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Scaling, phase transitions, and nonuniversality in a self-organized critical cellular-automaton model
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We present a two-dimensional continuous cellular automaton that is equivalent to a driven spring-
block model. Both the conservation and the anisotropy in the model are controllable quantities. Above
a critical level of conservation, the model exhibits self-organized criticality. The self-organization of this
system and hence the critical exponents depend on the conservation and the boundary conditions. In the
critical isotropic nonconservative phase, the exponents change continuously as a function of conserva-
tion. Furthermore, the exponents vary continuously when changing the boundary conditions smoothly.
Consequently, there is no universality of the critical exponents. We discuss the relevance of this for
earthquakes. Introducing anisotropy changes the scaling of the distribution function, but not the
power-law exponent. We explore the phase diagram of this model. We find that at low conservation lev-
els a localization transition occurs. We see two additional phase transitions. The first is seen when mov-
ing from the conservative into the nonconservative model. The second appears when passing from the
anisotropic two-dimensional system to the purely one-dimensional system.

PACS number(s): 05.40.+j, 05.45.+b

I. INTRODUCTION

The common appearance of fractal structures in nature
is a long-standing puzzle. How can systems that interact
only locally create correlated structures with a great
variety of length scales and scale invariance? We en-
counter this phenomenon in statistical physics when a
phase transition takes place in an equilibrium system.
The system exhibits fluctuations in all possible length
scales, but the phase transition occurs only at a critical
point, to which one has to fine-tune some external param-
eters of the system. Obviously, there is no reason to as-
sume that natural systems are fine-tuned to a thermo-
dynamic phase-transition point.

Recently, Bak, Tang, and Wiesenfeld (BTW) suggested
that natural systems might organize themselves, without
any fine-tuning, to a critical state through their local dy-
namics [l]. They named this kind of organization to cri-
ticality "self-organized criticality" (SOC). This behavior
is usually characterized by a power-law distribution func-
tion of the activity (avalanches) in the critical dynamical
system and by existence of scale invariance of the distri-
bution function.

The idea of SOC went hand in hand with a definite
cellular-automaton algorithm, suggested by BTW, initiat-
ing enormous scientific activity. Various different cellu-
lar automata were studied and a great effort was spent on
deriving some theoretical understanding of the new mod-
els.

A common feature to most of the models was that the
local dynamical rules obeyed a conservation law. There
has been some question as to whether or not the conser-
vation is a necessary requirement for SOC [2,3]. With re-
gard to the generality of the concept of SOC, this is a
critical aspect, since many natural phenomena have in-
herent nonconservative properties.

Simulation of a system, with local perturbations and
nonconservation in the dynamical rules of the original
BTW model, shows that a length scale is indeed intro-
duced into the problem [4]. At the same time different
models with some degree of local nonconservation, like
the "game of life" and "forest fire model, " seem to be
critical. However, it is very hard to follow the dynamics
in detail in those models. In fact, the local dynamics can
be "more than conservative, " so the average nonconser-
vation in the latter models is not well defined; thus it is
not clear to what extent the SOC is associated with the
requirement of conservation.

Recently, Feder and Feder introduced a two-
dimensional model (hereafter called the Feder model)
with low level of nonconservation that seems to display
criticality [5]. While this result is indeed very intriguing,
the model suffers from several deficiencies. One is that
without dynamical noise the model behaves periodically,
showing no criticality. Even with noise, where the model
exhibits criticality, the model behaves almost periodical-
ly. Also, the amount of nonconservation is not a fully
controllable quantity, and it is somewhat unclear what
the role of the nonconservation is.

Another general question concerns the universality of
the models. An attempt to connect the problem of SOC
to randomly driven Langevin equations was made by
several authors [2,3]. The basic equations were directed
nonlinear diffusion equations driven by random noise.
The primary predictions of those models are that any
kind of nonconservation will immediately destroy criti-
cality and that a limited set of universal exponents will
characterize the systems. It is doubtful whether the mod-
els based on differential equations have any connection to
SOC due to the different nature of the dynamical rules.
Moreover, the result of Feder and Feder [5] question the
application of differential equations to this kind of prob-
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lem. Still, it is quite interesting to see if the predictions
based on nonlinear differential equations have any
relevance to critical cellular-automata models.

