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Coupled maps on fractal lattices
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A fractal array of coupled maps, where space is nonuniform, is considered as a dynamical system.
The stability and bifurcations of spatially synchronized, periodic states on the Sierpinski gasket are
studied. The matrix that expresses the coupling among neighboring elements exhibits a spectrum
of eigenvalues with multifractal properties, and their global scaling behavior is characterized by the
function f(n) Th. e multifractal character of the eigenvalues affects the stability boundaries of the
synchronized, periodic states in the parameter plane of the system. The boundary structure allows

access to regions of stability and gives rise to bifurcations that are not present in regular lattices.

PACS number(s): 05.45.+b, 47.20.Ky, 82.20.Wt

I. INTRODUCTION

Coupled-map lattices are discrete space-time dynami-
cal systems comprised of a coupled array of discrete-time
maps. The study of these systems has proved interesting
in a number of contexts. Viewed as general spatially dis-
tributed dynamical systems, it has been shown that they
display much of the phenomenology observed in nature;
for example, turbulence, intermittency, and syncrhoniza-
tion [1]. Properly constructed, they also provide faithful
models of specific physical phenomena or partial differ-
ential equations that can be simulated very efficiently [2].

In these investigations of coupled-map lattices
(CML's), the underlying lattice on which the dynamics
is defined has invariably been a regular lattice. It is now
well established that a variety of interesting physical pro-
cesses take place on objects with a fractal structure [3].
Examples of such processes include phase transitions [4],
random walks [5], and reaction diffusion dynamics [6]. In
view of the physical relevance and ubiquity of such pro-
cesses, it is useful to study coupled-map systems defined
on fractal lattices both as abstract dynamical systems
and models for some of the above-mentioned physical
phenomena. The discrete diffusion coupling on fractal
lattices is a natural form for the coupling in these spa-
tially inhomogeneous structures. This gives added rele-
vance to the investigation of these dynamical systems.

This paper presents a study of coupled-map fractal lat-
tices (CMFL's). The full range of phenomena exhibited
by these dynamical systems is not explored, rather the
focus is on a specific fractal lattice, the Sierpinski gasket,
and one class of dynamical states, the spatially synchro-
nized period-doubled orbits. In particular, we study the
stability domains of these states and their scaling prop-
erties as well as the inhomogeneous states to which they
bifurcate. New features arise as a consequence of the
fractal character of space.

A general basis and notation for the treatment of deter-
ministic fractal structures as CML models are introduced
in See. II. The coupling among the neighboring sites of
the lattice is described by a matrix, which exhibits a self-

similar structure. In Sec. III, the spectrum of eigenval-
ues and eigenvectors is analyzed. The eigenvalues can be
found from a map that relates any two consecutive levels
of construction of the lattice [7]. A subset of eigenvalues
of the coupling matrix possesses multifractal properties,
and its spectrum of singularities is calculated in Sec. IV.
In Sec. V we derive the corresponding maps for the eigen-
values of the matrix expressing diffusion coupling in one-
and two-dimensional regular arrays, and compare their
scaling properties with those of the map for the fractal
lattice. The bifurcation structure of synchronized states
is analyzed in Sec. VI for a local dynamics given by the
logistic map. The multifractal character of the eigenval-
ues of the coupling matrix affects the boundaries of the
stability regions in the parameter plane of the synchro-
nized, periodic states. The spatial patterns that form as
a result of bifurcations from the synchronized states are
studied. The conclusions of the paper are presented in
Sec. VII.

II. COUPLED MAPS ON THE
SIERPINSKI GASKET

The triangular Sierpinski gasket is a deterministic frac-
tal. At the nth level of construction, each of the 3" ele-

ments or cells of the gasket can be speci6ed by a sequence
of symbols n„=(ai nz. . .n„),where a;, 6 (1,2, 3).
At level n+ 1, each triangular cell (ni. . .n„)is subdi-
vided into three smaller triangles, which are now labeled

n„+i——(ni. . .a„n„+i),where the first n elements of
the sequence, o.q. . .o.„,are the same as the mother cell

(Fig. 1).
A sequence n„=(a.i. . .n„) can be written as

(ni. . .n„,a'„,+i), for some s E (1,2, . . . , n), where

n,' stands for the product of s factors o, The neigh-
I

bors of the cell with this sequence are labeled o.
„

(ai. . . n„i n„+1), n„=(ni. . .n„i a„+2), and

n = (ai. . .a„,+i n„',), where the addition n, + j is

to be carried out modulo 3 here and in the sequel. The
first two labels specify the two neighbors of (ni. . .n„)
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FIG. l. Sierpinski gasket at level n = 3, shorting labels
on the cells.

