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Random-sequential adsorption of disks of different sizes
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The random-sequential adsorption of disks with two or more sizes onto a planar substrate has been in-

vestigated using computer simulations. For a binary mixture of large and small disks, we find that the
large-disk coverage reaches its asymptotic value exponentially, while the small disk reaches its asymptot-
ic value algebraically according to Feder s law. For a uniform distribution of disk radii, the total cover-

age approaches its asymptotic value algebraically [p( oo ) p(—t) t-r, where p(t) is the coverage at time

t], but the characteristic exponent p has an effective value smaller than —,. If the distribution of disk radii

from which the disks are selected for attempted addition is Gaussian, then the exponent p has a very
small effective value, and the distribution of adsorbed disks becomes very non-Gaussian if the initial
Gaussian distribution is broad. Many of our simulation results can be understood in terms of the
theoretical work of Talbot, Tarjus, and Schaff [Phys. Rev. A 40, 4808 (1980)],but other aspects of this

work are beyond current theoretical approaches.

PACS number(s): 68.10.Jy, 05.40.+j, 05.70.Ln, 02.50.+s

INTRODUCTION

Random-sequential adsorption (RSA) is one of the
most simple and fundamental problems in statistical
physics. In this process objects are added randomly, one
at a time, to a d-dimensional space or lattice with the re-
striction that they must not overlap with previously add-
ed objects. As the process proceeds it becomes more and
more difficult to find regions to which the objects can be
added, and eventually (in the "jamming" limit) no further
additions are possible. For sufficiently large systems this
jamming limit can be characterized by the fraction of
space [p( oo )] covered by the deposited objects. The one-
dimensional (d =1) model in which segments of equal
length are added to a line is known as the "car parking"
problem. A discretized (lattice) version of this model has
been used to represent intramolecular reactions of linear
polymers [1,2] and the oxidation of polysaccharides [3].
Similar models in which the adsorbed object may occupy
more than one lattice site has been used to represent the
binding of large ligands (polypeptides, dye molecules, an-
tibiotics, etc.) to linear macromolecules [4]. It has also
been suggested that the continuum model can be applied
to the adsorption of linear molecules into parallel troughs
[5].

In the two-dimensional case lattice models have been
used to describe the adsorption and reaction of small
molecules on liat surfaces [6—8]. The most successful ap-
plication is that of the o5'-lattice random-sequential disk
adsorption model [10—12] to the adsorption of globular
macromolecules [13]and polymer microspheres [14,15].

In the three-dimensional case, work on random-
sequential sphere-packing simulations [16—19] has been
motivated in part by the idea that this model might con-

tribute to our understanding of the physics of Quids and
other amorphous materials. However, this is not a very
realistic model for this purpose [20].

A variety of exact theoretical results have been ob-
tained for one-dimensional random-sequential-adsorption
problems [1—3,20—22]. In two dimensions exact results
have been obtained for a number of lattice models
[6,23,24], but there has been relatively little progress on
even the most simple off-lattice models. Motivated by the
results of one- and two-dimensional computer simula-
tions, Feder [12) proposed that the asymptotic approach
of the surface coverage p(t) to its asymptotic (taboo )

value p( oo ) could be described by

pd( oo ) pd(t)-t—

where t is the time and d is the dimensionality. Here t is
to be interpreted in terms of a scenario in which objects
are added randomly, at a constant rate, to a d-
dimensional substrate and accepted by the substrate only
if they do not overlap previously adsorbed objects. The
time t may then be measured in terms of the number of
attempted additions per unit length (area, volume, etc.) or
the coverage that would be attained if overlap was al-
lowed and all attempted additions were accepted.
Theoretical arguments supporting Feder's law [Eq. (1)]
have been presented by Swendsen [25] and Pomeau [26].
Feder's law appears to be valid for the random-sequential
adsorption of hyperspheres [17,18,27] but not for ran-
domly oriented elipses [28] and rectangles [29] or parallel
squares [25,30].