We must notice that fractal behavior in nature usually
does not display universality and in most relevant phe-
nomena a great variety of exponents are seen. Two sim-
ple examples are the power-law distributions of energy
released during an earthquake, which will be discussed
later (Sec. IV), and the power-law distributions of "I/f
noise. " No universal power-law exponent characterize
either case.

If there exist any universality classes in the cellular-
automata models, there are obviously a large number of
them. It seems that almost any modification of the algo-
rithms introduces different exponents [6,7]. Even small
modifications of the original BTW model that leave all
the symmetries the same, for example, can change the
scaling and the exponents [8]. This might be related to
the observed variance in the critical exponents.

In this paper we introduce a generalized continuous
cellular-automaton model where the nonconservation is a
controlled quantity [9,10]. This model has several fas-
cinating aspects.

First, it can be directly mapped into the Burridge-
Knopoff spring-block model of earthquakes [11]. Hence
the relevant variables can be interpreted as the forces in a
spring-block system and the nonconservation is simply
defined by a ratio between the elastic constants. Though
the motivation for the model is derived from the
Burridge-Knopoff spring-block model, it can be regarded
as a generic representation of a nonconservative system.

Second, this model displays SOC over a very wide
range of conservation levels. That is, we observe power-
law distributions for the relevant physical quantities,
where the cutoff scales with the size of the system. Fur-
thermore, we find that the level of conservation has an
impact on the power laws and the scaling exponents of
this system. In particular, this has implications for the
power-law distributions of earthquakes.

Third, two phase transitions are observed for this mod-
el. The first transition, where the scaling of the
avalanches changes discontinuously, occurs when going
from the conservative into the nonconservative case. A
second phase transition takes place in low conservation
levels, where we observe a localization of the avalanches.
Between the two phase transitions the exponents change
continuously.

Fourth, we find that the isotropic version of our model
displays a continuous transition from two-dimensional to
one-dimensional scaling. But the impact on the power
law is negligible.

Finally, we find that a change of boundary conditions
has an effect on the criticality and the exponents. For
two natural choices of boundary conditions of the
Burridge-Knopoff mode1 we find large differences be-
tween the exponents. The boundary of the system has a
strong infiuence on the self-organization process; conse-
quently it affects the critical exponents.

In Sec. II we describe how the model is derived from
the Burridge-Knopoff spring-block model and discuss the
difference between our model and related models. We

define the critical power-law exponent, and the critical
scaling indices are introduced in the concept of finite-
size-scaling analysis. In Sec. III we present a detailed
study of the exponents and the finite-size scaling of the
isotropic model in two dimensions. We observe several
phase transitions and a variability of the scaling ex-
ponents inside the critical phases. We present results for
the free boundary conditions of the spring-block model,
and some observations on the variability of the laws as a
function of the boundary conditions. In Sec. IV we con-
sider the relationship of our results to earthquakes. Fi-
nally, we discuss the anisotropic model and the complete
phase diagram of this model in Sec. V. In conclusion, we
interpret our results in a wider context.

II. THE CELLULAR-AUTOMATON MODEL,
EXPONENTS, AND FINITE-SIZE SCALING

A. Derivation of the model

Our model can be considered as a general nonconserva-
tive cellular automaton; hence our results have general
implications. However, it is important to notice that it
can be related directly to a driven model of earthquakes.
Therefore, we begin by deriving this model from the
simplified model suggested by Burridge and Knopoff for
the internal dynamics of one single fault.