z(n„,t + 1) = f(z(a„,t); A)

+p[x(a„,t) + x(n„,t) + x(a„,t)
—3x(n„,t)],

z(n„,t + 1) = (1 —3p)f(z(n„,t); A)

+~[f(*( ., t);~)+f(*( ., t};~)
+f(z(n- t) ~)] (1b)

(1a)

where x(a„,t) gives the state of the cell labeled
(ai. . .a„)on a lattice containing 3" elements at discrete
time t; f(x; A) is a (nonlinear) function that specifies the
local dynamics and depends on some parameter A; p is a
parameter that determines the strength of the coupling
among nearest neighbors. Equations (la) and (1b) may
be written in matrix form, respectively, as

x„(t+ 1) = f(x„(t);A) + pM„x„(t),

x„(t+1) = f(x„(t);A) + pM„f(x„(t);A).

(2a)

(2b)

The 3" components of x.„maybe ordered as follows. Let
i = 1, . . . , 3" be an integer index associated with a cell
on the fractal so that each cell sequence (ai. . .a„)corre-
sponds to a value of i. If at a level n the ith component ofx„is x„(i)= x(ai. . .n„),then at level n+ 1 we choose

which lie in the same mother cell (the first n —1 indices
are ai. . .a„i) while the third label specifies a neighbor
lying in a difFerent mother cell. If s = n, then the cell is
a vertex, labeled by (ai), and it has only two neighbors
belonging to the same mother cell.

The dynamical system considered in this paper is con-
structed by associating a nonlinear function with each
cell of the Sierpinski gasket and coupling these functions
through nearest-neighbor difFusion interactions [8]. At
a level of generation specified by the parameter n, the
space-time evolution of the system is described by the
3" equations in backward or forward difference forms,
respectively, as

and the elements of the smallest blocks (r = 1) being

M(a„,a„)= M(a„,a„)= M(n„,n„)= 1,

—2if a„=(ai)
M(n'Q) n~) 3 f $ ( fL)

III. SPECTRUM OF M„
As a preliminary to considering the bifurcation struc-

ture of Eqs. (2a) and (2b), it is useful to study the eigen-
value problem for the matrix M„.The analysis is equiv-
alent to the study of normal modes on a fractal lattice,
which figures prominently in calculations of the spectral
dimension [9]. The calculation presented below bears a
relation to the earlier investigation of Rammal [7] for
nearest-neighbor coupling of the vertices joining the cells
of a Sierpinski gasket. In our CMFL model the nodes are
the cells of the lattice and each map is coupled to three
neighbors. Hence, the derivation and focus are rather
difFerent and the presentation is given in some detail. In
addition, we shall concentrate on the dynamical system
and rnultifractal aspects of the analysis.

Assume that at a given level n there are v„different
eigenvalues of M„,denoted by p,„(j),j = 1, 2, . . . , v„.
The degree of degeneracy of the eigenvalue p„(j)will be
denoted by g„(p(j))= g„(j),so that P.g„(j)= 3".
Let (u„(i): i = 1, 2, . . . , 3") be the complete set of
orthonormal eigenvectors of M„. We shall denote by
(u„(j):k = 1,2, . . . , g„(j))the set of eigenvectors(A:)

associated with p„(j):
M„u„"(j) = p„(j)u&"&(j).

For a given vector u„(j),Eq.(7) consists of 3" equations
of the form

(p+ 2)u(n) = u(n') + u(n') if n = (n", ),
(8+3)u(a) = u(n )+u(n )+u(a)'f n 7 (a ). (8)

Using this scheme and starting with xi (1)
x(1),zi(2) = x(2), xi(3) = z(3), the association of
i with a sequence (ni. . .a„)is uniquely determined.
Given this notation, the ith component of the vector-
valued function f is f(x„(i)). The matrix M„is a
3" x 3" real, symmetric matrix which expresses the cou-
pling among the components (x„(i)j. With this order-
ing, the self-similar structure of the coupling matrix is
manifest: for r = 1, . . . , n —1, M„consists of 3" ' di-
agonal blocks of size 3" x 3" corresponding to elements
Mn(i&j ) = M(ai ~ ~ ~ &n r ~ ~ ~ -an. ~ P]~ ~ ~ Pn. r ~ ~ ~ —Pn) such
that ng = PA; (k = 1, . . . , n —r), with coupling among
these blocks,

