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Scaled Langevin equation to describe the 1/f ¢ spectrum
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Based on an ideal system under external random forces, the dynamical process of random activation is
studied. The time evolution of the system is described by the Langevin equation, and a scaling rule is in-
troduced to generalize the system. The generalized system predicts the fractional power spectrum 1/f¢
from a white spectrum to a Lorentzian. The exponent «a is a function of the fractal dimension of the
scaling rule. It is found that the fractal dimensions of 2, 1, and about 0.47 specify the particular mode of
the generalized system, where the total power of the fractional power spectrum is minimum. The values
indicate a Lorentz spectrum, a 1/f spectrum, and a power spectrum of 1/f"** type, respectively. The
system of the minimum total power in this study is equivalent to one in the minimum potential energy,
where the system is in the steady state. Therefore the random-activated system in the steady state gives
a 1/f spectrum, and a 1/f“ spectrum is considered to represent the fluctuation of the complex system

from the steady state.

PACS number(s): 05.40.+j, 02.90.+p, 91.30.Bi

I. INTRODUCTION

Fluctuation phenomena with the 1/f spectrum have
been observed in a wide variety of dissimilar physical sys-
tems. Noise experiments in electronic devices reveal frac-
tional power spectra of 1/f type [1]. Here a is a con-
stant in the order of unity and is dependent on the experi-
mental conditions. Noise current in semiconductors and
turbulent flow field are also described by the fractional
power spectra of 1/f3/2 and 1/ types [2,3].

Various theories have been proposed to explain such
the spectral behavior [4] and its relationship to the long-
tail behavior of the complex system [5]. Most of the
theories start with an a priori assumption on the auto-
correlation function of a particular process and/or the
probability function of the random events. There has
been little discussed on what conditions and material
properties are necessary for the functions and what the
physical significance of the functional forms is. Conse-
quently, the difficulties are always encountered in gen-
eralizing the physical origin of the diversity of the sys-
tems. This leads us to accept that the physical origin of
the 1/f fluctuations cannot be universal.

Recently disordered systems have been studied [5] in
order to find the common stochastic property of the sys-
tem. And it is suggested that the time-scale invariance is
the essential property to the common temporal behavior
of the complex system. In spite of these circumstances, it
is further tempting to search for a universality in the fun-
damental equations underlying the 1/f fluctuations, since
the phenomenon is so ubiquitous.

Our motivation to investigate the 1/f¢ fluctuation
phenomena is rooted in the recent analysis of disastrous
earthquakes [6]. Figure 1 shows a schematic diagram of
an earthquake source: The size of an earthquake source
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is characterized by fault length L and width W, where the
fracture induces the dislocation on the surface. Stress
drop Ao (or force) acts on the surface of L X W. Since
the earthquake source process is essentially a transient
phenomenon, the fracturing starts at one end of the
source area and propagates to the other end in a finite ve-
locity v. This is the macroscopic description of the earth-
quake source process.

The microscopic description of the earthquake source
is also important: Strong ground motion is large-
amplitude ground shaking near the earthquake source,
which causes the earthquake disasters. The ground oscil-
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ﬁropagating Fracture Front v

FIG. 1. Schematic illustration of the complex earthquake
source as a representative of the complex system. Fault length
L, width W, and stress drop Ao (or force) are the macroscopic
parameters to describe the deterministic part of the earthquake
source process. Fracture propagates on the surface with L X W
with a velocity v. Characteristic size of small-scale hetero-
geneities d and variance stress drop Ao’ are the microscopic pa-
rameters to represent the stochastic part of the complex source
process.
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lates so violently that the phase of the motion is in-
coherent [6]. Figure 2 shows an example of strong
ground-motion accelerograms, which registered the max-
imum ground acceleration about 30% of the gravity G.
The excitation of strong ground motion is strictly related
to the random fracturing of small-scale heterogeneous
areas where the stress drops are not constant but fluctuat-
ing. Variance stress drop Ac? and size d of the hetero-
geneous areas are the parameters to describe the micro-
scopic part of the complex earthquake source process [7].
L is the order of several hundred kilometers and d is
several hundred meters for a particular disastrous earth-
quake.