We consider a two-dimensional version of their model
where the fault is represented by a two-dimensional net-
work of blocks interconnected by springs. Each block is
connected to the four nearest neighbors. Additionally,
each block is connected to a single rigid driving plate by
another set of springs, as well as connected frictionally to
a fixed rigid plate [see Fig. 1(a)]. The blocks are driven

by the relative movement of the two rigid plates. When
the force on one of the blocks is larger than some thresh-
old value F,h (the maximal static friction), the block slips.
We assume that the moving block will slip to the zero-
force position. The slip of one block will redefine the
forces on its nearest neighbors. This can result in further
slips and a chain reaction (an avalanche) can evolve.

We define an L XL array of blocks by (i,j ) where i,j
are integers 1 i,j L. The displacement of each block
from its relaxed position on the lattice is defined as x; .
The total force exerted by the springs on a given block
(i,j ) is expressed by

F( j:K][2x&'j x/ ] j x(+] j]
+K2[2x, —x, ,

—x, , +, ]+KLx, ,
where K, , K2, and K~ denote the elastic constants [see
Fig. 1(b)]. When the two rigid plates move relative to
each other, the total force on each block increases uni-

formly (with a rate proportional to Kl V, where V is the
relative velocity between the two rigid plates) until one
site reaches the threshold value and the process of relaxa-
tion begins (an earthquake is triggered). It can easily be
shown (see Appendix A) that the redistribution of forces
after a local slip at the position (i,j ) is given by the rela-
tion
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FIG. 1. The geometry of the Burridge-Knopof spring-block
model: (a) The two-dimensional system of blocks connected by
springs. The force on the blocks increases uniformly as a
response to the relative movement of the rigid plates. (b) A de-
tailed picture of a given block (i,j ) and its surroundings.
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where the increase in the force on nearest-neighbor
blocks is

E1 F =aF+1, 2g +2g +~,J 1,J
K2 F =aFI J+1 2~ +2~ +g,J 2 / J

1 2 L

(3)

For simplicity we denote the elastic ratios by a, and a2,
respectively. Notice that this relaxation rule is very simi-
lar to the BTW model [1]. However, when EL )0, the
redistribution of the force is nonconservative. In the con-
text of the BK model, KL & 0; otherwise, no driving force
is possible. In the context of continuous cellular automa-
ta, it is obviously of interest to check the full possible
range of parameters. Since the amount of nonconserved
force is (1—2a& —2a2)F, , we define the level of conser-
vation as 2a, +2a2. However, with respect to the energy
the model is nonconservative even if the redistribution of
force is conservative. We emphasize that the terminolo-
gy "conservative" and "nonconservative" refers to the
redistribution of forces.

Some difference between our model and other Inodels
should be noticed.

(1) The force on the critical site is set to zero when re-
laxed. The same rule is used by Feder and Feder, while
in the BTW model, a constant amount (usually F,h) is
subtracted.

(2) The redistribution of force to the neighbors is pro-
portional to the force in the relaxing site. In the Feder
and the BTW models this is not the ease: A constant
amount (usually 1) is transferred to the nearby sites.

(3) The BTW model is conservative, unlike the Feder
model, where the amount of nonconservation is F, , —F,h,
where F; is the relaxing site. The nonconservation in
our model is proportional to F;

(4) This model, as well as the Feder model and the
model suggested by Bak and Tang [12] and Bak and Chen
[13]for description of earthquakes, is globally driven, i.e.,
the full bulk is raised simultaneously. This driving is a
natural choice for models representing earthquakes or
other globally driven systems. This is a very important
point since random local driving can destroy the correla-
tions and the self-organization of the system. Further-
more, we must note that we see no direct relationship be-
tween the latter three models and the two-dimensional
Burridge-Knopoff spring-block model.

(5) If E,PE2 (a&Aaz), this model is also anisotropic.
We can control the amount of anisotropy by changing
the ratio between a1 and a2. In the extreme case the sys-
tem will be one dimensional.

