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We study the time evolution of the initial instability toward the final steady state for two pattern-

forming systems: explosive crystallization and the viscous-fingering problem. We show analytically

that a scaling solution exists for the power spectrum of the interface shape in the case of explosive

crystallization. The scaling exponents are computed exactly. For the viscous-fingering problem,

a similar scaling solution is obtained, and the scaling exponents are determined numerically. We

also study the robustness of the scaling solutions against external perturbations. We find that local

perturbation on the surface tension does not alter the scaling exponents, although it has dramatic

influence on the late-stage steady-state patterns.

PACS number(s): 68.35.Fx, 82.65.Dp, 05.70.Ln

I. INTRODUCTION

The formation and evolution of dynamic structures is
one of the most exciting areas of nonlinear phenomenol-

ogy. Pattern-formation problems are common in various
fields such as hydrodynamics, metallurgy, and combus-
tion. The best studied pattern-formation problems in-

volve growing interfaces between two phases: two solids,
two fluids, or a solid and a fluid. Specific systems that
have received much attention over the past several years
include viscous fingering in a Hele-Shaw cell [1, 2], den-
dritic growth of a solid from a melt [2—4], directional
solidification [3], and explosive crystallization [5—7]. All

of these systems have the feature that there exists a mov-

ing boundary between two phases, on which competing
stabilizing and destabilizing forces act. It is the interplay
between these forces that controls the dynamical evolu-
tion of the complex patterns.

The viscous-fingering problem in a linear Hele-Shaw
cell is one of the simplest examples of a wide class of
nonlinear pattern-forming systems. Here an instability
on the interface between two fluids sets in when a less
viscous fluid pushes a more viscous one. Subsequently,
a finger-shaped interfacial pattern develops. If the sys-
tern is driven continually, it eventually reaches a steady
state with one finger left, which is characterized by a
well-defined finger width. This final state is independent
of the initial conditions and is solely a function of one
dimensionless parameter (see below). Similar behavior
has been observed in other nonlinear systems: notable
examples are dendritic solidification and explosive crys-
tallization where the final steady states are also charac-

terized by well-defined interfacial shapes. In all of these
systems, much attention has focused on how to identify
the final steady state via a selection mechanism. For
viscous fingering, one believes that dynamically selected
finger widths are precisely those for which steady-state
solutions exist and they are determined by the solvability
condition [2, 4, 8]. For explosive crystallization, selection
of the final state is controlled by a continuum Lotka-
Volterra equation [9, 6], While we seem to understand
these pattern-forming systems in the initial [10) and final
time regimes [2, 4], much less attention is paid to the dy-
namics that occurs between the two regimes [11]. In the
journey toward the final steady state, how does the initial
instability on the interface amplify and drive the system
toward the final state? How can one properly character-
ize the dynamic process of this intermediate regime'?

In fact, the question of interfacial dynamics at the in-
termediate time regime has only been put into focus very
recently by Jasnow and Vinals [12]. They studied the dy-
namical evolution of viscous fingers using a boundary in-
tegral method. Through a large-scale numerical compu-
tation, they discovered a time regime where the evolution
of the pattern is self-similar; i.e. , a scaling of the power
spectrum of the interface shape exists. This is important
since it provided a basis of the concept of dynamic univer-
sality class in the pattern-forming systems. The purpose
of this paper is to further study this time regime. First,
we shall show analytically that a self-similar solution
indeed exists in a somewhat simpler pattern-formation
problem, namely, explosive crystallization. In this case
the scaling exponents can be calculated exactly. Thus
the existence of dynamic scaling in the intermediate time
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regime is not limited to Hele-Shaw Bow. We find this to
be an important step because it provides a rigorous ba-
sis for the Jasnow-Vinals scaling solutions and possibly
for further renormalization-group analysis. Second, after
confirming the results obtained by Jasnow and Vinals on
the viscous fingering problem, we examine the robustness
of the scaling solution to external perturbations, using a
numerical method similar to that of Refs. [12, 13]. It has
been found experimentally [14] and theoretically [15] that
the late-stage pattern shape is sensitive to local pertur-
bations since it changes the solvability condition. Thus
a study such as ours may help one to understand how
the mathematically quite subtle solvability mechanism,
which is believed to provide the pattern-selection mech-
anism in this system [2, 4], comes about. As in Ref. [12],
this involves a large numerical computation that is com-
rnon in dealing with the generalized Stephan problem.