Fracturing one heterogeneous area radiates one pulse
of oscillation. Fracturing many of the heterogeneities in a
random manner generates random pulses with incoherent
phases. Then, the complex earthquake source could be
observed as a random pulse time series (Fig. 2). These
understandings lead us to consider that the complex
earthquake source process could be simulated by a sto-
chastic process of the fracture of small-scale heterogene-
ous areas activated randomly.

In this study we develop a theory to describe a dynami-
cal process of random activation. The model process is
capable of generating 1/f and 1/f“ spectra. This study
is not aimed at obtaining the 1/f“ spectrum by assuming
a priori the autocorrelation function and the stochastic
property of the process. The time evolution of the ran-
dom activation is described by the Langevin equation of
motion, and the complexity of the process is taken into
account by a scaling rule to the set of the Langevin equa-
tion. The scaling parameter is the only restriction to
characterize the whole system, and we seek for a physical
condition to determine the scaling parameter of the sys-
tem and the exponent a of the spectrum.
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FIG. 2. Strong motion acceleration at Akita (Port Harbor
Research Institute), Japan for the 1983 Japan Sea earthquake of
May 26. Three components of ground acceleration, east-west,
down-up, and north-south components, are shown. The ordi-
nate of 200 gal is 20% of the gravity G. Note that the phases of
the motion are not continuous like sine waves but change time
to time abruptly.
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II. SCALING RULE FOR THE LANGEVIN
EQUATION

Generally speaking, the dynamics of random systems is
so complicated that the systems are hard to be character-
ized only by their macroscopic parameters. The elemen-
tary process of the system is even unknown in some cases,
nor is the dynamic temporal evolution known for the ele-
mentary processes. In this study we consider the dynam-
ics of a complex system as the system response by ran-
dom activation. And we model the complexity of the sys-
tem by the self-similarity of component subsystems.

What we consider here is the dynamical process of a
complex system. The system is composed of elements,
and the elements are grouped into clusters. Each cluster
represents a set of elements in which respective stochastic
behavior is governed by the same equation. This means
that the state of the whole system is expressed as a sum of
“local states” of clusters: Let the state of the system be
X(t) and the local states X, (¢), then we have

X()=3 X,(t). (1)
n=0

Suppose that the state of the system X (¢) is described by

X()+7X(t)=n(1), (2)

where the dot stands for the time derivative, ¥ is a posi-
tive constant, and n(z) represents random forces or ran-
dom noises.

If the whole system is expressed by a single cluster
X,(1), (2) is reduced to an equation

Xo()+T7Xo(t)=ny(t) . 3)
The random force is assumed by zero mean
(ny(2))=0
and the autocorrelation function of
(no(t+1Iny(t))=0%(7), 4)

where o2 is a constant depending upon the frequency of
random activation, and 8 is the Dirac delta function.
The convention is adopted to denote the mean value by
angular brackets { ).

Clearly, (2) is oversimplified to generally represent the
complex system. However, the primary interest of this
study is to describe the stochastic behavior of the com-
plex system, and not to derive a model appropriate to the
actual details. So far we understand (2). (2) is the
Langevin equation to describe the Brownian motion. It
also represents the rate change of membrane potential of
a neuron [8] and/or the response of a random activation
of a viscoelastic spring [9] when X(¢) is considered as ve-
locity and n(t) is the random force.

Subscript O indicates a generator of the system and N
the number of the clusters. The generator is composed of
elements activated by n,(¢) with a characteristic decay of
7. {X,(t)) becomes zero as t — w0, because of (2). This
is similarly understood as that the temporal summation
of excitatory and inhibitory potentials [10] of the synapse
goes back toward to the resting level. The autocorrela-
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tion function Cy(7) of X,,(#) is calculated as

Co(r)=(Xo(t+7)X,(2))
2
="—exp(—7|7|) (5)
27

under the initial condition of X,( — « )=0.