Recently, there has been a resurgence of interest in
random-sequential-adsorption models [29—49]. Much of
this recent work is concerned with the adsorption of an-
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isometric particles on continuous two-dimensional sub-
strates. For these systems it appears that the approach to
the asymptotic coverage can be described in terms of gen-
eralization of Eq. (1):

(2)

Some of the more recent work was also concerned with
the adsorption of rectangles with a width of one lattice
unit and two different lengths l, and l2 lattice units
where I, and l2 are integers) onto a square lattice. Very
recently [49] Bartelt and Privman have obtained an exact
solution for the case I& =1 l2~ ~.

In general there has been very little attention given to
the problem of the random-sequential adsorption of disks
or spheres of di8'erent sizes despite the fact that this is a
problem that is amendable with experimental study and
some of the most important random-sequential examples
involve the adsorption of macroscopic particles that are
not perfectly monodisperse. Talbot and co-workers
[46,47] have carried out theoretical studies of the RSA
process for binary mixtures and polydisperse mixtures.
The work on binary mixtures is concerned with the RSA
of disks of very different sizes [46] and the work on po-
lydisperse mixtures [47] is concerned with the asymptotic
approach to the jamming limit.

Here we report the results obtained from computer
simulations carried out using a two-dimensional substrate
with disks of two or more radii. Most of our work has
been devoted to three models: (i) the deposition of disks
with two different radii (r„and rtt with r„&re� ), (ii) the
deposition of disks with radii uniformly distributed over
the range r„&r & rz, and (iii) the deposition of disks with
radii selected from a truncated Gaussian distribution.

COMPUTER SIMULATIONS

5t =rtr, /L (3)

each time an attempt is made to deposit a disk of radius

r, . If X„sites are still active and addition is attempted
only in still active cells, then the time increment is given

by

deposited disk and r, is the radius of the selected disk. ) If
no overlaps are found, the selected disk is added to the
list of disk coordinates, and the radii and the selected cell
on the underlying lattice are updated so that the disk can
easily be located in subsequent overlap checks. If an
overlap is detected in a new lattice cell, trial position and
radius are selected and the procedure described above is
repeated.

The algorithm described above can be improved slight-
ly (by a factor of 2 —3) by selecting only "active" lattice
cells in which deposition is still possible. This requires a
check of those cells in the vicinity of each newly deposit-
ed disk to determine which sites, if any, are occluded by
the newly deposited disk. A list of active lattice cells
must also be maintained and updated. This adds little
complexity to the algorithm and the additional storage
requirements for the list of active sites does not present a
serious problem.

In these simulations we did not attempt to reach the
jamming limit. Instead, we relied on Feder s law or a
suitable generalization [Eq. (2)] to estimate the asymptot-
ic coverage density p( ~ ) and radius distribution N„( ~ ).
Here N„(t)5r is the number of disks with radii in the
range r to r +5r at time t To d.o this (and to explore the
kinetics of the random-sequential-adsorption process) a
time scale must be maintained. In these models the time
t is gradually increased by an amount 5t given by

All of the simulations were carried out using an under-

lying lattice with a size of L XL lattice units. In general
the disk radii are distributed over the range r„(r (r~
and the radius of the smallest disk was selected to be
0.7075 (slightly larger than 1/&2 so that the center of at
most one disk can lie within any particular cell of the un-

derlying lattice). The random-sequential-adsorption algo-
rithm used in this work consists of selecting one of the
lattice cells at random and the selecting a point within
the selected lattice cell at random. A disk radius is then
selected at random from the distribution of radii and an

attempt is made to add a disk with this radius so that its
center lies at the randomly selected point. Each element
in the underlying lattice that is occupied by the center of
a disk is labelled with a number that points to the posi-
tion of that disk in a list of disk radii and coordinates.
This facilitates the process of checking for overlap be-
tween the selected disk and disks that have previously
been deposited. (The search can be restricted to neigh-

boring disks by searching for contacts with only those
disks whose centers lie in lattice cells with x or y coordi-
nate lying within a distance of r „+r,+1 lattice units
from the x or y coordinates, respectively, of the selected
cell. Here r,„ is the maximum radius for any previously

5t =rtr, 2/N„.