The paper is organized as follows. In the next sec-
tion we show the existence of a scaling solution for the
dynamic equation of the growing crystal front in explo-
sive crystallization. In Sec. III we present results for the
Hele-Shaw fIow problem. Section IV is for a summary.

II. EXPLOSIVE CRYSTALLIZATION

The process of explosive crystallization has been dis-
cussed extensively in the literature [5—7]. Here a thin
amorphous film is crystallized by locally injecting energy
with, for example, a laser pulse. The latent heat that is
released during the crystallization may further crystallize
nearby amorphous material. Under favorable conditions,
a self-sustained process occurs until the entire film crys-
tallizes. If the initial film and substrate temperature is
lower than some critical temperature, the latent heat is
not enough to keep crystallization continuing, and usu-
ally one injects energy continuously to maintain the pro-
cess [16]. We shall be concerned with this latter case,
i.e. , driven explosive crystallization. We are interested in
the time evolution of the interface between the crystalline
and amorphous materials.

Figure 1 sketches the system. The amorphous film is
heated by a straight-line heater, such as a strip heater,
which moves in the 2: direction with a fixed speed v. Both
the source and the latent heat that is being released at the
crystallization front contribute to the activation energy,

which causes new material to crystallize. The process can
be modeled by a two-dimensional diffusion equation for
the temperature of the film, including linear heat loss to
the environment, and latent heat release at the interface
and the source [6, 9]. The equation can then be trans-
formed into a nonlinear equation for the interface shape.
If A(q, t) is the amplitude of mode q of the Fourier trans-
form of the interface shape at time t, we define the power
spectrum [12] to be S(q, t) = ~A(q, t)~ . It has been shown
that S(q, t) satisfies a continuum Lotka-Uolterra equation
[9]

BS(q, t)
t

OO

f (q, k) S(k, t) dk S(q, t)
OO

M(t) = S(q, t,) dq

From (1) we obtain the equation of motion for M(t),

dM(t)
dt Z(q)S(q, t) dq

f (q, k) S(q, t)S(k, t) dq dk (4)

A numerical integration of Eq. (1) showed that S(q, t) is
sharply peaked at q0 at large times [9]. Thus the right-
hand side of (4) can be approximated and we obtain

where Z(q) is the real part of the linear growth rate of
mode q and f (q, k) is a nonsymmetric function depending
on system parameters, which has the reflection property
f( q, —k—) = f(q, k).

Instead of integrating this equation numerically, as was
done in Ref. [9], we now seek a scaling solution of the form
proposed by Jasnow and Vin™als,

S(q t) = (q —qo) G(t(q —q.)') = t'H(t .(q —qo))

(2)

with P = o./z The ex. ponent P describes the growth
of the fastest-growing mode qs

——qadi(t) and z gives a
time scale for approaching a steady state. We expect
this solution to be valid in the large-time limit.

To obtain the exponent o, , consider the first moment
M(t):

I

:: Cry stalli Amorphous
dM(t) —[E(qp) —M(t) f(qp, qp)]M(t)

;: heat:,
poured

Since a steady-state pattern is selected [9] as t —+ oo, we
have q0(t) ~ q = const in that limit. Hence, asymp-
totically, M(t) —+ E(q~)/( f(q~, q~) +exp[—Z(q~) t])
const. On the other hand, substituting (2) into (3), we
obtain

X M(t) = t ~ H(t=(q —qp)) dq

FIG. 1. Sketch of the driven explosive crystallization sys-
tem. Region I is the amorphous material and region II is the
crystallized material. The interface separating-the two phases
is moving in the x direction. A strip heater is also shown that
moves with a speed v.