We introduce parameters a and b to consider the scal-
ing rule for local states of X; _; and X;, and for n; _, and
n; (i=1,2,...,N),

Va/bX,_(bt)=X,(1), (6)
Viabn,_(bt)=nt) , %)

where a and b are positive real here, and subscript / indi-
cates the ith level of the scaling. We have from (3) and
(6)

X, ()+b7X (1)=n,(1),
. (8)
X, () +b27X,(t)=n,(t),

and so on. The autocorrelation of the noises is expressed
similarly

(n(t+mIni(t))=aln; _(t+7)n;_(t))
(i=1,2,...,N). (9

The autocorrelation function of each cluster is then
scaled as

=2
b

Each level of the scaling specifies a cluster response with
b (>1) times more rapid decay than that of a younger
scaling level. The responses are triggered a times as often
in a random manner, which measures the activation rate.
Different activation rates for different clusters would be a
manifestation of many threshold levels for the activation
of elements. There we introduce the scaling region.
Addition of the individual responses of such clusters is
considered to form a kind of parallel network of elements

Cci(n=%c,_,(br) . (10)

=<|
=y

FIG. 3. Response of the generalized system by random ac-
tivation. The amplitude and unit of time in the abscissa are ar-
bitrary. A self-similar set of clusters is illustrated in rows. Each
cluster is composed of random-activated pulses with the same
amplitude decay rate but with random heights.

for the random activation. This would be the same as
spatial summation [10] for many inputs at different loca-
tions. Figure 3 draws a sketch of the random responses
activated in this context. The autocorrelation function of
the whole system composed of all the clusters is ex-
pressed by the sum of (10) as

1

exp(—b'7|7]) . (11)

2
o a
crn=23 |
RAL
III. FRACTIONAL POWER SPECTRUM
OF THE COMPLEX SYSTEM

When a/b>1, (a/b) within the summation in the
right-hand side of (11) diverges whereas the exponential
function converges. We could apply the steepest descent
approximation [11] for (11) considering large |7/,

Clr)= Al 7Y,

2 expl(£= D[In(E— D—1]]
In(b)

(12)
21

E—1

where £ is the fractal dimension of the random activation
defined by the scaling parameters a and b as

_ In(a)
3 In(b) ~

Here 7=1 and 02=2 have been assumed without loss of
generality. Note that £>1 in this case. b (>1) then
specifies the amplitude decay of responses as found in
Fig. 3. a (>b>1) and b are left to be a free parameter
here, which will be determined later by a physical condi-
tion.

We should notice that the long-tail behavior of the
complex system [12] is generally obtained in (12). The be-
havior could be commonly found in the complex systems
and disordered materials and has been studied extensive-
ly. However, we could study more about the property
beyond the general trend and relative behavior, since (12)
is the solution of the Langevin equation of motion
without any a priori assumption of the probability density
and/or the autocorrelation function of the system.

The power spectrum of the system is calculated from
(12)

Ps(co)=f_oc C(7)exp(—iwT)dT

A§:

(13)

=24,T(2—¢&)cos l%(z—g) ’Imlg'2

(2—& integer) , (14)

where T is the T function, and o is the angular frequen-
cy. It is w=27f and we presumed upon 7 to be the nor-
malization factor. This describes the fractional power
spectrum from a white spectrum, when § tends to 2, to
1/f spectrum, when & tends to 1.

The power spectrum in (14) is not always true for the
entire frequency range because of the assumption in
deriving (12). The power spectrum would be white in
very low frequencies w << 1. This is because the spectrum
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in the low-frequency limit represents that of random im-
pulses and not of random pulses with finite-time dura-
tions. Whereas in the extremely high frequencies, o > b~
(N being the maximum scaling level), the spectrum would
be of 1/w? type, since each C;(7) in (5) and (10) is attri-
buted to the corresponding Lorentz spectrum.

Although the integral formula itself in (14) is valid [13]
even for 2 < £ <3, we observe a negative power spectrum.
This is because the I'-function is evaluated as the finite
part of hyperfunctions [14] excluding the singularities.
Another approximation to evaluate the integral in (14)
could be obtained by the Euler-Maclaurin formula as

Nla * 2b*
Pe(a))l'fo ; mdx
N-—1 n+1 a * 2h* !
,Eofn b | iz (9, 19

where ' stands for the derivative. In the above, we could
relax the restriction of the fractal dimension as to £> 0.

The approximation (15) is rewritten taking a new vari-
able t =|w|b* as

o tg 1
Pol)~—2— |62 oV,
(@)= l(b)l ol fml 51
Nl st a * 2b* '
__ngo fn l —I—)— m dx . (16)

If our interest is confined to the fractional power spec-
trum in the scaling region of frequency 1 <<w <<b%, the
first integral is approximated to the integrand from O to
. Then we could evaluate by the branch cut integral,
when 0<£< 1, as

T
sin {—(£—1)
2 [2 }
In(b) sin{m(£—1)}

2
1+o?

w240

P (o)~

(17)

This is identical to the spectrum in the limit of £—0,,
which we could evaluate by integrating each component
of the Taylor series for the numerator in (16)

2
14+ w?