M(ni. . . n~ ~. . .n"„„+»ni.. .n~ ~+in„' „)= 1, (4)

x„~i(3i—2) =x(ni. . .a„,1),
x„+i (3i —1) = x(ni. . .n„,2),

x„+i(3i)=x(ni. . .a„,3).
(3)

We drop the subscript n when it is not explicitly used.
The spatially homogeneous mode has eigenvalue p, = 0,

and u(ni. . .n„)= 3 ",Vai, . . . , a„.Since the eigen-
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vectors are mutually orthogonal, all other modes must
satisfy P u(ng. . .n„)= 0.

In addition to the homogeneous mode, we can show
that for n ) 1, two basic modes are always present.
These two modes will determine the structure of the spec-
trum of M„asthe superposition of two distinct parts,
each associated with one of the basic modes.

Symmetric modes have p, = —3, and

u(nqn2) = const .::-p = 0, Vnq, a2

c(1) + c(2) + c(3) = 0,

c(2) = c(3) g 0, c(l) g 0 ~ p = -3
c(2) g c(3), c(1) = 0 ~ p = —5.

u(n) + u(n') + u(n") = 0, u(n) = u(n). (9)
(15)

Antisymmetric modes have p = —5, and

u(n) + u(n') + u(a") = 0, u(n) = —u(n). (11)

For these modes, u(n&) = 0. The level of construction
n + 1 consists of three level-n gaskets, coupled through
three pairs of cells which no longer have vanishing val-
ues but satisfy u(ning) = —u(nqn~). The vertices of
each gasket have the property u(n&+ ) + u(nq(nq +
1)") + u(nq(nq + 2)") = 0, where (nq(nq + 1)") and

(nq(nq + 2)") are cells coupled to the other two gas-
kets. Therefore the three pairs of cells coupling the three
level-n gaskets are determined by one variable. Thus

g„~q(—5) = 3g„(—5) + 1, and for n & 1,

3" '-1
g„(—5) = (12)

Before carrying out a general analysis of the eigenvalue
problem, it is instructive to examine the level n = 2.
Equations (8) for n = 2 can be solved by introducing the
quantities

c(1) = u(l 1) + u(22) + u(33),
c(2) = u(12) + u(23) + u(31),
c(3) = u(13) + u(21) + u(32).

ln terms of these variables, Eqs. (8) for n = 2 can be
reduced to

(& + 2)c(1) = c(2) + c(3),
(p + 3)c(2) = c(1) + 2c(3)

(p + 3)c(3) = c(1) + 2c(2),
(14)

which have nontrivial solutions if p(p, + 3)(p + 5) = 0.
Furthermore,

Let g„(—3) be the degree of degeneracy of these modes at
level n, i.e. , the minimum number of variables needed to
specify a vector obeying conditions (9) for given n,. Level
n+ 1 consists of three gaskets corresponding to a level of
construction n, coupled through three pairs of cells, each
of these pairs satisfying u(n&nz) = u(n2ng). Therefore,
the degeneracy of these modes at level n + 1 gives the
number of variables needed to specify each of the three
level-n gaskets, minus three variables determined by the
coupling of these gaskets. Thus g„+q(—3) = 3g„(—3) —3,
and for any n & 1, one can derive

3n —1+3

(V+ 2) [u(23) + u(32)] = [u(») + u(»)]
+[u(22) + u(33)], (16)

(p + 4) [u(21) + u(31)] = [u(22) + u(33)].

The requirement of nontrivial solutions yields the condi-
tion

(~+3)(V'+5& +3) = o.

A condition identical to (17) is obtained if trivial solu-
tions to Eq. (16) are admitted. Thus, the different eigen-
values and their degeneracies for n = 2 can be found by
using the definitions (13). At level n = 1, the possible
eigenvalues are pq

——0, —3. The eigenvalues correspond-
ing to n = 2 contain those of n = 1, in addition to the
ones given by the transformation pq = p2(pz+ 5). The
eigenvalues and eigenvectors given by Eqs. (16) and (17)
may be expressed as

c(ni) = 0 —5 + v'25+4(p
Q , u(ngn2) g 0 = '

2

(18)
where (p = —3 and oq stands for a binary symbol; we
choose o'q = 0 (or 1) if the + (or —) sign is taken in
expression (18).