P(E,L )-E (4)

The seahng properties of the system are investigated by
Pnite size scaling analysi-s —-that is, we make the ansatz
that the probability density scales with system size as

P(E,L)=L ~g(E/L ),

where g is a so-called universal scaling function and P and
v are critical indices describing the scaling of the distri-
bution function. The critical index v expresses how the
finite-size cutoff scales with system size, while the critical
index P is related to the normalization (or rather renor-
malization) of the distribution function.

B. Scaling and SOC

It is very important to investigate how the finite size of
the system affects the properties we measure. The trade-
mark of SOC is the existence of a power-law dist'ribution
function of the avalanche sizes that scale with the system
size. We concentrate our effort on the avalanche-size dis-
tribution, where the size is defined by the total number of
relaxations in a single avalanche. It was found that this
number is also proportional to the released strain (energy)
in the system. I.et P(E,L ) be the probability density of
having an avalanche of size E in a system of linear size L.
If the distribution function (note that we use the concept
"distribution function" as equivalent to "probability den-
sity" although the two terms are not mathematically
equivalent) is a power law, we define the power-law ex-
ponent 8:
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FIG. 2. The phase diagram for the model. When the level of
conservation 2a&+2a&&1, the system is nonconservative. If
a~ =a2=a, the model is isotropic. Finally, when a& =0, a2%0,
the system is purely one dimensional.

C. De6nition of boundary conditions

The boundary is an integrated part of any finite system.
The model would not be well defined without a
specification of the boundary conditions. There is a very
large range of possible boundary conditions. We can con-
trol the properties of the boundary by changing the a at
the boundary, henceforth called aBC. As we will show
later, the system is sensitive to the nature of the bound-
ary.

For the spring-block problem there are two extreme
possibilities: (a) The blocks in the boundary layer are
connected only to blocks within the faults, implying
aBc=al( 1 —a); the boundary is free. (b) The blocks in

the boundary layer are coupled to an imaginary boundary
block by springs, aBc=a', the boundary is open. We refer
to Appendix B for a detailed discussion of those bound-
ary conditions. Notice that the free boundary conditions
are more conservative than the open boundary condi-
tions. Neither the free nor the open boundary conditions
are probably physically realistic, but the actual boundary
conditions must be in between the two extreme limits. In
the context of continuous cellular-automata models, one
can even introduce a totally conservative boundary con-
dition, abc= —,', which we will denote as a reflecting

boundary.

III. SIMULATION OF THE MODEL

The rules for the driving of our model are motivated by
the dynamics of earthquakes. There are two time scales

If the distribution function is a power law, it is easy to
show the following relation between the exponents (see,
for example, Ref. [6]):

l+B =f3/v .

We will measure the three exponents B, v, and P sys-
tematically in different points (a„a2)of the phase dia-
gram of the model (see Fig. 2).

involved. One is defined by the motion of the tectonic
plates, and the other is the actual duration of an earth-
quake. Since the first time scale is much larger than the
second, we can separate the time scales. We consider the
earthquake as instantaneous and do not drive the system
during an avalanche. Thus the algorithm for simulating
the system is the following: Define random initial forces
in the system. Strain is accumulated uniformly across the
system as the rigid plates move. When the force on a cer-
tain site is above the threshold value F,h, this site will re-
lax according to Eqs. (2) and (3). The triggered earth-
quake will stop when there are no sites left with a force
above the threshold. Strain starts to accumulate once
again. The system organizes into the critical state after a
transient time which is proportional to the system
volume but dependent on the level of conservation. We
collect the statistics only after the system is organized.
We continue this process to get proper statistics of the
distribution function of the energy released (which is pro-
portional to the total number of relaxations) during
the earthquakes. The results that are presented in this
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FIG. 3. (a) Simulation results for a 35 X 35 system with open
boundary conditions. Different curves refer to different levels of
conservation. The slopes of the curves become steeper as the u
values are decreased. The graphs correspond to a=0.25, 0.20,
0.15, 0.10, 0.075, and 0.025, respectively. Notice that the last

