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Improved analytical formulas for x-ray and neutron reflection from surface films
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A general and exact expression for x-ray and neutron reflectance and transmittance is given in terms

of an integral of the real-space scattering-length-density profile fluctuation of the film, with respect to an

arbitrary constant reference density level, over the wave function inside the film. Various special cases
and approximations are then derived from this exact form by suitable approximations of the wave func-

tion. In particular, two practical approximate formulas are derived which are improvement over the

corresponding distorted-wave Born approximations. One is for an arbitrary film deposited on a known

substrate and the other for a free liquid surface. Numerical results are used to illustrate the accuracy of
these formulas.

PACS number(s): 02.50.+s, 61.12.Bt, 68.10.—m

I. INTRODUCTION

The reflectance and transmittance of specular
reflection of plane waves of x ray and neutrons from one-
dimensional surface films have been given recently in [1]
in the so-called small curvature approximation (SCA).
This approximation was proven to reduce to and is more
accurate than the standard Born approximation, the
distorted-wave Born approximation (DWBA), and the
WKB approximation. It was also shown that it is accu-
rate from high-Q region down to the region very close to
the critical edge. However, around the critical edge, it
produces some oscillatory deviations from the exact re-
sult. These deviations are thought to be due to the ex-
istence of a bare-substrate Fresnel reflection term in the
Green's function employed in the SCA. Around the criti-
cal edge, this term remains as a propagating mode when
it should have become evanescent, thus causing an
artificial interference effect. To correct for this effect, a
more general and better Green's-function formulation of
the reflection is developed in this paper.

ikozThe reflection and transmission of a plane wave e
by a surface film on top of a semi-infinite substrate are il-
lustrated in Fig. l. The free liquid surface is just a special
case of Fig. 1 when the substrate scattering length density
is made identical to that of the bulk liquid. The scatter-
ing length densities are 0, p(z ), and p, in the air, the film,
and the substrate, respectively. The corresponding one-
dimensional wave numbers are ko, k(z), and k, defined
by ko =2m. sin8/A, , k(z) =[ko —4mp(z)]', and
k, =(ko —4rrp, )'~ with 0 denoting the grazing angle of
incidence and k the free-space wavelength of the incident—ikoz
wave. The reflected wave is re ' and the transmitted

ik, z
wave te ' with r and t being the reflectance and

transmittance to be found. The one-dimensional wave
function U(z) satisfies the following Helmholtz equations
in the three regions shown in Fig. 1:

U"(z)+koU(z)=0, z ( —d

U"(z)+k U(z)= —(k —k )U(z), —d~z(0
U"(z)+k, U(z)=0, z~0

(l. la)

(1.1b)

(1.1c)

r exp(-ikoz)
t exp(ik z)

exp(ikoz)

air film substrate

FIG. 1. Illustration of the reflection and transmission of a
plane wave by a surface film on top of a substrate.

where k is an arbitrary reference wave number to be
chosen properly so that the above-mentioned artificial in-
terference effect can be eliminated. It should be pointed
out that, for the neutron, U(z ) is the z dependence of the
corresponding three-dimensional wave function P defined
as P( xy, z)=q&( xy)U(z), while for s-wave x rays, i.e.,
with polarization vector perpendicular to the plane of in-
cidence, U(z ) represents the z dependence of the
electric-field intensity E(x,y, z )=F(x,y ) U(z). For p
wave x rays, i.e., with polarization within the plane of in-
cidence, it is not possible to cast U(z ) in the above form,
and the theory presented in this paper does not apply.

To solve Eqs. (l.la) —(l.lc), the general Green's-
function approach is followed [2,3]. Using the geometry
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in Fig. 1, it is straightforward to derive the Green s func-
tion as

r =R + f dz'(k —ko) U(z')[e +Re ],2k0

g(z, z') =C„e ' [e'"' +R„e '"' ], z~ —d (1.2a) (2.1a)

g(z z')=C e ' [e '"'+R e'"' "+' '] z 0 (1.2b)
It=T+ Tf dz'(k —ko)U(z')e

2k, (2.1b)

Using the Green's functions, one easily obtains the exact
general expressions for the reflectance r and transmit-
tance t as

r =R+C„f dz'(k —k )U(z')[e'"'+R„e '"' ],
(1.3a)

T+C, dz' k& —k U z e
—ikz'+R e (2d+z'

—d

(1.3b)
with

with R =(ko —k, )/(ko+k, ) and T=2kol(ko+k, ).
Equations (2.1a) and (2. lb) are then identical to the exact
results given in [1]. In order to obtain a close-form ex-
pression for r and t, approximation of the wave function
U(z ) in the film has to be made. It turns out that for this
choice of k, it is difficult to obtain a good approximate
U(z) which reproduces the correct reflectivity near the
total reflection edge (see Ref. [1]).