The procedure for n = 2 suggests an iterative approach
for obtaining eigenvalues and eigenvectors at successive
levels of construction of the lattice. Consider Eqs. (8)
at level n+ 1 and suppose that the eigenvalues at level
n are known. The 3"+~ equations (8) for the compo-
nents u(nq. . .n„+q)at a level n, +1 can be reduced to 3"
equations for 3" variables consisting of combinations of
the u(nq. . . n„+q)'s. The eigenvalues obtained from this
reduced system of 3" equations contain the eigenvalues
corresponding to level n and new ones corresponding to
level n+ 1, obtained by the relation

Pn = An+i (An+i+ 5) . (19)

The same relation applies for diffusion coupling of the
vertices joining the cells of the Sierpinski gasket [7]. Here
we present a scheme for generating all the eigenvalues,
their degeneracies and corresponding eigenmodes at any
level n. Let m = 1, 2, . . . , n —1, and define for each m

On the other hand, if all c(nq) = 0, the number of equa-
tions in (8) can be reduced to three:

(p, + 2) [u(22) + u(33)] = [u(21) + u(31)]
+[u(23) + u(32)],
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2

c„(ag.. .a„)—:) c„(1+i, ag + i, . . . ,a„+i),
i=0

Vag, . . . ,a„,(20)

9 (((o' o' )) =

and that of an eigenvalue rj(o q. . .0„)is
(27)

) c„(ag)= 0,

For r = 1 ton —2,

c„(ag.. .a„)=0,

~(1) go, ~(, =-3
~(1) =O, ~q, =-5. (21)

with the convention c„(aq.. .a„)= u(aq. . .a„).
Equation (20) represents n sets of definitions, each set

containing 3" ~ quantities. For a given rn, Eqs. (8) can
be combined to yield a reduced system of3™equations
in terms of the set of 3" quantities c„(aq.. .a„).
The requirement of nontrivial solutions for these vari-
ables at each step rn leads to two families of eigenvalues,
p,„(j) 6 (((o q o2. . .)) or p,„(j) 6 (g(o q o2. . .)), where
o; E (0, 1), which can be found as follows.

Let r = n —m, and take m in decreasing order, i.e. ,
r = 1, . . . , n —1. For r = 0, we consider the condition

3A—1'—1

~ (n(~i " ~.)) =
2

(28)

(29)

The eigenmodes of the coupling matrix refiect the sym-
metries of the fractal lattice and they are the analogous
of the Fourier eigenmodes appearing in regular lattices.
The conditions c„(aq.. .a„)= 0 represent difFerent wave-
lengths on a Sierpinski gasket at a level of construction
Ao

IV. SCALING PROPERTIES
OF THE SPECTRUM

Thus, the number of independent eigenmodes is 3", as
expected:

(3n—t'-1 + 3) s (3n—r-1).2"I, I+) 2"
I

I+1=3".

c„(ag.. .a„g)= 0 w ((cry. . .o„g), (23)

where both families ((„(0'q.. .o'„))or (g„(o'q.. .o'„))can
be generated from the recursive relations

—5 + /25+ 4g(oy. . .o„)
g 0']. . .0'„+]

2

c„(l.. .a„pg)/Owe(cry. . .o„)
( )c„(l.. . a„+g)= Omrl(ag. . .o„),

and for r = n —1,

Equations (24) and (25) show that all the eigenval-
ues p„(j)corresponding to a level of construction n are
also eigenvalues at level n+ 1, and that p„(j)p [

—5, 0],
Vn. These equations can be seen as a multivalued, one-
dimensional map p„+& = y(p„),y: [

—5, 0] ~ [ 5, 0],
where

—5 6 v'25+ 4p„
pn+i = y p~

2

The inverse mapping

r = O, . . . , n —2; (24) p = z(p pg) = p +g(p +i y 5) (31)

—5 + /25+ 4((oq. . .o„)
~ &r+1

2

~„=) 2" + ) 2" + 1 = 3 x 2" —1. (26)

The degeneracy of an eigenvalue ((a &. . .~„)at level n is

r =O, . . . , n —1; (25)

with cr, = 0 (1) if + (—) is taken in (24) and (25).
The eigenvalues Q'(o'q. . .o'„):r = 0, . . . , n —1) are

obtained from (25) if the initial value (o = —3 is selected
(for r = 0). The family (ri(oq. . .o'„):r = 0, . . . , n —2)
arises from the choice of initial value rio = —5 in (24).