An alternative way of introducing a time scale into
these simulations would be to gradually increase the time
(t') by a constant amount (5t') each time an attempt was

made to add a new particle to the substrate. In this ver-
sion of the model, Eq. (3) would be replaced by
5t'=1/L and Eq. (4) by 5t'=1/N„. The times t and t'
are linearly related to each other (t =n(, r, )t') and. both
correspond to the physical time scale for an experiment
in which a constant flux of particles impinges randomly
on a sticky substrate.

As a check on the algorithms used in this work more
than fifty simulations were carried out in which 10 or
2X10 attempts were made to deposit monodisperse
disks in an area of size 512X512. In the later stages of
the process the surface coverage could be described very
well by Eqs. (1) and a value of 0.5467+0.0003 was found
for pz( ~ ) by fitting p2(t) by Eq. (1). This result is in good
agreement with the value of 0.5473+0.0009 reported by
Tanemura [10] and the value of 0.5472+0.0002 obtained
by Hinrichsen and co-workers [27,48].
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RESULTS

Binary mixtures

Simulations were carried out for mixtures of particles
of two different sizes (r„=0.7075 and r~=Rr„) with
values for the radius ratio parameter (R) lying in the
range 1.125(R (8. For each value of R, simulations
were carried out using a range of values for the parame-
ter f, which is the fraction of small disks selected for trial
deposition onto the substrates. In most cases ten values
of f in the range of 0.016 to 0.875 were used. For the
smaller values of f most simulations were carried out on

systems of size L =512 and in most cases L =1024 for
the larger values of R.

Figure 1 shows deposition patterns obtained with equal
numbers of large and small disks (f =

—,
'

) and four
different values for the radius ratio (R = l. 5, 2.0, 4.0, and
8.0). It is, of course, not surprising to find that the frac-
tion of small disks that are successfully absorbed in-
creases as the ratio R increases.

Figure 2 shows the time dependence of the small-disk
coverage [ps(t)) and the large-disk coverage [pL (t)] ob-
tained from simulations carried out with the parameter
R =4 and f =

—,'. Figure 2(a) shows that pL rapidly ap-

FIG. 1. Patterns generated by the binary mixture model with an equal number of large and small disks selected for trial deposi-
tion. (a), (b), (c), and (d) show configurations generated with radius ratio r of 1.5, 2.0, 4.0, and 8.0 near to the jamming limit. In these
small-scale simulations the radius of the small disks was 0.7075 and the system size was 128 X 128.
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Figure 3 shows the dependence of ps( ae ), pL( ~ }, and

pT( ae ) (pT is the total coverage pz+pL ) on the composi-
tion parameter f for four values of R (1.5, 2.0, 4.0, and
8.0). For each value of R simulations were carried out
for ten values of f (0.016, 0.03125, 0.0625, 0.125, 0.25,
0.375, 0.5, 0.625, 0.75, and 0.875). The highest total cov-
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FIG. 2. Time dependence of the coverages pz and pL for
small and large disks obtained from a simulation carried out us-

ing the binary RSA model. Here time is measured in units of
the coverage (p&+pL) that would be obtained if all the disks
were accepted.

proaches a constant value but pz approaches its limiting
value much more slowly. Figure 2(a) indicates that ps(t)
obeys Feder's law [Eq. (1)], while Fig. 2(b) shows that

pL (t) approaches its asymptotic value exponentially:

This behavior appears to be characteristic for all values
of R and f but it is more diScult to demonstrate for
R ~1. Talbot and Schaaf [46] have shown that pr (t) ap-
proaches its asymptotic value exponentially [Eq. (5)],
while ps(t) approaches it asymptotic value algebraically
[Eq. (1)] for R » l. Because pL(t) approaches its asymp-
totic value much more rapidly than ps(t), only small par-
ticles can be added in the Anal stages of the binary RSA
process. The simulations can be made more efficient by
attempting to add only small disks after the probability
that a large disk will be accepted has decayed to an essen-
tially zero value. Advantage was taken of this in some of
our simulations (particularly those with large values for
R and small f values for which the benefit is the largest).