H(x) dx (6)

In order for M(t) to approach a constant in the large-time
limit, we must have n = 1.
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To determine the exponent z, we study a quantity W(t)
which essentially is the width of the peak of 8(q, t),

1 Bzs(q, t)
S(q, t) Bqz

(7)

1 dqp B (1 Bsi
W2 dt Bq (8 Bt) (9)

The right-hand side vanishes at q = q~, since the expres-
sion is what defines q . So, for qp near q, we have

Since ~ vanishes at the peak q = qo, we easily find

d z() = —B I/1 BS)
dt Bqz (8 Bt p

dqp B fl B'8)
dt Bq (8 Bqz )

The second term is vanishingly small at large times be-
cause of the factor dqp/dh. The first term, on the other
hand, approaches a constant in the same limit. We ob-

tain

W-'(t) - — t -t-H" (0)
H(0)

Thus z = 2. The quantity 1/W(t) has a natural interpre-
tation in position space: an initially localized perturba-
tion on the crystallization front gives rise to a patterned
region on the front, whose extent is of order 1/W(t), be-
cause W(t) is the width of the power spectrum. Now, the
fact that z = 2 implies that this region grows diffusively
for large t, i.e. , 1/W(t) ti~z. Recall now Parseval's
theorem, which states that jS(q, t)dq = f ~f(x, t)~ dx,
where f(x, t) is the front position at x and t. Since

M(t) = 1 S(q, t)dq approaches a constant, the squared
deviation of the front from its steady-state position also
integrates to a constant. This, combined with the fact
that the width of the front grows as ti~z, implies that
the rms displacement decays slowly, as t

Finally, the asymptotic form of the peak position of
the power spectrum, qp(t), can also be determined. Note
that P ]q, = 0. Differentiating this with respect to
time, we find

problem, although we have not yet done so. Instead,
we shall carry out a numerical solution of the governing
equations to confirm the results of Ref. [12]. In addition,
we shall show that the scaling solution is quite robust
against local perturbations to such quantities as the sur-
face tension. To that we now turn.

III. VISCOUS FINGERING

When a less viscous fiuid is pushing a more viscous one,
the interface is unstable against long-wavelength fluctua-
tions. As a consequence, the less viscous fluid penetrates
the more viscous one in a flngerlike shape. A standard
setup of the phenomenon is in a linear Hele-Shaw cell,
which consists of two parallel rectangular glass plates
with a small distance b in between. Initially, many fingers
evolve and compete to grow; thus a coarsening process
occurs Due. to the screening of the Laplacian field, larger
fingers grow faster and smaller ones get left behind. At
very large times, a steady-state is reached with only one
finger left in the cell and its width A is usually larger than
half the channel width m. This is a representative phe-
nomenon in a larger problem of pattern selection. Only
recently has it become possible to predict the steady-
state finger width and its tip velocity as a function of the
external control parameter [2, 4]. It has been shown that
the surface tension between the two fluids plays a singu-
lar role, in that it is associated with the highest derivative
of the interfacial dynamical equation [2, 4]. Thus a small
change in the surface tension may have a dramatic in-
fluence on the steady-state pattern. Indeed, both theory
and simulation [15] have shown that if the surface ten-
sion is slightly reduced at the finger tip, the steady-state
finger will have A ( zip. This is also observed [14] ex-
perimentally.

It is interesting to study the dynamics before the
steady state is reached. Experimentally such a regime
has been investigated by Curtis and Maher [17]. We shall
use a numerical technique similar to that of Jasnow and
Vinals [12, 18]. We start by writing down the governing
equation for the flow inside a linear Hele-Shaw cell [19]
which is oriented along the y direction. For incompress-
ible fluids the divergence of the velocity vanishes, so that
the pressure field P satisfies the Laplace equation,

(1 Bsi Bz f 1 BS&
Bq'(8 Bt), -

B ~ '(S Bt)~

From Eqs. (8), (9), and (10), we obtain

C
qp(t) = q +—

(10)

'7P=0 (12)

At the interface, the standard boundary conditions on
the pressure field are used,

b

12pg

where C is a constant.
Given the fact that a steady-state pattern is indeed

selected in driven explosive crystallization [9], we have
thus shown that a scaling solution exists for the power
spectrum of the interface shape which separates the crys-
talline and amorphous materials. Presumably it is possi-
ble to carry out a similar analysis for the viscous-fingering