Since each cr; can take two values, the number of pos-
sible eigenvalues in each family, for given r, is 2 . There-
fore, at a level of construction n, the number v„ofdif-
ferent eigenvalues, including that of the spatially homo-
geneous state, is

has a value Iz(p, )I ) 5 at the critical point p,, given by
z'(p, ,) = 0, therefore almost all points will eventually
escape the interval [

—5, 0] under iteration of z(p). The
points that remain in [

—5, 0) form a Cantor set, the re-
pelter associated with the dynamical system (31). These
points coincide exactly with the subset of eigenvalues
(n(~~" ~.)):
z "

(p) = —5 m p, = rl(o g. . .cr„),

r = 0, . . . , n —2. (32)

The second part of the spectrum of eigenvalues of M„is
a set of I ebesgue measure zero, given by

z"(p,) = —3 w p = g(cry. . .a„), r = 0, . . . , n —l.
(33)

Figure 2 shows several iterates of the map z(p) and the
two subsets of eigenvalues of M„.Figure 3 shows the
complete spectrum of eigenvalues of M„,
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FIG. 3. The spectrum of eigenvalues of M„,for n = 6.
The vertical axis shows the degeneracies divided by 3".
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j' ( j", and rl„(1)= 0 is included. Then the length
scales of the repeller at given n are

ei = iq„(2/ —1) —rl„(2l)i, l = 1, . . . ,
2"

Each interval et contains a number of degenerate eigen-
values

FIG. 2. Iterates of the map z(p, ) = p,(p+ 5) on the in-
terval [

—5, 0]. The eigenvalues (ri„(aq.. .o„))correspond to
the intersections of z"+ (p) with the p, axis. The eigenvalues
{(~(o'z.. .o,)) correspond to the intersections with p, = —3.

(V (j):j=1" ~ }
= (((or. . .o„):r =O, . . . , n —1}

g„(et)= g„(rl„(2l—1)) + g„(rl„(2l)). (36)

The total number of eigenvalues in {rl(o'q, . . . , cr„):r =
O, . . . , n —2) is

2"-2

).2"g (n(~i" &.)) =
2

3" —2"+'+ 1.
1--

r=1

thus the relative probability associated with an interval
E~ 1s

g o1. . .o'„:r = 0, . . . , n —2 0

2g„(e()
3n 2n+1 + ] (38)

for n = 6, on the p. axis, and the degeneracy of each
eigenvalue. Both the distribution of eigenvalues and their
degeneracies are nonuniform. The fractal structure is ev-
ident in Fig. 3. Another convenient representation of the
scaling properties of the spectrum of eigenvalues of the
coupling matrix can be achieved by plotting the measure
Q. g„(j)/3"vs p,„(j)for large n, as in Fig. 4. The graph
so obtained has the characteristics of a devil's staircase,
a fractal curve that appears in a variety of nonlinear phe-
nomena [10].

Figures 3 and 4 are examples of multifractal mea-
sures. A formalism for characterizing the global scal-
ing properties of such objects has been developed [11].
In particular, the part of the complete spectrum of M„
represented by the subset of eigenvalues (q(o&. . .cr„):
r = O, . . . , n —2) and their degeneracies is a multi-
fractal set, with the repeller associated with (31) as
its geometrical support. The number of di6erent ele-
ments in this subset is 2" 1 —1. Let us order them as
(q~(j'); j' = I, . . . , 2~ ~), such that rl„(j')( rj„(j")if

1.0

Eg (j)

0. 8

0. 4

0 2

0. 0
I

—4. 0
I

—3. 0
I

—2. 0
I

—1.0 0. 0

FIG. 4. The measure of the set of eigenvalues of M„for
n = 6.
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The multifractal analysis requires the calculation of the
partition function [11]

3n —1

max 3n 2n+1 1
asA~oo) (42)

2" 2

I' (q, r) = )
with the condition that lim„ool„is finite. Equa-
tion (39) then determines r(q), which can be converted
into the f(n) function via a Legendre transform

thus the associated scaling exponent is o, ;„=0. The
maximum value of n is contributed by the largest inter-
val, which is the one containing the fixed point ri„=—4,
with length e~s„3". Its probability is p 3 ", for
large n; thus the scaling exponent is n ~„=1. These
values are verified in Fig. 5.

