-
tion for at least 48 h. Aggregation was induced by "poi-
soning" the aqueous substrate by injecting CaClz solu-
tion.

Experimentally all times were measured from the in-
jection of the electrolyte solution. In preliminary exper-
iments [14] a significant change in the kinetics was seen
after about 3 h: it was found that the denser CaClq so-
lution sank to the bottom of the sample cell on injection,
subsequent mixing being governed by difFusion. Various
stratagems were adopted to overcome this delayed ac-
tion, having very similar effects. One example involved
gently stirring the subphase (at a rate which avoided
shear-induced aggregation) for some 10 min to ensure
thorough mixing. Rather surprisingly, as will be seen,
these variations in the time for ionic equilibration had
very little effect upon the observed aggregation kinetics.
We therefore present data taken using all methods.

The concentration of the CaClq subphase affects the

aggregation process. The higher this concentration, the
shorter the Debye screening length of the cloud of coun-
terions surrounding a colloidal particle, the closer the
particles can approach, and the greater the chance of
sticking on first approach.

The aggregating monolayers were observed microscop-
ically, video images being captured for subsequent anal-
ysis. Each pixel was approximately the same size as the
1-pm-diam colloidal particles. The analysis procedures
have been detailed in paper I. In analysing the kinetics,
as for the structural studies, clusters of 4 or fewer pix-
els were ignored (see paper I). There was no falloff in
resolution as the clusters grow in size.

The area observed was small compared to the whole
surface area, ensuring the homogeneity of the sample.
The experiments lasted for several hours, during which
time slow, gross motions of the surface film meant that
different areas were sampled. This does not appear to
have affected the results. Typically the area recorded
included about 3 x 104 colloidal particles, ensuring rather
good statistics in the final results.

IV. RESULTS

The cluster size distribution function is the central
quantity of interest in kinetic studies of aggregation. The
time dependence of n, (t) reflects the change of the clus-
ter size distribution during the growth. Our general ap-
proach is to consider the gross features of n, (t), its vari-
ous scaling behaviors and the collapse of n, (t) at various
times onto common scaling functions for various aggre-
gation conditions.

A. Cluster size distribution

Cluster sizes were defined in terms of the number of
pixels comprising the cluster. It is convenient to define
n, (t) as the number of clusters comprising s pixels within
the (fixed) surface area observed by the video system.
At large sizes there were comparatively few clusters and
nonuniform histogram bins are more useful. We use bin
widths (6s) which are equal logarithmic increments [usu-
ally logia(6s) = 0.2] over a range 4 ( s ( 1000 pixels.

Figures 1 and 2 show size distributions at various times
for two experimental substrate molarities. Typically each
data set included over 3 x 104 clusters containing 4 x 10s
pixels in total. Generally n, (t) broadened with time, the
number of clusters decreasing and the mass of the largest
clusters increasing with time. Initially, and for small
times, the distributions tended to exhibit maxima at low
8. For substrate molarities & 0.45M this maximum per-
sisted and grew into a rather broad peak (Fig. 1). How-
ever, above this molarity the distributions evolved to a
monotonic decay with s (Fig. 2).

As expected, for the larger molarities n, (t) could be
approximated at large times and below a cutoff value
of s by a power law [Eq. (3)]. The cutofF occurred at
some characteristic cluster size (whose value increased
with time) corresponding to x 1 in Eq. (7). Thus after
some critical time there were clusters of all sizes up to
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FIG. 1. Cluster size distributions for various times for a
0.25M CaC12 subphase. The legend shows, for each data set,
the times (in minutes) from addition of the CaClz to the sub-
phase. Here, and in other figures, the lines are spline fits to
the data, and only serve to guide the eye. The dashed line in-
dicates the common tangent to the distributions, determined
as described in the text.

a maximum and there was no characteristic cluster size
in the system. The absence of a characteristic scale is
typical of "critical" behavior.

The scaling regions of n, (t) observed for all the ex-
periments above 0.45M were analyzed to determine the
static scaling exponent ~. The data were smoothed us-

ing cubic B-spline approximations. For large t, regions of
nearly constant gradient (dn, /ds) were evident below the
cutoff. The gradients of such regions were averaged for
the different data sets to estimate 7. for each experiment
(Table I). The values lay in the range 0.4 & 7 & 1.2, with
errors of the order of 30%. As required by Eq. (4), these
values are less than 2. Indeed, within the errors w is & 1,

FIG. 2. Same as for Fig. 1, but for a 0.73M substrate. The
rather different form of n (t) from that of Fig. 1 is evident.
The static scaling exponent w was determined from the slopes
of the distributions at large t.

so that N(t) should scale with exponent z [Eq. (6)j. For
lower substrate molarities no extended regions of con-
stant gradient were apparent.