(b) However, if k is chosen to be k =k„ then Eq. (2.1a)
becomes

C, = T]e, C, = T„C=i(k —kQ)d 1

2k 1 —R Re'
(1.3c)

I

r =Re 0 + A f dz'(k —k, ) U(z')e—d

'(k —k0 )d' k+k, '
(2.2a)

(2.2b)

and

ikd
—2ikQd i(k —kQ)dR =C( —R &+R„e '"~)e ', T=CTI T„e

(1.3d)

where R, =(k —ko)/(k+ko), R„=(k—k, )/(k+k, ),
T& =2k/(k+ko), T„=2k/(k+k, ), and Tf =2kol
(ko+k). Compared to [1], the unique element intro-
duced here is the reference k, which can be chosen in
various ways without changing the validity of the solu-
tion Eqs. (1.3a) and (1.3b). In Sec. II, various choices of k
will be discussed and the resultant reflectances compared
with the known results. For a free liquid surface and a
film deposited on a known substrate, two very accurate
formulas will be presented in Sec. II and numerical corn-
parisons with the exact results will be used to demon-
strate their accuracies in Sec. III.

II. SPECIAL CASES
AND PRACTICAL APPROXIMATE FORMULAS

Since k is an arbitrary constant, one can choose
different values for it to obtain different forms of exact
expressions for r and t.

(a) If k is chosen to be k =ko, corresponding to choos-
ing the reference level to be the air, then r and t reduce to

which is again exact but simpler. The choice of U(z)
then becomes easier.

(i) Now, the wave function U(z) in Eq. (2.2a) can be
approximated very accurately by the following choice
(see [1]):

U(z)=B exp f ik dz +rb exp —f ik dz
0 . . 0

—ikQd 0
tfe ' exp f ik dz

B= d
0

1+rbrf exp f 2ik dz—d

(2.3a)

(2.3b)

Here rf = (ko —kf ) l(ko+ kf ), r„=(k„—k, ) l(kb+ k, ),

tf =2ko/(ko+kf ), and kf =(ko 4npf )' —and

kb =(ko —4mpb )' . Note that pf is calculated by taking
the average of the density profile p(z ) at the front end of
the film (z= —d ) over a region of thickness b, =2m/Q„
Q, being the value of Q=2ko at the critical edge. The
quantity pb is similarly calculated at the rear end of the
film (z=0). This approximation of U(z) is obtained
from the SCA result Eqs. (2.14a) and (2.14b) in [1] by
neglecting the derivative k (z) for simplicity. Equation
(2.3a) will be accurate for most practical purposes be-
cause the phase relation and the multiple reflections be-
tween the front and the back interfaces are both correctly
accounted for. Substitution of (2.3a) into Eq. (2.2a) gives

I I

r =Re + AB f dz'(k —k, )e ' exp f ik dz +rb exp —f ik dz—d 0 0
(2.4)

This is a good approximate formula for a film deposited
on a known substrate and will be shown in Sec. III to be
an improvement over the DWBA Eq. (2.6c) and the re-
sult in [1, Eq. (2.15a)].

(ii) For a free liquid surface, the surface structure grad-
ually merges into the bulk. In this case rb =0 for
sufficiently large d such that all the surface structure is

included. Then, k, is equal to the bulk value of the
liquid. If the bulk wave number is denoted by k, we have

I

r =Re +D f dz'(k k)e'"' exp f ik —dz—d 0

where
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—2ik0d 0
itfe ' exp I (k+k)dz

D=
(kII+k )

(2.5b)

This is an excellent approximate formula for free liquid
surfaces.

(c) If the choice for k is such that

(2.6a)

and we use the exact wave function inside a film having a
constant scattering-length density p, which is

U(z ) =CT e
'"0"e ikd[e ikz+ R e

—ikz]f (2.6b)

then Eq. (1.3a) reduces to a simple expression

r=R+Co[hp(2k)+R„e '
Ap( —2k)], (2.6c)

with Co =iC Tt Tfe ' l(2k ) and R already defined in
Eq. (1.3d). Note that k —k = 4n—.(p P—)= 4v—re(z)
and Ap denotes the half-space Fourier transform of
b p(z ). Equation (2.6c) is the DWBA approximation
currently proposed to be used to treat very thin surface
films (d (400 A) deposited on a highly reflecting sub-
strate [4,5]. This approximation is not accurate for the
case of thicker films and weakly reflecting substrates as
wi11 be seen in Sec. III.

(d) Finally, in order to obtain the well-known Born ap-
proximation [6], the film and the substrate as a whole are
regarded as a finite material region localized within
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FIG. 2. Comparison of Eq. (2.4) with the exact result and the
distorted-wave Born approximation Eq. (2.6c). (a) The
scattering-length-density profile used for comparison is an error
function profile between two polymer layers on top of a silicon
substrate as commonly used in neutron reflection study of
polymer-polymer interdiffusion [8]. (b) The calculated
reflectivity using Eq. (2.4) is plotted in circles together with the
exact result (solid line) and the DWBA approximation (dashed
line). Q is the free-space wave-number transfer defined by
Q =2ko.