The dependence of the asymptotic values of the disk
coverages [ps ( ae ) and pi ( ~ ) ] and the "decay constant"
(k) in Eq. (5) on the model parameters R and f are of ob-
vious interest. pi ( ~ ) can easily be determined by simply
measuring pi (t) in the saturated regime (t »k '). The
asymptotic small-disk coverage was obtained by extrapo-
lating ps(t) to t = ~ assuming that Feder's law is obeyed.
This procedure is supported by our simulation results
[Fig. 2(a), for example].
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FIG. 3. Dependence of the surface coverages p&, pL, and pT
on the fraction of small disks (f) that are "fed" to the surface.
(a), (b), (c), and (d) show results for 8 = 1.5, 2.0, 4.0, and 8.0, re-
spectively.
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erage is obtained for f~0. In this limit the large disks

are added until the jamming limit is reached

[pL ~p2( ac )], then the gaps between the large disks are
filled with smaller disks. In the limit r~~ the total cov-
erage as f~0 is given by

0..5 I I \ 1 1 I I I I I I I I I

0.4-

03-
8

Ct.

PT P2( }+[ P2( }]P2( (6) 0.2—

f = 0.125

which gives a value of 0.7945 if pz( ac ) is 0.5467. In this

same limit (R —+ ao, f~0) the small-disk coverage is ex-

pected to approach a value given by

pz = [ I —
p2( ~ )]p2( ~ ),

or 0.2478 for p2(ac )=0.5467. As R becomes smaller (in

the f~0 limit) there is less space for the small disks after
the large disks have been adsorbed and we expect that
pz~0 as R ~1.0. Unfortunately, it becomes difficult to
obtain reliable values for p& as this limit is approached
[see Fig. 3(a)].

Talbot and Schaaf [46] have obtained an approximate
theoretical result for pL (ao ) that becomes exact in the
limit R —+ 00 and is accurate for large R and sufficiently

large values of f (f R 0.45 ). A comparison of the
theoretical predictions of Talbot and Schaaf with our
sitnulation results for R =8 and for values of f in the
range 0.5 &f & —,

' [see Fig. 3(d) and Fig. 2 in Ref. [46] ] in-

dicate a satisfactory agreement between the simulations
and theoretical results.

The simulations described above were augmented by
additional simulations that were carried out to explore
the dependence of ps( ec ) and pL ( ae ) on the radius ratio
(R }. Results for R =0.125, 0.5, and 0.875 are shown in

Fig. 4. It is apparent from Fig. 4 that d [pI ( ec )]/dR and

d [ps( ac ) ]/dR diverge as R ~1. However, very accurate
values for pL(ac) and ps(ac) are needed to study the be-

havior as R ~1. A quite extensive series of simulations
was carried out in an attempt to determine how pz(ac )

and pL (ao ) approach the R ~1 limit. Figures 4(d) and

4(e) show the dependence of ln[Ipz( ac, R)—pz( cc, 1}I] on

ln(R —1) and ln[IPL (ac,R)—
pL ( ~, 1)I ] on ln(R —1) for

the f=0. 125, 0.50, and 0.875 simulations. These results

suggest that

Ip( ac, R)—p( ac, 1 )I -(R —I)