Common tangent. One of the most noticeable features
of the experimental n, (t) (Figs. 1 and 2) was that it was
possible to draw a common tangent to the curves, in ac-
cord with the scaling hypothesis. These common tan-
gents were compared with the predicted slope of —2.0.

The points where the gradient of the spline approx-
imations to the various n, (t) became —2.0 were iden-
tified. They were found to lie close to a straight line
(shown dashed in Figs. 1 and 2), giving an indication
of the common tangent, of slope m The value. s of m
(Table I) were largely consistent with the scaling theory
prediction, but their absolute values slightly exceeded 2.
This discrepancy is probably due to the particle density

TABLE I. Summary of measured static (r) and dynamic (z, &u) scaling exponents, and gradients

(m) of the common tangent. Values of z derived from S(t) and from N(t) are shown separately.
Where more than one experiment was carried out for a given concentration weighted averages are
quoted.

Conc. CaClq
(M)
0.25
0.360
0.45
0.55
0.73
0.91

No.
expts.

1
1
2
1
6
1

0.4 + 0.1
0.8 10.1
1.2 + 0.3

Zg

4.1 + 0.5
3.5 6 0.3
5.5 + 0.5
5.6 + 0.4
5.2 6 0.2
7.8 6 0.8

ZN

4.6 + 0.2
3.4 + 0.4
6.5 + 0.6
5.0 + 0.3
5.5 + 0.2
9.3 6 1.6

10+27
9.1 + 6.8
5.3 + 1.6
11+16

2.00 + 0.06
2.15 + 0.17
2.55 + 0.24
2.08 + 0.01
2.02 + 0.02
2.16 + 0.16
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to be made between experiments.
The scaling was often evident only over a rather narrow

range of time because of various effects.

(i) Initially S(t) grew slowly, but at large t it increased
more rapidly, apparently as a power law in time. This
will be discussed fully below.

(ii) In some experiments the mean cluster size S(t) sat-
urated at long times due to the finite size of the system.

(iii) The effect of the initially monodisperse distribu-
tion may have taken some time to decay.

0
1.0 1.5 2.0

ipgip(t)

2,5 3.0

FIG. 3. Plot of logip[n, (t)] vs logip(t) for data from Fig. 1.
The legend shows the cluster size ranges corresponding to each
data set. The dynamic exponent u was determined from the
asymptotic scaling regions.

and finite size of our experimental system which make
eventual gelation inevitable. Very large clusters would
be more likely to intersect the boundary of the video im-
age than small ones (and thus be rejected —see paper I),
so that the image analyzed will be artificially deficient
in large clusters. Thus at large times n, (t) would tend
to be reduced somewhat at large s, increasing the gradi-
ent of the common tangent. While statistical corrections
for these efFects could be applied, the existence of com-
mon tangents to the present experimental data and their
slopes provide strong support for the scaling hypothesis

Dynamic scaling of n, (t). Figure 3 shows a typical set
of distributions n, (t) plotted as a function of time for sev-
eral different ranges of cluster size. The general behavior
is as expected from the simulations. The number of sinall
clusters fell monotonically as they joined together to form
larger clusters. However, the initial population of inter-
mediate size clusters (all but the smallest class shown)
was negligible, so that n, (t) first grew, only decreasing
later as these clusters aggregated to form larger clusters.
In the limit of large times the numbers of clusters of all
sizes except the very largest must fall.

At large times scaling behavior was evident. Power-
law fits to each curve in these asymptotic limits yielded
the dynamic scaling exponent ~ By averag. ing these val-
ues the exponent was estimated for each experiment (Ta-
ble I). In one experiment (0.36M) no extended region of
scaling could be found. At 0.73M no significant di8er-
ences could be found in the fitted values of cu for ex-
periments in which the onset of rapid aggregation was
delayed. This suggests that this aspect of the scaling be-
havior was not materially affected by the different times
for ionic equilibration noted above.
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Variations in the protocol used in adding CaClq to the
subphase did not, as originally expected [14], lead to vari-
ations in z (Fig. 5). In certain experiments time delays
due to ionic equilibration were eliminated, but rapid clus-
ter growth still did not occur from t = 0. Once rapid
aggregation set in, the average cluster size grew at a rate
essentially independent of the delays, but dependent on
the substrate molarity, confirming the lack of effect of
the difFerent times for ionic equilibration upon the scal-
ing behavior.