a = —,f = qa —r(q).
dq

(40)

(41)

where il„'(1)are the fixed points of the map z&") and each
interval contains precisely one fixed point. The interval
containing the fixed point ri„' = 0 has the smallest length,

5 ", and its probability scales as p;„3",
both for n -+ oo. Thus, its corresponding scaling ex-
ponent is n = lnp;„/lne;„=ln3/ln5. The interval
containing rI„=—5 has also length e~;„and the largest
probability, which is

0. 60 I

Do = O.ag

0. 45

0. 30

The quantity f(n), called the spectrum of singutarities,
represents the fractal dimension of the subset of the mea-
sure for which the probability at length e ~ 0 scales as

p(e) - e

The spectrum f(n) for the set of eigenvalues
(il(o'i ~ ~ n,):r = 0, . . . , n —2) and their degeneracies
for large n (n = 15) is shown in Fig. 5. The maximum
of f corresponds to the fractal dimension of the geometri-
cal support of this set, i.e. , to the repeller associated with
the map (31). From the calculation, f ~ = 0.551. . . .
The end points of the f(n) curve n~;„and o. ,„corre-
spond to the scaling exponents of the most concentrated
and the most rarified regions of the measure, respectively.
In the limit of large n, the length intervals of a repelling
set behave as [12]

V. EIGENVALUE MAPS FOR
REGULAR LATTICES

Pn = @~+i(Pa+i+ 4) (44)

Equation (44) is a one-dimensional map of the entire in-

terval [
—4, 0] onto itself. This corresponds to the condi-

tion of fully developed chaos in a quadratic map. The
distribution of the iterates is continuous on the interval

[
—4, 0], and their degeneracy is uniform [7]. Thus, the

set of eigenvalues of the coupling matrix does not have a
multifractal structure.

For a two-dimensional array of coupled maps with Nz x
N„elements and periodic boundary conditions in both
directions, the eigenvalues of the matrix expressing the
diffusive coupling are given by [13]

t'2mk& t'2~l
yiv ~„(k,l) = 2 cos

~
~
+ cos

~

—2
i N, ) iN„

where k = 0, 1, . . . , N; t = 0, 1, . . . , X&. The number of
distinct eigenvalues is (N~/2) x (N„/2), and their degen-
eracy for given k and l is 4. Define

The scaling properties of the spectrum of eigenvalues of
the matrix expressing difFusion coupling for a fractal lat-
tice differ from those of a regular lattice. The eigenmodes
of a regular lattice with periodic boundary conditions
are Fourier modes. For a one-dimensional lattice of N
elements with periodic boundary conditions and nearest-
neighbor coupling, the eigenvalues of the coupling matrix
are given by [13]

p~(j) = —4sin
~

—~, j =0, 1, . . .1N —1, (43)2 f~jil
0N) '

The number of distinct eigenvalues is N/2 and each is
doubly degenerate. Let n = 0;1,2, . . ., be a parameter
such that for given n, there are 2"N elements on the
lattice. Then if the number of elements is doubled, the
following relation can be derived from Eq. (43):

0. 15
2vrl't

8~„(l)= cos
i

—2,
Ny)

(46)

O. OII 0. 2 0. 4 0. 6 0. 8 1.0

and let n = 0, 1, . . . be a parameter such that for given
n, there are 2"N x 2"N„coupled elements on the array.
Then, Eq. (45) can be written as a two-dimensional map:

FIG. 5. The spectrum of singularities for the set of eigen-
values of M . The maximum of the curve gives the fractal
dimension of the repeller associated with the map z(y)
I (~+ 5).

p„=p„+i(p,„+i—48„)+ 2(8„+l)(28„—1),
( )8„=28„+i(8„+i+ 4) + 5.

The equation for 8„maps the interval [—3, —1] onto itself.
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For 8„c[—3, —1], the equation for p„maps the interval

[a, b] onto itself, where a = 28„—2, 5 = 28„+2, and
b —aI = 4. Therefore the distribution of iterates on the

interval [a, b] is continuous. Since the degeneracies of the
eigenvalues are constant, the distribution of degeneracies
is uniform, and the set of eigenvalues of the coupling
matrix does not have a multifractal structure.