The effective value of the exponent a appears to increase
with increasing f and effective values of 0.55, 0.75, and
0.95 were obtained for f =0.125, 0.50, and 0.875, respec-
tively. These results suggest that the exponent a might
increase linearly from a value of 0.5 for f~0 to a value
of 1.0 for f~1.0. However, because of the difficulty of
approaching the t~ ao limit for R ~1 and the accuracy
needed for R~l [where p(R, ac)=p(l, ac)], we cannot
completely eliminate the possibility that a has a universal
(f-independent) asymptotic value. For the smallest values
of R a total of about 10' attempted additions was used
for each data point in Fig. 4. Larger-scale simulations
would be needed to determine unambiguously if the ex-
ponent a depends on the composition parameter f. Such
simulations would be beyond our present resources.

In the simulations described above, almost all the com-
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FICr. 4. Dependence of the asymptotic coverages [pz( ao ) and

pL ( ao ) ] on the radius ratio (R ) obtained from the binary RSA
model. (a), (b), and (c), show results from simulations in which
the fractions of small disks (f) that are fed to the surface are
0.125, 0.50, and 0.875, respectively. (d) and (e) show the depen-
dence of in[ps(R, ~ ) —pz( 1, ~ ) ] and in[pl (R, ce ) —pi ( 1, ao ) ]
on ln(R —1) for f=0.125, 0.5, and 0.875.
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FIG. 5. Dependence of the constant k in Eq. (5) describing
the exponential approach of pL (t) to its asymptotic value on the
radius ratio parameter (R) for the random-sequential adsorp-
tion of binary mixtures.

(10)p( oo ) —p(t) = t

Figure 7 shows the dependence of ln[p, ( oo ) —p(t)] on
Iln(t) for several values of p, ( oo ) for each value of R . A

straight line with a slope of —p would correspond to Eq.
(10). The results shown in Fig. 7 and results from other
simulations suggest that the effective value of the ex-
ponent p varies continuously with R'. In the limit R'~1
we know that p =—'. However, it is not clear if the2'
effective values we find for p represent the true asymptot-
ic behavior or if they are a consequence of a crossover to
a constant exponent for all R') 1 at large enough times.
The theoretical work of Tarjus and Talbot [47] indicates
that Eq. (1) should be replaced by

puter time was spent adding small disks after the large-
disk coverage had reached its asymptotic value. Conse-
quently, additional simulations were carried out with
much fewer attempted depositions (except for small
values of R ) to obtain more accurate values for the con-
stant k in Eq. (5) that describe the exponential approach
of (t} to its asymptotic value. Figure 5 shows the
de endence of k on the disk radius ratio (R ) for simu a-

Pl.
la-

tions carried out with f =0.5. The result shown in ig.
suggest that

k —(R —1.0)

for small value of R and that k has a constant value of or-
der 1 for large values of R. For very small values of R
the constant k has a small value that is dificult to mea-
sure accurately.

6000

5000

4000

- 3000Z

2000-

1000-

0
0

12000

10000

8000

- 6000Z

1.05 1.15 1.2

(a)

(b)

1.25

Uniform radius distribution

A series of simulations was carried out in which the ra-
d" f the disks were selected randomly from a uniform11 0
distribution over the range rA &r &rz. For this mo e
the width of the distribution can be defined in terms of
the parameter R ' =rs /r „.Figure 6 shows the size distri-
bution [N„(t)] at several stages during simulations car-
ried out with size distribution parameters (R') of 1.25,
2.0, and 8.0. Here N„(t)5r is the number of disks with ra-
dii in the range of r to r +5r at time t. The distribution
has a maximum at r = r A and the asymptotic distribution
(in the limit tab oo) becomes more strongly peaked at
r = r as the size distribution becomes broader.A