Given the limited time span of the scaling regime, it
was difficult to positively identify the behavior of S(t) as
power law or exponential. The data of Figs. 4 and 5 are
replotted semilogarithmically in Figs. 6 and 7 to enable
the reader to form some idea of the likely applicability of
exponential growth. We found that power-law fits were

B. Scaling of N(t) and S(t)

1

1.0 1.5 2.0

log p(t)

2.5
I I 1

The variations with time of the total number of clus-
ters N(t) and the weight average cluster size S(t) were
investigated. Two typical sets of data are shown in Fig. 4,
plotted on the same scale to enable direct comparisons

FIG. 4. Plot of logip [S(t)]and logqp [N(t)) for experiments
on (a) 0.25M and (b) 0.91M CaC12 subphases. The dynamic
exponent z was estimated from the slopes of the asymptotic
scaling regimes for both quantities.



2060 D. J. ROBINSON AND J. C. EARNSHAW 46

usually better than those involving an exponential func-
tion. The values of the exponent (zs) obtained by the
power-law fits to S(t) in the asymptotic region are given
in Table I. The fitted exponents were about 5, tending to
rise with increasing molarity. Such large exponents were
dificult to measure accurately. The experimental repro-
ducibility is indicated by the spread of the results for the
several 0.73M experiments: from 4.4 6 0.5 to 6.5 6 0.4.
However, it is clear that the increase of S(t) is more rapid
at 0.91M than at 0.25M (Fig. 4).

The rate of disappearance of clusters is related to the
rate of increase of the average cluster size. The time de-
pendence of N(t) is ultimately determined by the static
scaling exponent r [Eq. (3)j. Only if w is less than 1.0
will the dynamic scaling of the S(t) and N(t) data be
the same. In fact, power-law fits to the asymptotic be-
havior of N(t) yielded values of the exponent (ztv) which
corresponded quite well with those from S(t) (Table I).
This provides an independent check upon the values of w

given above.

C. Collapse onto common form

A further check of the scaling of n, (t) is possible.
Equations (7) and (9) can both be written in the form
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FIG. 6. The data of Fig. 4 replotted against time, to
enable the reader to compare the likelihood of exponential
growth kinetics, as opposed to the power-law behavior of that
figure.
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FIG. 5. Comparison of the variations of logqe[S(t)] and
Iogqe[N(t)] for two experiments on 0.73M subphases. In (a)
the CaC12 was allowed to mix by diffusion, whereas in (b) the
subphase was stirred (see text). The z exponents were very
similar in both cases: e.g. , zs = 5.8 +0.5 for (a) and 4.9 +0.4
fo; (b), despite rapid aggregation being delayed to 320 min in

(a) compared to 30 min in (b).

n, (t) ~ t-"F(s/t'), (10)

where F(x) is f(x)/x2 in regime 1 or g(x) in regime 2.
Recalling that S(t) oc t', this suggests that when, for a
given experiment, S~(t)n, (t) is plotted against s/S(t) the
distributions for all times should collapse onto a common
functional form, difFerent for the two scaling regimes.
The data at both short and long times may not collapse
correctly on to the common form: at small t due to the
delay in the onset of scaling of S(t) (cf. Fig. 5), and at
large t because of statistical fluctuations of n, (t).

Now in regime 1, f(x) xs for x « 1 or f(x) « 1 for
x &) 1, whereas in regime 2, g(x) « 1 for both x « 1

and x )& 1. Very different forms of F(x) in Eq. (10) are
thus expected in the two regimes. In regime 1, recalling
that 6 = 2 —w, F(x) oc x below z = 1, falling very
rapidly above x = 1. In regime 2, however, F(x) is just
g(x) and thus exhibits a peak at x = 1.