Pg —P2 (14)

where v, is the normal velocity of the fluid i at the in-
terface, b is the thickness of the Hele-Shaw cell, p,; is the
viscosity, and p is the surface tension. K is the curvature,
which is taken as positive if the center of the radius of
the curvature lies in the pushing fluid. We consider the
case where fluid 1 is pushing fiuid 2 with a rate Umbz
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per second. Then to the far right of the interface, the
velocity of fIuid 2 is uniform and is given by U. That is,

12P2
P2 —+ — Uy as y ~ oo

g2
(15)

v„' = —fl V'C = —v„+ U cos8

C, = P, + Uy = pr —+ U((x)

Finally, at the side walls, the normal velocity of the Quid
v„should vanish. Defining a potential 4:—P+ Uy with

b P/12', Y—:y —Ut, and assuming pi = 0,
Eqs. (13)—(15) can be rewritten as

4 —+ 0 as Y —+ oo
BC' = 0

wall

where 8 is the angle between the interface normal and the
+y direction and ((x) is the y coordinate of the interface,
i.e., it is the interface shape.

The last set of equations can be further reduced into
an equation for the interface shape via Green's theorem.
There are many ways to find the two-dimensional Green's
function for our problem, which satisfies 7'zG(r, r')
—6(r —r ) and is periodic in the x direction. A simple
method is given in Ref. [20] and we quote the result here,

G(x —x', y —y') =- Iw
—u'I

25J

1 / 27r(x —x')——ln 1 —2p cos
I

+s'
4x

where p = exp( —2ir[y —y'I/tv). Applying Green's theorem on a contour shown in Fig. 2, we obtain

1 f' U i, , U, ) BG(s, s')——
I
pr(s) ——((s) I + ds' pr(s') ——((s')

I

', = ds'G(s, s')v„'(s')
2 i, 2 ) 2 p On' (18)

where s, s' are contour variables along the interface and
the integrations extend over the entire interface. Some
subtleties in deriving the last equation were discussed in
Ref. [12]. From this equation, we obtain the normal
velocity of the interface v„ if the interface shape ((x)
is known. The interface is then moved forward in time
by essentially solving d(/dt = v„cos 8. Thus given an
initial interface shape, its time evolution can be obtained.

Equation (18) is a Fredholm integral equation of the
first kind, which is very difBcult to tackle numerically
[21]. We have used a discretization scheme discussed in
the book of Jaswon and Symm [22]. The interface is
parametrized by the contour variable s, and the angle
between the normal and the y direction, 8, , at each node
i The singul. ar contribution from G(s, s' —+ s) is treated
using the method of Refs. [12, 20]. After the equation
is discretized, the Green s-function matrix on the right-
hand side of (18) is inverted to give v„at each node. It is
important to dynamically add new nodes when the curva-
ture gets large [12]. Typically we started with N = 150
nodes and it could be increased up to 800 at the end

t9,

Bt
= ~(s,)v, (s, ) + Ov„(s)

8 S=si,
(19)

dST
dt

Sz.
ds' r(s') v„(s') (20)

where

vq(s) = sg(ST) —STg(s)
S

ST
ds' r(s')v„(s')g(s)

of a run. To ensure stability of the solution, it is vital
to make sure that the linear solution is produced accu-
rately when ((x) is small [23]. Indeed, we find that the
numerically obtained linear stability dispersion relation
coincides with that predicted by the theory with an er-
ror bar of a few percent for the worst case, except for
high wave numbers, which correspond to linearly stable
modes. This is understandable since short-wavelength
modes (large-wave-number) are more numerically prob-
lematic to deal with, but they do not contribute to the
instability.

After finding v„ for each node, we advance the interface
using the following kinematic equations [24, 12]:

water

The interface nodes are always equally spaced along the
perimeter. Finally, as a reference point, we advance the
first node (x = 0) explicitly using

B((si)
Ot

v~(si) cos 8i (21)

FIG. 2. Closed contour over which Green's theorem is ap-
plied to obtain Eq. (18) for the viscous-fingering problem. The
fingers are growing in the y direction.