point is not critical. (b) The power-law exponent B as a function
of the elastic parameter a defined in Eq. (3). Below a=0.05,
there is a transition to exponential decay. The arrows indicate
the actual measured B values for earthquakes [15].
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We discuss in this section the behavior of the system
with open boundary conditions along the line a& =a2 =a
(see Fig. 2). The model displays SOC for a ~ 0.05. How-
ever, the critical exponents change as a function of a.
We present the dependence of the exponent B on a in
Fig. 3. We did a detailed finite-size scaling for the values
a ~0.10. Below this a value, the exponent 8 is too large
to obtain proper statistics of the cutoff behavior. We
present in Fig. 4 four examples of finite-size scaling for
the a values 0.25, 0.245, 0.20, and 0.15, respectively. As
seen in those graphs, finite-size scaling works very well.
This verifies the criticality of the system. No correlation
length is introduced by the nonconservation. We show in
Fig. 5 results for the dependence of the critical exponents
v and P on a in the region 0. 10&a~0.25.

Since the avalanches are completely localized for a=0,
we know that a localization transition should occur at
some a «0. Indeed, we see such a transition at approxi-
mately a=0.05. Below this level, the distribution func-
tion becomes localized. A system-size-independent ex-
ponential length scale appears in the distribution of
avalanche sizes. The transition seems discontinuous, i.e.,
the length scale does not change continuously near the
transition.

The exponent 8 changes continuously in the range
0.05 ~ a ~ 0.25. However, for the scaling indices we see a
very sharp transition between the conservative and non-
conservative regimes. The scaling index v drops from 3.3
to 1.8 when changing a from 0.25 to 0.245. We attribute
this change of scaling to a transition in the temporal be-
havior of the avalanches. Introduce the integrated
amount of local activity in the avalanche as a third di-
mension. When the system is conservative, the
avalanches have the shape of a cone, where the height is
approximately of the same scale as the radius. However,
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FIG. 4. Finite-size scaling for various a values. We present
results for a =0.25, 0.245, 0.20, and 0.15 in (a)-(d), respectively.
The scaling results are summarized in Table I.
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FIG. 5. The critical indices v (solid symbols) and p (open
symbols) as functions of the conservation. Notice the sharp
transition when a small nonconservation is introduced. The er-
ror bars represent a mistake of 0.10 in the exponents.
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TABLE I. The critical exponents for the isotropic system with open boundary conditions. The scal-
ing relation, Eq. (6), is fulfilled within numerical accuracy (except for +=0.22). For comparison we
also list the critical exponents for the original BTW model.

Model

o.'=0.25
a =0.2499
IÃ =0.245
a =0.24
n =0.22
a =0.20
o.'=0. 175
@=0.15
o.=0.10
BTW, locally
BTW, globally

1+B

1.22+0.05
1.22+0.05
1.17+0.05
1.25+0.05
1.65+0.05
1.89+0.10
2.06+0. 10
2.22+0. 10
2.72+0. 10
1.1+0.05
1.1+0.05

v (+-0. 10)

3.3
3.1

1.7
1.8
2.0
2.2
2.35
2.35
2.3
2.0
2.0

P (+0.10)

4.2
3.95
2.2
2.6
3.7
4.25
4.8
5 ~ 15
6.6
2.3
2.3

1.27+0.05
1.27+0.06
1.29+0. 11
1.44+0. 11
1.85+0. 13
1.93+0.12
2.04+0. 12
2.19+0.13
2.87+0. 18
1.15+0.08
1.15+0.08

when the system is nonconservative, even the smallest
dissipation level would define a maximal number of relax-
ation at a given site. Therefore, the avalanches will be-
come flat. This implies a change in the scaling behavior
of the avalanches from 3 to 2. We believe that the width
of the transition will depend on the system size. Another
interesting feature in the nonconservative region of the
model is that although the exponent B changes strongly,
v is almost a constant. Still, the relationship between the
exponents, Eq. (6), is fulfilled in all the measured region.