For all experiments n, (t) was replotted in the form ex-
pected. Two representative cases are shown in Figs. 8
and 9. The reduction of the distributions for each exper-
iment to a unique master curve is quite evident, apart
from certain departures at small t, probably due to the
cause just noted. The cluster size distribution can in-
deed be described by N, (t) t 'F(s/t'), the shape of
the master curves reflecting the intrinsic properties of the
aggregation process. The forms of F(x) are almost ex-
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the largest time is omitted as it was very noisy. The common
form onto which the data collapse difFers somewhat from that
at low subphase molarity; see text.
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actly the same for the two examples shown, except that
the lower molarity data show a rather flatter function for
z ( 1. Similar efFects were observed for all experiments.
The reduction to a common scaling function does not in-
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FIG. 8. The observed n, (t) for an experiment on a 0.36M

subphase, scaled to a common form. The legend shows the
times (in minutes) from addition of the CaC12 to the subphase
for each data set. Apart from the small s data at the three
lowest times, the collapse of the distributions onto a single
function is excellent.

FIG. 7. The data of Fig. 5 replotted semilogarithmically,
to illustrate the possibility of exponential kinetics. V. D1SCUSSION

We have examined the evolution of the cluster size dis-
tribution function of latex particles aggregating in two di-
mensions. Morphologically the clusters observed at long
times in these experiments appear to conform to expecta-
tions for RLCA and DLCA in two dimensions (paper I).
The change between the two structural regimes occurred
at substrate concentrations between 0.45M and 0.55M.
We may ask whether there is a change in kinetics associ-
ated with this change in structure.

In comparing the present experimental results with the
scaling theory, the existence of two scaling regimes must
be borne in mind. To recap, these correspond to values
of the diffusivity exponent (p) or the sticking probabil-
ity exponent (o) which exceed, or are less than, critical
values.

Physically 'D, would be expected to fall as the clus-
ter mass increases: p & 0. However, visual inspection of
our colloidal monolayers clearly showed that the larger
clusters were more mobile. We do not associate this mo-
bility with Brownian motion: simply stated, larger clus-
ters tended to move about more rapidly than smaller
ones. The reasons are not clear, but it may be that the
large clusters confined on a liquid interface are more sus-
ceptible to residual thermal air currents, present despite
the sample cell being enclosed. At all events the phys-
ical phenomena seem to affect the aggregation process
in a manner similar to that corresponding to p ) 0 (i.e.,
above p, ). While the difFusion coefficient cannot rise with
cluster mass, it is convenient to speak of an "effective"
p which is positive. There seems no physical reason why
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this effective p should depend upon the concentration
of the CaCl2 subphase, whereas this will affect cr. We
conclude that any variations of the observed phenomena
with substrate molarity probably reQect the effects of cr.
The effects due to a appear to be partially offset by those
due to the positive efFective p [10]. In fact, some appro-
priate combination of p and o. must be considered, as the
effects of the two exponents seem to be additive [10]. In
the absence of any more definite information, (p+ cr) will
be used as shorthand for this combination, without any
implication that this is correct.

Figure 3 is consistent with a positive effective p. The
population of small clusters (s & 20) decays rather slowly
at first because of the infrequent collision rate and small
sticking probability for these small clusters, but after a
certain period, when some larger clusters have formed,
the decrease becomes very rapid. It would appear that
smaller clusters disappear rapidly because of aggregation
with the more mobile larger clusters, rather than with
other small clusters.

The cluster size distributions observed broadly agree
with the expected forms [3]. The existence of common
tangents to the size distributions and the closeness of
the gradients to the predicted value support the scaling
hypothesis.

At the higher subphase molarities n, (t) decays alge-
braically with s (Fig 2). T. his indicates that (p + o)
exceeds the appropriate critical value. Given that the
effective p & 0, we can only say that cr cannot be so
small that the combined exponent falls below this crit-
ical value. The values of the static scaling exponent v

determined for substrate molarities & 0.55M (Table I)
were compatible with (p+ o) being above the critical
value.

The value of the r exponent is clearly dependent upon
the concentration of the CaClq subphase. As we believe
the efFective p is constant, this implies that the stick-
ing probability exponent o increases systematically with
subphase concentration. This conclusion is supported by
other aspects of the results.