The N + 2 equations of (19), (20), and (21) are then
solved simultaneously using an Adams-Moulton method.

The initial interface shape is taken as a sum of the
first 10 to 15 modes of sine curves with sma11 random
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0.00 3.50 7.00x103

root-mean-square value of ((x). As shown, there is no
significant difference between the e = 0 and g 0 cases
for these quantities. The width of the interface shows a
linear dependence on time at late times, similar to that
of the e = 0 case [12]. In Fig. 9 the scaling function of
(23) is plotted for e = 0.2 and 0.4. This is a result of av-
eraging 280 independent runs. Very similar behavior was
also found for other values of t . We may conclude that
the scaling form of the power spectrum is robust against
this type of perturbation on the surface tension, although
there are some quantitative changes on the nonuniversal
constants. This may be understood from experiences on
far-from-equilibrium phenomena: short-length-scale be-
havior is usually not important to the dynamics. Indeed,
the surface tension provides the smallest length scale in
the viscous-fingering problem. We thus expect that the

FIG. 7. Total perimeter length as a function of time for
e = 0.4 (solid line) and e = 0.0 (circles). Other parameters
are the same as those of Fig. 3.

As mentioned above, the surface tension of the inter-
face plays a singular role in the steady-state pattern selec-
tion. Locally perturbing the surface tension has dramatic
effects on the selected pattern [14, 15]. We now examine
what eKect, if any, it has on the transient dynamics. In
particular, we choose to perturb the surface tension in
the following way:
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where pp is a constant and n is an integer. In the follow-

ing we fix pp = 1.0 and n = 4 without losing any gen-
erality [26]. This form of the perturbation might mimic
the effect of putting several parallel wires into the Hele-

Shaw cell, Figure 6 shows the interface shape with t = 0
and 0.4. It is interesting to note that the fingers alter-
nately grow faster and slower for the e g 0 case. Figure
7 shows the total perimeter length as a function of time.
Figure 8 shows the width of the interface defined as the

100Q
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FIG. 8. Width of the interface, defined as the root-mean-
square value of ((x), with e = 0.4 (solid line) and e = 0.0
(circles) Other par.ameters are the same as those of Fig. 3.

FIG. 9. Scaling function of (23) plotted for the case with
e g 0.4. Other parameters are the same as those of Fig. 3.
The data collapse reasonably well onto one curve, indicating
that the perturbation of Eq. (24) does not change the scaling
behavior of the transient dynamics. The data are a result of
averaging 280 independent runs. (a) e = 0.2; (b) e = 0.4.
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perturbation in (24) will be more important when the
transient time regime is passed. This is definitely true
in the steady-state limit [15]. Finally, we note that the
scaling discussed here will eventually break down when
the coarsening is nearly finished. The dynamics at this
crossover regime can also be studied using the current
numerical technique.

IV. SUMMARY

From the two models studied here, we may conclude
that the long-wavelength dynamical behavior in the tran-
sient time regime has a generic feature that the power
spectrum of the interface shape has a simple scaling form.
For driven explosive crystallization, we were able to show
this behavior analytically and obtained the scaling ex-
ponents. For the viscous-fingering problem, numerical
techniques were employed. We have confirmed the find-

ings of Ref. [12]. Furthermore, a local surface tension
perturbation, which leads to a singular response in the
steady-state pattern selection, does not seem to change
the scaling behavior. While the two systems studied here
belong to different universality classes, it is still not clear
at this point what are the crucial factors that determine
universality in systems far from equilibrium such as ours.
It will be quite interesting to carry out a similar analysis
for the dendritic growth.

The analytical method used here may be generalized

to other more complicated pattern-forming systems and
we are currently exploring this possibility. The numerical
technique allows us to follow the evolving pattern from
the very beginning to the final steady state. It is thus
possible to study the crossover from the transient to such
a steady state. This is important since we expect that
the singular role played by the surface tension will be
more visible in the crossover regime.
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