FIG. 3. Comparison of Eq. (2.5a) with the exact result and
the distorted-wave Born approximation Eq. (2.6c). (a) The
scattering-length-density profile used for comparison is superpo-
sition of an oscillating component on a bulk liquid as given—(z+z0)7$
by p(z)=pb+p&[sink(z+zo)/k(z+zo)]. e, where pb
=2.5X 10 A, Pl=5.0X 10 A, k =m/100 A
z0 =2000 A, and /=2000 A. This oscillatory profile simulates
our recent finding on free microemulsion surfaces [9]. (b) The
calculated refiectivity using Eq. (2.5a) is plotted in circles to-
gether with the exact result (solid line) and the DWBA approxi-
mation (dashed line). Q is the free-space wave-number transfer
defined by Q =2ko.
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(
—oc, + ~ ) and k in Eq. (1.3a) is chosen to be ke. Then

the integration limits in Eq. (1.3a) become (
—co, + ~ ).

Since the region to the right of the film-substrate com-
bination consists of air, we can put, in Eq. (1.3a),
R &:R:0 T~:1 R:0 and C:1 /2ko ~ If we further
approximate the wave function inside the film-substrate

ikoz
combination by the incident wave e, we obtain, noting
that k' —k,'= —4~)o(z),

r= ' f "dz'(k —ko).e
' "

2k,

' f "dz'p(z') e'~'', (2.7a)

where Q =2ko. A partial integration further reduces the
expression to the well-known form

47' +,dp(z')
7 = dz' .e' '

Q~ —~ dz' (2.7b)

This approximation is only accurate for values of Q
larger than about five times the critical edge [1],

III. NUMERICAL COMPARISONS
AND CONCLUSIONS

In this section, the accuracy of the formulas Eqs. (2.4)
and (2.5a) are tested by comparisons with the exact re-
sults calculated through Parrat's recursion relation [7].
The DWBA approximation Eq. (2.6c) is also calculated
and compared with Eqs. (2.4) and (2.5a).

For Eq. (2.4), an error function scattering length densi-
ty profile illustrated in Fig. 2(a) is used. The profile is
typical of the DPS-HPS (deuterated-protonated poly-
styrenes) polymer-polymer interdiffusion profile on top of
a silicon substrate [g]. The calculated reflectivity from
Eq. (2.4) (the squared modulus of r ) is plotted in circles in
Fig. 2(b) together with the exact result in solid line. The
DWBA result from Eq. (2.6c) is in dashed line. Equation
(2.4) agrees very well with the exact result. The DWBA
approximation suffers from the artificial interference
effect due to the large step at the rear interface when the
average profile is taken as shown by Eq. (2.6a). Equation
(2.4) is without doubt superior to DWBA. It is also
better than the result in [1] since the fiuctuations around
the critical edge is suppressed in Eq. (2.4). We found
through numerical analysis that the condition of validity
for the DWBA approximation is that the substrate has a
very high scattering length density, i.e., is highly
reflecting, and that the film structure can be approximat-
ed closely by a small perturbation superimposed on a
constant scattering-length-density background. Conse-
quently, it is more likely to be accurate for x-ray
reflection than for neutron reflection because the highest

available substrate scattering length densities are about
one order of magnitude greater for the former than for
the latter. The strong oscillations of the DWBA result in
Fig. 2(b) are just due to the low neutron scattering length
density of silicon and the large difference of the error
function profile from a constant layer.

For Eq. (2.5a), a free surface scattering-length-density
profile as given in Fig. 3(a) is used. The profile is
representative of those found in microemulsion [9]. The
calculated reflectivity using Eq. (2.5a) is plotted in circles
in Fig. 3(b) together with the exact result in solid line.
The DWBA result is in dashed line. Again it is found
that Eq. (2.5a) is fairly accurate over the entire Q range
and it is an improvement over the DWBA.

In summary, we found two formulas Eqs. (2.4) and
(2.5a) which are fairly simple and very accurate. They
are reducible to and more accurate than the DWBA ap-
proximation as well as the Born approximation [1]. Nu-
merical calculations using the above two profiles for vari-
ous choices of k have shown that k =k, is the best choice
for the approximate wave function U(z) given by Eq.
(2.3a). The reason for this is that k =k, eliminates the
artificial interface at z =0 in the Green's function so that
around the critical edge there is no propagating wave to
disturb the correct evanescent wave in the film.

Finally, it is also important to point out the utility of
the theory developed in this paper as compared to the
well-known Parrat numerical recursion relation. First,
the integral-equation formulation can be used as the
reference reflection to derive the expression for the
diffuse nonspecular scattering due to surface roughness as
well as volumetric inhomogeneities [10] by the perturba-
tion method while it is impossible to achieve this using
the recursion relation. Second, the formulas derived in
this paper may be used to do mathematical inversion of
the reflectance data by a matrix inversion method to
reconstruct the real-space scattering-length-density
profiles [11] while the recursion relation cannot be used
in this way. Third, the development in this paper consti-
tutes a coherent formation of the reflection theory which
yields in a natural way the well-known Born, distorted-
wave Born, and WKB approximations, which are used in
practice by many authors [4—6, 12].
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