As in the other simulations we have measured the time
dependence of the total coverage (pT). We find that for
large values of the time (t) the dependence of pT on t can-
not be described by Eq. (1) with d =2. This can be
demonstrated in several ways. In Fig. 7 the dependence
of ln[p, (oo ) —p(t)] on ln(t} is shown for R'=1.25, 2.0,
and 8.0. Here p, ( oo ) is a test value for the asymptotic
coverage. The results in Fig. 7 suggest that for large t the
total coverage p(t) can be described in terms of an equa-
tion with the same form as Eq. (1) but with a different ex-

ponent
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FICx. 6. Dependence of the adsorbed radius distribution at
various stages during polydisperse RSA simulations. The simu-

lations were carried out by attempting to add disks with radii

uniformly distributed over the range r~ & r & r~.. ,a, ,b) and (c)
show distributions for R'=1.25, 2.0, and 8.0, respectively,
where R '=

r& /r „.The time was increased by a factor of about
3.6 between each distribution and results from several simula-

tions were averaged.



46 RANDOM-SEQUENTIAL ADSORPTION OF DISKS OF. . . 2035

( ) (t) f
—1/(d+1)

p = I /(d + I+n) . (12)

Consequently, for a very broad uniform distribution we
might expect an effective value of —,

' for p crossing over to
a value of —, very close to the jamming limit. This idea
seems to be consistent with our simulation results.

for the disk size distribution used in this work. The value
of 3 predicted for the exponent p in Eq. (10) is consistent
with our simulation results for small values of R' but a
larger effective value is found for large values of R'. This
observation may also be understood in terms of the
theoretical results of Tarjus and Talbot [47]. If the distri-
bution function for the radii of the disks that we attempt
to add to this surface has a value of zero but the nth
derivative of the distribution is nonzero at r =rz, then
the exponent p in Eq. (10) is given by [47]

N„-(r rz—) (13)

where the exponent y depends on the size distribution
R'. Since a value greater than 1 for the exponent y
would imply an infinite surface coverage and the effective
value of y is much larger than 1 [Fig. 8(c)] for some value
of R' it is apparent that Eq. (13) cannot correctly de-
scribe the adsorbed disk size distribution over the entire
range of disk sizes (rz &r &rz). Simulations were car-
ried out for other values of the polydispersity parameter

In Fig. 8 the dependence of ln(N„) on

lnt [100(r r—z )]l[(R'—1)rz]] is shown at several
different stages during simulations carried out with ra-
dius ratio (R') of 1.25, 2.0, and 8.0. Figures 6 and 8

show that the disk number distribution (N„) reaches a
stationary (time-dependent) form for the larger disk sizes
in these simulation. The results in Fig. 8 indicate that N„
has the form
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simulations illustrated in Fig. 6. Each curve corresponds to a
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distribution parameter (R') of 1.25, 2.0, and 8.0, respectively.

FIG. 8. Adsorbed disk radius distributions at several stages
during the simulations shown in Figs. 6 and 7. The data is the
same as that displayed in Fig. 6 but here the dependence of
1n(X, ) on 1n[ [100(r—r„)]/[1I(' —1)r„]] is shown.
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R '. In additions to the results shown in Fig. 8, values for

y of 0.67, 1.22, 1.36, and 1.64 were obtained for R'=1.5,
3.0, 4.0, and 6.0, respectively.

In these simulations a disk with a radius r given by

Narrow size distributions

Since two-dimensional random-sequential adsorption
has been studied experimentally using particles (polymer
microspheres) that are almost monodisperse it is impor-

r =PA+X(rtt rg ) (14)

r = r „+x "(rs r„—) (15)

were also carried out for several values of the exponent g.

was first selected and then an attempt was made to add it
to the planar substrate. In Eq. (14) x is a random number
uniformly distributed over the range 0&x &1. Simula-
tions with nonuniform distributions in which the disk ra-
dii were given by

11000
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3000—
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1000— (a)

Results from the truncated-Gaussian-distribution model

0
0

r-5a
10 20 30 40 50 60 70 80 90 100

r r+ 5a

In the Gaussian-distribution model disk radii are
selected randomly from a Gaussian distribution given by

p( ) [ —(r r) la —] (16)

An attempt is made to add the randomly selected disk to
the planar substrate and the disk is "adsorbed" if it does
not overlap with other disks. Disks with radii smaller
than r —Sa were assigned radii of r —5a and disks with
radii larger than r+5a were assigned radii of r+5a. It is
uncommon to find disks with radii smaller than r —Sa or
larger than r+ Sa and this truncation of the Gaussian dis-
tribution has a negligible effect on our simulation results.