At lower CaClz concentrations (& 0.45M) n, (t) took
a rather different form, exhibiting a broad maximum at
nonzero s for at least some intermediate times (Fig. 1).
In these experiments it was not possible to And extended
regions of scaling with s, and so v could not be deter-
mined. Both these features suggest that (p+o ) fell below
the critical value. Simulations suggest that in this case
n, (t) will adopt a bell-shaped form [3, 10]. There is a ten-
dency towards this behavior at low salt molarity, but the
expected large maxima in the experimental cluster size
distributions were never clearly observed. In particular
the common form found on collapse of the size distribu-
tion functions (Figs. 8 and 9) never displayed a marked
peak, as expected when (p+ 0') & (p+ 0), [Eq. (9)].

In all our data, maxima in the n, (t) apparently only
occurred during the transition to the asymptotic behav-
ior. Overall the common forms onto which collapse oc-
curred were compatible with (p+ cr) ) (p+ o), (i.e. ,

scaling regime 1) with 7 & 0 at all substrate molari-
ties: i.e. , f(x)/xz oc x . The master functions were,

indeed, compatible within error with the fitted values of
7., including w = 0 for subphase concentrations & 0.45M.
This suggests that under all conditions (p+ o) never fell
significantly below its eritieal value. Under appropriate
conditions it appears, however, that bell-shaped size dis-
tributions can be observed in two-dimensional colloidal
aggregation [22], presumably due to different conditions.

The common forms found by collapse of n, (t) for dif-
ferent substrate molarities (Figs. 8 and 9) only differed
for z & —0.5, indicating the validity of the scaling ar-
guments. It is remarkable that the common function
found by collapse of data from the only other study [15]
of which we are aware agreed excellently with that from
the present data for x ) —0.5. That study involved ag-
gregation of 3.6-pm magnetized spheres; differences at
low values of 2: would be expected if the static expo-
nent ~ differed for the two systems due to differences
of p or o. The agreement of the scaling functions for
two systems involving such different interparticle inter-
actions provides powerful evidence for the universahty of
the scaling theory [2, 4).

Taken together the above results provide the strongest
evidence that the present data obey the scaling hypoth-
esis, the static exponent ~ being in good agreement with
expectations, while the common tangent and rescaled dis-
tributions include certain dynamic aspects of the scaling.
The collapse of the size distributions assumes algebraic
scaling of S(t), and the success of this procedure indicates
the correctness of this assumption.

Other dynamic scaling phenomena were also in broad
accord with expectation from the simulations. Asymp-
totically n, (t), S(t), and N(t) appeared to scale alge-
braically with t. In simulations [3, 10] it has proved im-
possible to distinguish between algebraic scaling, expo-
nential scaling and a gelation transition: S(t) oc (ts —t)~.
It was similarly difficult to distinguish algebraic and
exponential scaling in the present experimental data.
Power-law fits to the data seemed somewhat better, al-
though the difFerences were probably not statistically sig-
nificant. For comparison with the simulations it is, how-
ever, convenient to concentrate on the algebraic scaling.

The data for n, (t), N(t), and S(t) yielded the dy-
namic exponents u and z for various values of the sticking
probability exponent o (p being essentially fixed). The
exponents were determined from the sometimes rather
limited asymptotic regions of the data and are there-
fore subject to relatively large uncertainties. In the
asymptotic regime the z exponent from both S(t) and
N(t) increased systematically with the substrate molar-
ity (Fig. 10). Given the apparent constancy of the ef-
fective p, this affords further evidence of the effective
modifieation of o. by the substrate molarity.

The values reported here for the dynamic exponents
far exceed those from the computer simulations underpin-
ning the scaling theory [9,3, 10]. The simulations are only
expected to be strictly valid in the zero density limit, as
they deal with considerably lower initial concentrations
than can realistically be attained experimentally ( 8'
surface coverage). However, this cannot explain the fi-

nite time delay before rapid aggregation occurred for the
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experiments.
The present results still serve as a physical test of the

validity of any theoretical treatment. We have sought
asymptotic scaling behavior: while the exponents may
not be strictly correct their relative values may still have
some merit. They may well be affected by processes not
taken into account in the simulations cited. Despite the
large uncertainties, the absolute values of the static (r)
and dynamic (cu and z) exponents are consistent with the
relationship u = (2 —r)z [Eq. (4)] expected from simu-
lations. For all our experimental data the combination
[u —(2 —r)z] was compatible with zero within the errors.
The best test uses the 0.73M CaC12 data, for which the
weighted mean was —1.1 6 1.7.