P(w)~ lwl$~2+0 (18)

2
&ln(b)

Similarly when £—2_, we could derive the power
spectrum of

2

P (w)= TFo?

lw|$72+0

2
2—&)in(b) (19)

This is identical to the power spectrum by the steepest
descent method in (14).

In the case when £> 2, the contribution of the cluster
in the maximum scaling level prevails, giving an approxi-
mate spectrum of
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N
26N

T (20

a
P(w)= b

(20) is a Lorentz spectrum with a characteristic corner
frequency of b". Consequently, these spectra show a
fractional power decay from one over f to the Lorentz
decay. Combining the result of (14), the generalized sys-
tem considered in this study describes a fractional power
spectrum 1/f% from a white to a Lorentzian. The ex-
ponent a of 1/f* spectrum is, therefore, a function of the
fractal dimension of random activation as

a=2—§ (0<£<2),
a=0 (or2) (£>2).

21)

IV. TOTAL POWER OF THE FRACTIONAL
POWER SPECTRUM

It is true that the total power of the spectrum from the
generalized system monotonously increases as . This is
because the number of elements included within a unit
time increases as £. However, our interest does not lie on
the white spectrum in very low frequencies nor on the
Lorentz spectrum in the extremely high frequencies.
Two cutoff frequencies w, and w, are considered. These
specify the scaling region of frequency mentioned in the
preceding sections. Physically, the lower limit o, gives
the low frequency below which the power spectrum is al-
ways white, whereas the upper limit w, corresponds to
the very high frequency above which the power spectrum
is a Lorentzian. These are said to be w; =1 (normalized
by 7) and w,=b" in the preceding section. In this scal-
ing region, the fractional decay of the power spectrum is
observed.

Considering these two characteristic frequencies, we
define a band-limited total power of the fractional power
spectrum

_1 @
T,,(g)—;—fw1 P, (0)do . 22)

This is equivalent to the system energy in a unit time
through Parseval’s theorem. Since the dynamical process
of the present system is stationary, one would obtain the
band-limited total energy by multiplying a time duration
of the system response to (22).

Figure 4 shows T, as a function of the fractal dimen-
sion §. Although & [=In(a)/In(b)] has been an arbitrary
parameter specifying the dynamics of the system, we ob-
serve three values of £, 2, 1, and about 0.47, where the
generalized system is specified by the total power (energy)
minimum,

dT, () _
d§

When £>2, many responses of the elements over-
lapped one another on the time axis, since @ > b2. There-
fore, the system is characterized by random-and-dense
phenomena. In this case the Lorentz spectrum is plausi-
ble, £ becoming 2, where the system is specified by the lo-
cal minimum in the band-limited total power. Figure 4

(23)
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FIG. 4. Total power of the fractional power spectrum as a
function of the fractal dimension of the scaling parameter.
Maximum and minimum frequencies specify the scaling region
of the system response, which is assumed 1000 and 1. The value
of total power is normalized by the maximum frequency. SDA
indicates the steepest descent approximation in the text, and BC
indicates the branch-cut integral for the fractal dimension of
0<€<1;E—04 and §—2_ are understood.

also indicates that the 1/f spectrum is another mode,
when £ is 1. This is when the scaling parameters satisfy
the condition of a =b. The other is the system specified
by the power spectrum of 1/ type. Since a <b in the
last case, the random activation is sporadic compared to
the characteristic response duration.

In a thermal equilibrium, the steady-state system is
characterized by the minimum free energy. In contrast
to this, the steady-state propagation of elastic fractures is
specified by the minimum potential energy (elastic ener-
gy). And the power T,(§) in (22) corresponds to this
elastic energy in the scaling region. Therefore, the above
three modes indicate the system in the steady state.