Figures 9(a), 9(b), and 9(c) show the distributions of ad-
sorbed disk radii (N„) obtained with three different values
for the width parameter (a) in Eq. (16) [a =0.025r, 0.01r,
and 0. 175r in Figs. 9(a), 9(b), and 9(c), respectively]. Fig-
ure 9(d) shows the distribution of adsorbed disk radii tak-
en from 11 simulations using a broad Gaussian distribu-
tion (a =0.175r). The simulations were carried out on
systems of size 1024X1024. The disk radii varied from
0.7075 (t 5a) to 10.6125—(r+5a). Figure 9(d) shows the
size distribution at the latest stage.

At the early stages in the RSA process the distribution
of adsorbed disks is Gaussian, which reflects the Gauss-
ian distribution of the disks that are fed to the surface.
For small values of the polydispersity parameter (a) the
distribution remains more or less Gaussian and the mean
radius decreases slightly as the RSA process proceeds.
For large values of a this shift is large and the distribu-
tion of adsorbed disk radii becomes very non-Gaussian
[Figs. 9(c) and 9(d)].

Figure 10 shows the dependence of ln[p, ( ~ )
—p(t) ] on

ln(t) for several values of p, ( ~ ) for the broadest distribu-
tion studied here (a =0.175r ). Figure 10 indicates that if
the approach of p(t) to its asymptotic value can be de-
scribed by Eq. (9), then the exponent p has a very large
value. This is consistent with the theoretical results of
Tarjus and Talbot [47] since p(r) and its derivatives at
r =r;„=r —Sa have essentially zero values and the
effective value of n in Eq. (11) is large.
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FIG. 9. Distribution of adsorbed disk radii obtained from
simulations carried out using the Gaussian-distribution model.

(a), (b), and (c) show the disk radii distributions at several stages
during simulations carried out with width parameters (a) of
0.025r, 0. 1r, and 0. 175r, respectively. (d) shows the distribution
of adsorbed disk radii taken from 11 simulations with
a =0.175r at a late stage.
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mental studies of random-sequential adsorption have
been carried out using either macromolecules or polymer
microspheres with only a narrow distribution of sizes.
Consequently, the approach to the R ~1 limit may be of
more immediate practical importance. The general binary
RSA problem and the polydisperse RSA process appear
to pose major theoretical challenges and we may have to
be content with computer-simulation results such as
those described here for quite some time.

For the monodisperse RSA process, the jamming limit
coverage can be obtained by first carrying out standard
RSA simulations until the jamming limit is approached.
At this stage, holes that are large enough to contain disks
are then identified and filled [27]. However, these holes
may overlap and it is difficult to fill them in an efficient

fashion without introducing bias into the procedure or
resorting to a complex algorithm. In any event there is
no evidence that the value for p2(ao ) obtained in this
manner is any more reliable than that obtained by extra-
polating pz(t) to t =ac using Feder's law. For the po-
lydisperse RSA problem both procedures are more
difficult and the challenge of obtaining results from po-
lydisperse RSA that are as reliable as those obtained for
the monodisperse RSA problem still remains. Fortunate-
ly, the rapid pace of computer technology should enable
us to obtain results that are adequate for comparison
with foreseeable experiments and useful for testing most
theoretical results using a "brute force" approach. How-
ever, the development of more efficient RSA algorithms
would be a worthwhile undertaking.
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