It is worth noting that at each relaxation in the Feder
model (with dynamical noise and F,„=4),the effective a
is 1/F, . Thus we can estimate the level of conservation
by measuring the average over a large number of relaxa-
tions. We find +=0.217, and indeed, the exponent and
the scaling indices are consistent with the point a =0.217
in our model (with open boundary conditions). Another
interesting comparison is with the BTW model with glo-
bal and local driving. We present all the results in Table
I. While the difference in B is very small, there is a
dramatic change in the scaling exponents v and P.

B. Di8'erent boundary conditions

The data that we presented in Sec. IIIA imply that
there is a dependence of the exponents on the parameters
of the model. It is also well known that existence of criti-
cality depends on the boundary conditions. A model
with BTW dynamics and reflecting boundary conditions
(conservative), for example, cannot display any critical
behavior. However, no systematic study of this issue was
done even for the original BTW model. In this section
we show that the results depend very strongly on the
boundary conditions.

First, we choose the physically interesting case of the
free boundary conditions. In Fig. 6 we show the change
of the exponent B as the level of conservation is changed
for the model with free boundary conditions (note that
the free boundary conditions are totally reflective for the
conservative case so the model obviously cannot display
criticality). In Fig. 7 we display the dependence for both
the free and the open boundary conditions. The change
in the boundary conditions induces a dramatic change in
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FIG. 6. Simulation results for a 35X35 system with free
boundary conditions. Different curves refer to different levels of
conservation. The slopes of the curves become steeper as the a
values are decreased. The graphs correspond to a=0.245, 0.20,
0.15, 0.10.0.05, and 0.01, respectively.

I

0.200.05
-0.5

0 0 10 0.15 0.25
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FIG. 7. The power-law exponent B as a function of the elas-

tic parameter o. defined in Eq. (3). Solid symbols correspond to
the model with open boundary conditions. The measured B
values for the model with free boundary conditions are
displayed as open symbols.
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earthquakes, respectively [16]. Thus the Gutenberg-
Richter law is transformed into a power law for the num-
ber of observed earthquakes with energy greater than E:
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FIG. 8. Finite-size scaling for the model with free boundary
conditions and a =0.20.

the exponents. The exponents for the free boundary con-
ditions are much lower than for the open boundary con-
ditions. Also, the localization transition for the free
boundary conditions is lowered to a =0.01.

We did a finite-size-scaling analysis for one point along
this line, for a=0.20. Finite-size scaling seems to work
very well in this case also, as is shown in Fig. 8.

To check this dependence more carefully, we changed
the boundary conditions at the edge continuously from
open boundary conditions aBC=a to reflecting boundary
conditions aBC= —,'. We see a continuous change of the

exponent 8 when going from the open boundary condi-
tions, u~c=0. 20 to a value of azc -—0.28, which is larger
than the aBc=a/(1 —a)=0.25 used for free boundary
conditions. Above this value, the systems seems to be
noncritical in the sense that no power laws are seen. The
distribution function can no longer be scaled with system
size, although the size of the maximal avalanches scale
with system size. We have observed similar behavior for
other bulk values of a, but we did not make a detailed
study.

Note that 8 is in the same range for both small and large
earthquakes, namely, 0.80—1.05, but it is not a universal
exponent. In our model we measured the distribution
function, Eq. (4). This explains why we use the notation
(1+B) for the power-law exponent.

The idea of explaining the Gutenberg-Richter law by
such a two-dimensional model was already proposed by
Otsuka [17]. It was also suggested independently by
several authors [12,13,18—20] immediately after the intro-
duction of the idea of SOC by Bak et al. that SOC might
be a good explanation for the observed power laws. Most
of those suggested models are conservative and have no
physical interpretation in the context of the driven
spring-block model. Furthermore, since the models are
conservative, they predict unique power-law exponents
which are much lower then the observed values
(B=0.10).