VI. STABILITY AND BIFURCATION OF
SYNCHRONIZED STATES

The synchronized, period-doubling attractors of
CML's possess a scaling structure [13,14] which is a gen-
eralization of that of Feigenbaum [15] for single maps.
Below we utilize the results of previous sections to de-
rive this structure for CMFL's of maps with quadratic
extrema.

Like coupled maps on regular lattices with diffusion
coupling, the system described by Eqs. (2a) or (2b) has
the characteristic feature that the coupling term vanishes
for the spatially synchronized states. These states are rel-
evant since one is often interested in the mechanism by
which a uniform system breaks its symmetry to form a
spatial pattern as a bifurcation parameter is varied. We
consider Eq. (2a) for backward difFusion coupling. The
analysis of the bifurcation structure can be carried out
by the following transformation of coordinates. Let U„
be the orthogonal matrix that diagonalizes M„.The jth
column of U„consists of the components of the eigen-
vector u„(j):U„(i,j) = [u„(j))(i).Introduce the change
of coordinates @„=U„x„,x„=U„P„;that is,

0 (i'&) = ) .& (3 i)& 0; t)

Equations (52) yield boundary curves in the Ap plane
which determine the stability regions of the period N,
synchronized states.

The boundary curves depend on the coupling only
through the product pp,„(j).Thus, for a particular f,
the generic curves S„=+1 and S„=—l may be(~) (~)

obtained by plotting A vs pp. At a level of construction
n there are v„different values of p„(j)to consider. Thus
for a particular f, each generic boundary curve is split
into v„curves in the Ap plane, which may be obtained
from the original by changing p,„(j).

The splitting of the boundary curves according to the
level of construction has important consequences for the
stability regions of the synchronized states on a fractal
lattice. As an example, consider f(x) = Ax(1 —x) (lo-
gistic map). Then the bifurcation condition, Eq. (52), for
the period-(N = 2 ) synchronized state becomes

S„(p(j))= [A(1 —2zA)+pp„(j))= +1. (53)

V3 =

llew

j = 1, 2, . . . , ll.

The upper curves Ss (p, (j)) = —1 have minima A~;„=(1)

1+v 5 at values ps(j);„=1/ps(j). Around those rnin-

ima, these boundary curves are approximated by parabo-
las

Figure 6 shows the boundary curves S3 ——+l in the
Ap plane (for the period-2 synchronized state), which are
given by

—A + 2A+ 4+ pps(j) [pps(j) —2] = +1,
(54)

& (i'~) =).U (i j)4 (j ~)

(48)
A = A;„+ [py,„(j)—1] .

2 5
(55)

and define 3. 45i

f(4'. (i i)) =).~ (ji)f ~ ).U (i j)4 (j ~)

(49)

In the (g„(i))coordinates, Eq. (2a) becomes

3. 27

(5o)

The spatially synchronized, period-N states x„(i)=
xi, (k = 1, . . . , N), Vi are given by the solutions of

(51)

3. 18

3 09
S.',"(-")=+I,'

4 ~ 4 I

A:=1

[f'(»»)+~& U)) =+1 (52)

and their stability can be examined in terms of the
(P„(i)j coordinates [13]. The linear stability analysis
of the periodic, synchronized states leads to

3. 0—II. 50 —0. 39
I I I

—0. 28 —0. 17 —0. 06 0. 05 0. 16

FIG. 6. The boundary curves S3 ——+1 for the period-
2 synchronized states of a Sierpinski gasket at level n = 3.
The interior region defined by these curves is where stable,
synchronized, period-2 orbits exist in the Ap plane.
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Equation (55) is valid for any period 2, with A;„de-
pending on m. Figure 7 is a magnification of Fig. 6

around the minima of the curves Ss (P(j)). The frac-
tal structure of the eigenvalues p„(j)is reflected in the
distribution of the minima p„(j)and in the presence of
nonuniform gaps (niches) in the boundary curves at any
level n. This feature allows for regions of stability for
the synchronized states that are not present in regular
lattices, where the distribution of eigenvalues of the cou-
pling matrix is uniform.