The unexpected aspects of the aggregation behavior,
primarily the delayed onset of the dynamic scaling be-
havior and the consequent large values of the exponents,
could arise from a crossover from RLCA to DLCA. They
are not a function of difFusive delays in ionic equilibra-
tion of the subphase, and must be due to the underlying
aggregation mechanism. At small t there are only small
clusters in the system. If they do not stick on collision,
there is a good chance that they separate again. The
number of clusters thus decreases slowly —the aggrega-
tion is reaction limited. As t increases, larger clusters
appear which can make contact at many points, the stick-
ing probability becomes essentially unity, and the process
crosses over into DLCA. The question of this delayed on-
set of aggregation and its possible origin is discussed fully
in the following paper [23].

Simulations of RLCA have indeed shown that a
crossover in the kinetics to DLCA does occur [10, 11].
Initially S(t) and N(t) change very slowly, only approach-
ing their asymptotic algebraic scaling (with exponent z)
after times which depend upon the particle-particle stick-
ing probability Po [10]. More recent simulations, albeit
in three dimensions, using rather different dependences
of sticking probability on cluster size than that of Eq. (2)
suggest that the exponent z may be very high, & 4 [11].
The present results may well afford quantitative support

Subphase Concentration

FIG. 10. The variation of the dynamic scaling exponent
determined from both S(t) [zs (0)] and from N(t) [z~ (&)]
with molarity of the CaClz solution, The z~ data are dis-
placed horizontally for clarity.

to this picture. We do not pursue this here because dif-
ferent formulations used for P;z in these simulations lead
to some differences in the predicted exponents [11].

Such a crossover may explain the variations of the
shape of n, (t) at the lower molarities (Fig. 1), where cr is
apparently smallest. In these experiments the maxima in
n, (t) began to develop during the RLCA phase of aggre-
gation, but were apparently suppressed as the crossover
to DLCA took place. At the higher subphase molarities,
where cr is larger, the tendency for n, (t) to develop into
a bell-shaped curve will be less as (p+ o) will be fur-
ther from the critical value, so that this feature of the
crossover behavior would be less evident.

Returning to the comparison with the structural stud-
ies of paper I, the change in structural character from
RLCA to DLCA at subphase concentrations between
0.45M and 0.55M does not seem to be accompanied by
a marked change in aggregation kinetics. Instead we find
only a subtle variation in the kinetic behavior (see fol-

lowing paper [23]). All the observed aggregation kinetics
may be explained by the combined efFects of a constant,
positive effective cluster difFusion exponent and an exper-
imentally variable cluster sticking probability exponent.

VI. CONCLUSIONS

We have studied the kinetics of colloidal aggregation
in two dimensions. The experimental results agree with
the hypothesis that this process obeys scaling laws. The
results, over a wide range of experimental conditions, are
entirely self-consistent, and in quantitative accord with
the results of recent simulations [9, 3, 10, 11]. Compar-
isons with other experimental data [15] support the idea
that the process is universal in character.

The salt in the aqueous subphase decreased the range
of the repulsive part of the interparticle interactions,
and hence increased the interparticle sticking probabil-
ity. Whereas increasing the salt concentration leads to an
abrupt change in the structure of the aggregates, no such
change is apparent in the kinetic aspects. At low sub-
phase molarities the structures accord with expectation
for RLCA, while at high values they agree with DLCA
(paper I). However, the effect on the kinetics of increasing
the subphase concentration seemed to be more gradual
and continuous. This efFect resembled that which would
be expected from certain computer simulations [10] if the
rate at which the sticking probability varies with cluster
size were to increase systematically with salt concentra-
tion.

The dynamic scaling found here suggests that at all
subphase concentrations a crossover occurs from RLCA
to DLCA-like phenomena as the aggregation proceeds.
This appears to contradict the structural studies (pa-
per I) which reveal rather sharp concentration dependent
changes in morphology. It is thus clear that a simple de-
termination of the fractal dimension of an aggregating
system cannot, of itself, provide conclusive evidence con-
cerning the nature of the aggregation process involved.
The complete picture is much more complex, and can-
not be described by a single parameter. There is, indeed,
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some apparent difBculty in reconciling the structural and
kinetic aspects of the present study. The following paper
[23] deals with the time dependence of the morphology
of the aggregates and demonstrates that these difficulties
can be resolved.
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