If the different elastic constants K„E2,and KL are
within the same scale, the characteristic value of a for
earthquakes is 0.20, which amounts to a 8 value around
0.9 in the case of open boundary conditions. The report-
ed values of 8 are indeed in this range. Thus our results,
apart from providing an explanation for the observed
power laws, also give some explanation for the observed
variability. One should not look for universal values of 8
in nature.

Another interesting connection of this model to earth-
quakes is that, like real earthquakes, it displays spa-
tiotemporal correlations between the earthquakes. Those
aspects are discussed in some detail elsewhere [10]. This
gives us good reason to believe that this simplistic picture
has a real connection to the actual fault dynamics that
leads to earthquakes.

IV. RELATION TO EARTHQUAKES

In nature, earthquakes are probably the most relevant
paradigm of self-organized criticality. In 1956 Guten-
berg and Richter realized that the rate of occurrence of
earthquakes of magnitude M greater than m is given by
the relation

log, ~(M )m ) =a bm, —

where a and b are constants for a given fault. This is the
Gutenberg-Richter law [14]. Measurements of the pa-
rameter b yield a wide range of values for different faults.
Values of b from 0.80 to 1.06 for small earthquakes and
1.23 to 1.54 for large earthquakes have been recorded
[15].

The energy (seismic moment) E released during the
earthquake is believed to increase exponentially with the
earthquake magnitude,

log, +=c+dm,

V. THE ANISOTROPIC CASE

As mentioned earlier, we can control the anisotropy in
the system while keeping the level of conservation con-
stant. We changed the ratio e, /az from 1 to 0 while
keeping 2a&+2az=C, where C is a constant (see Fig. 2).
We measured the distribution function for fixed conserva-
tion levels from C=0.90 to 0.50. The change in 8 is
negligible. The system is critical, except for the case of
the one-dimensional system where the distribution func-
tion is no longer a power law. In Fig. 9 we show a
representative example of distribution functions that are
derived for C=0.80. For this particular value of C we
also measured the scaling exponents. We present the
data in Table II. The finite-size-scaling exponent v
changes continuously from 2.2 to 1. This is the signature
of the rising anisotropy in the model. The surprising
minimal change in the exponent 8 is due to constant con-
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FIG. 9. Size distribution functions for the anisotropic case
scanned along a constant conservation level, C=0.80 (see Fig.
2). The anisotropic ratios are 1, 5 3 7

and 0. They are easily

recognized by the decrease of the cutoff in the maximal
avalanche size. Notice that the one-dimensional distribution
has no resemblance to the rest, even though the largest
avalanches scale as L.
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FIG. 10. Size distribution functions for the anisotropic case
in a conservative model, C=1. The anisotropic ratios are 1, 3,
7 4 9 and 0. Notice that the cutoffs are not modified as in the
nonconservative model. The scaling is modified to 2 in the one-
dimensional case.

servation. Even for large anisotropy, there is still a
strong interaction between the lines in the system. The
reason is the large activity of the one-dimensional
avalanches, so the avalanches remain two dimensional.
However, the avalanches become stretched in the pre-
ferred direction, which is the reason for the change of v.

Thus, the general result for the two-dimensional non-
conservative case is that the anisotropy has almost no
effect on the power-law exponent. However, the scaling
exponent v changes continuously from a two-dimensional
to a one-dimensional scaling of the avalanches.

In the conservative case C = 1, we observe some
different effects. The results for the conservative case are
presented in Fig. 10. At very large anisotropy the curve
separates into two parts. The lower part with a higher
slope seems to be related to one-dimensional avalanches,
while the long-range behavior is still with the same power
law as the isotropic case. Again, this is a result of the ex-
trernely high activity of one-dimensional avalanches. A
discontinuous transition to the one-dimensional case ap-
pears. As in the isotropic case, the transition from the
conservative to the nonconservative part results in a
discontinuous transition in the values of the v.