Although the distribution of eigenvalues p„(j)differs
for fractal and regular lattices, the form of Eq. (53) is
the same. Consequently, the scaling structure for the
period 2", synchronized states is similar in both cases.
Figure 6 shows the stability regions of the period-2 syn-
chronized state in the Ap plane. The corresponding re-
gions for synchronized period-2" states ean be obtained
by scaling A by b " and p by n ", where b = 4.669. . .
and n = —2.5029. . . are Feigenbaum's scaling parameters
[13]. Thus the image of Fig. 6 is reduced and reflected
about p = 0 for the higher periods. The same is true for
regular lattices; it is the shape of the scaled regions that
changes for fractal lattices.

The eigenvectors (u„(i))constitute a complete basis
(normal modes) and the state x„(t)of the system can
be represented as a linear combination of these vectors.
Thus

j=1 A;=1

(56)

3.268

3.260

The evolution of x„(t)then reflects the stabilities of
the normal modes. Figure 7 shows how the synchro-
nized state may become unstable through crossing of the

boundary curves for the u„(j)modes; the first bound-(s)

ary crossed determines the character of the instability.
In regular Euclidean lattices, the minima p;„ofthe

FIG. 8. Inhomogeneous state at parameter values A =
3.245, p = —0.4. This state is a linear combination of the
six eigenmodes corresponding to the eigenvalue p = —3, at a
level n = 3.

S~ l = —1 curves will cover the whole of the interval

[
—oo, —0.25] on the p axis (one-dimensional lattice) or

the interval [
—oo, —0.125] (two-dimensional lattice), for

n -+ oo, for any period 2~. Therefore, by crossing along
either interval, the synchronized state will bifurcate into
a superposition of many unstable modes, producing in
general a complex spatiotemporal pattern. Because of
the niches in the stability boundaries at any level n, it
is possible for the coupled-map system on a fractal lat-
tice to evolve from a spatially homogeneous state into a
state with a spatial pattern determined by a pure (de-
generate) mode. To see this, consider an initial condi-
tion consisting of a small perturbation of the homoge-
neous, period-2 state at parameter values just beyond

the boundary Ss (—3) = —1, where this initial state is
unstable. The final state is pictured in Fig. 8. It corre-
sponds to a linear combination of the gs( —3) = 6 eigen-

modes us"l(j), k = 1, . . . , 6, for p(j) = —3. All other
modes are unstable in this region of parameter space.
For any level of construction n, and any period 2, the
curve S (—3) = —1 separates a niche of the synchro-

nized state from the stable region for the u„(j)modes(k)

corresponding to p(j) = —3. Thus, a transition between
these two spatial patterns can always be observed in the
appropriate regions of the Ap plane.

VII. DISCUSSION

3.252

3.244

3.236
—0. 50 —0. 44 —0.38 —0.32 —0.26 —0. 20

FIG. 7. A magnification of Fig. 6 showing the gaps in the
stability boundary of the period-2, synchronized states. The
fractal structure of the eigenvalues of M„allows regions of
stability that are not present in regular lattices.

The inhomogeneous structure of the Sierpinski gasket
on which the coupled-map system is defined gives rise
to a number of features which affect the bifurcations of
this dynamical system. The scaling structure of the syn-
chronized, period-doubled states is similar for both reg-
ular and fractal lattices but the nature of the bifurcation
boundaries is different. For the fractal lattice, the bound-
ary curves are determined by the spectrum of eigenvalues
of the diffusion coupling matrix, which is a multifrac-
tal. The nonuniform distribution of eigenvalues leads to
niches in the boundary curves that are not present for
coupled maps on regular lattices, where the eigenvalue
distribution is continuous. The fractal normal modes
determine the inhomogeneous spatial structures in the
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vicinity of these boundary curves, and states with rela-
tively simple inhomogeneous character can be found in
bifurcations of the synchronized states within the niches.

A number of generalizations and extensions of this
work are possible. We have examined only the simplest
spatiotemporal states on a fractal lattice. The extensions
of phenomena like intermittency and other forms of spa-
tiotemporal chaos to the fractal domain can be investi-
gated. Also, problems related to competition between
stable states and domain evolution in discrete dynamical
systems involve new features when compared with the
corresponding processes on regular lattices. Some as-
pects of domain formation and growth on the Sierpinski
gasket are similar to those for the segregation of species

observed in random-walk models of bimolecular reactions
on fractals [6] and have their origin in the poor difFusion
mixing on the fractal lattice.

The study of coupled maps on fractal lattices should
allow one to gain insight into a previously unexplored
range of spatiotemporal phenomena and provide a ba-
sis for the construction of simulation algorithms for the
dynamics of these systems.
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