V. CONCLUDING REMARKS

It is well known that the Langevin equation describes
the stochastic behavior of the Brownian motion. The
Brownian motion is a highly correlated stochastic pro-
cess, and its derivative is the Gaussian random noise [15].
The Gaussian random noise is completely uncorrelated.
There defined is a stochastic process with the temporal
and spectral behavior between the Brownian motion and
the Gaussian random noise. This has been studied as the
fractional Brownian motion [15]. The fractional Browni-
an motion is formally obtained by a moving average of
the Gaussian random noise weighted by the kernel of
past time with the exponent of H—1. For H=1, the
process is the classical Brownian motion. The inter-
dependence of the fractional Brownian motion is featured
by H. However, H is an empirical parameter (0<H <1)
and its physical significance is not obvious.

The fractional Brownian motion [15] provides the
power spectrum of the form 1/f2¥ 71 [16]. Since the
present theory describes the stochastic behavior of the
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complex system based on the fundamental Langevin
equation, the theory would give an insight into the frac-
tional Brownian motion from the very basic equation.
The primary result in this study is the description of the
spectral behavior of 1/f% where a=2—¢ in (21). Then
we formally obtain a relation between the fractal dimen-
sion of the scaling parameter and the above exponent H
as

E=3—2H . (24)

It is clear that the classical Brownian motion H =1 cor-
responds to £=2 in the present representation, where the
trace of the Brownian motion covers the whole two-
dimensional space [15]. For ] <H <1, the process is
characterized specifically by the long-tail behavior, where
1<£<2 in the present case. An infinitely long-tail be-
havior of the system gives the 1/f spectrum where
H—1_ and §—1,. All these reflect that the degree of
the correlation of the fractional Brownian motion by H is
represented by the fractal dimension £ of the scaling pa-
rameter of the system. We also understand the geometri-
cal property of the fractional Brownian motion in terms
of H and §.

In the elastodynamic system, a uniform propagation of
fracture is characterized by the minimum elastic energy
(minimum potential energy). Seismic short waves are
generated from the earthquake source by the random
fracture of small-scale heterogeneous areas, whose wave-
lengths are closely related to the heterogeneity sizes.
Such waves, namely strong ground motion, are composed
of many pulses with incoherent phases. Therefore, the
total energy of strong ground motion is said to be
minimum, if the fracture sequence of the random hetero-
geneities is in the steady state. And this is a theoretical
basis for the reason why we observe the fractional
earthquake-source spectra in high frequencies [7].

It could be concluded from the above consideration
that 1/f represents the spectrum of the complex system
in the steady state and that 1/f¢ is the spectrum of the
generalized system close to the steady state. The
difference of the exponent coefficient ¢ from 1 would
measure the distance of the system from the steady state.
This would be the reason why the 1/f spectrum is so ubi-
quitous in the varieties of the physical phenomena. This
conclusion is derived from the minimum total power cri-
terion and is not available until the complex system is de-
scribed by the fundamental Langevin equation of motion.

It is also found in this study that there are two other
modes specified by the minimum total power criterion be-
side one over f. One mode gives the Lorentz spectrum.
The other is characterized by the random-but-sporadic
phenomena with a power spectrum close to the 1/ 133
type. This contrasts with the 1/f and the Lorentz
modes. Since the system generally describes the sparse
phenomena in the last case, this mode would be one of
the representations to describe the intermittence in the
turbulent flow fields. Considering the broad minima in
Fig. 4, the spectral behavior of 1/f!°® type would be
consistent with the  exponent energy spectrum of tur-

3
bulent velocity fields [3] and may also be consistent with
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the 2 exponent spectrum of semiconductor noises [2].
Finally, the present theory could be modified to de-
scribe a more complicated system in which the local clus-
ters are characterized by the plural scaling factors of
by,b,,...,b;. The theory could be extended for the spe-
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cial case of d =2 in the same framework of this study,
where the basic equations are expressed by complex scal-
ing parameters. The system would provide us with a pro-
cess predicted by the complex fractional Brownian
motion [15].
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FIG. 1. Schematic illustration of the complex earthquake
source as a representative of the complex system. Fault length
L, width W, and stress drop Ao (or force) are the macroscopic
parameters to describe the deterministic part of the earthquake
source process. Fracture propagates on the surface with L X W
with a velocity v. Characteristic size of small-scale hetero-
geneities d and variance stress drop Ao are the microscopic pa-

rameters to represent the stochastic part of the complex source

process.