Model v (+0.10) P (+0.10)

(a„a2)=(0.20,0.20)
(al a2) =(0 15 0 25)
(a&,a2) =(0.10,0.30)
(a„a) =(0.05,0.35)

2.2
2.0
1.6
F 1

4.25
4.4
3.8
2.8

1.93+0.12
2.37+0.13
2.37+0.21
2.55+0.33

TABLE II. The critical indices for the anisotropic system
with open boundary conditions. Note that even though Fig. 9
shows an almost negligible change in the power-law exponent,
the ratio P/v varies a lot and does not fulfill the scaling relation,
Eq. (6).

The main results in this paper are the following.
(l) Nonconservative models can organize themselves to

a critical state. Apart from a relatively small localized
region, the nonconservative model displays SOC for all
conservation levels. This is seen only for models that are
driven globally. Local drive together with nonconserva-
tion introduces a system-size-independent length scale
(i.e., if the local drive is so large that it destroys the corre-
lation in the lattice).

(2) The self-organization is very sensitive to the bound-
ary conditions. The critical exponents and scaling indices
change as the boundary conditions are modified. Howev-
er, this model displays SOC for a wide range of possible
boundary conditions.

(3) While SOC is a very stable feature of this model, the
exponents are not universal. The exponent B changes
continuously when changing the level of conservation.
Also, the boundary has an effect on the power-law ex-
ponent B. However, the anisotropy does not influence
the value of B as long as the level of conservation is con-
stant. The scaling exponents are changed in all the above
cases.

(4) We observe several phase transitions in the system.
We see a transition when going from a conservative to a
nonconservative system. It manifests itself by a discon-
tinuous change in the critical indices v and P. The ob-
served width of the transition is a finite-size effect.
Another transition takes place at low a when the
avalanches become localized. Finally, a transition from a
critical to a noncritical system is seen when the anisotro-

py grows very large (the system become effectively one di-
mensional).

Clearly, the existence of criticality in nonconservative
models implies that strong correlations are induced in the
system by a self-organization process. Otherwise,
avalanches would become completely localized for any
nonconservation. To illustrate the self-organization pro-
cedure, we present the running average of earthquake
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BTW model when the boundary condition is changed or
when introducing symmetry-preserving modifications in
the algorithm. So our basic conclusions seem to also be
relevant to other self-organizing systems. We believe that
the main theoretical effort in this field should be dedicat-
ed to the understanding of the common features of the
self-organization, rather than to looking for universality
in the results.
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FIG. 11. The average size of the avalanches as a function of
time during the self-organization process. System size L =70,
conservation level a =0.20, and open boundary conditions. The
lower graph presents the rise of the average for an initial ran-
dom lattice. It is a measure of the rise of the correlation length
in the system. The saturation is a result of the finite system size.
The upper graph presents data for an initially correlated lattice.
The fluctuations in the beginning of both graphs are a result of
the low exponent of this distribution function (the larger
avalanches define the average).

sizes in Fig. 11. We start from a random uncorrelated
configuration. The average grows gradually, indicating
the autocorrelation of the system into the critical state.
Since the system autocorrelates slowly, the maximal sizes
of avalanches grow slowly. This growth is limited only
by the system size, which defines the avalanche-size
cutoff. On the other hand, if we start with a correlated
system, the average will immediately stabilize into the
system-size-dependent value. This is also shown in Fig.
11.

The avalanches are generated by correlated clusters of
sites, which in turn are generated by the avalanches. The
correlated clusters are modified by interactions with oth-
er clusters through avalanches. Another organization
process is that the boundary acts as a source of correla-
tion. The evidence for this is the effect of boundary con-
ditions on the critical exponents.

A change in the parameters of the models will not des-
troy the self-organization process, but will modify it
strongly. That is the origin for our results. A more de-
tailed picture of this organization can be easily derived in
one dimension, where the boundary between clusters is a
point and not a line.

With this in mind, it is easy to understand why no cri-
ticality is seen for models, which are driven locally. The
local perturbations will destroy the correlations in the
system. This interpretation can be tested numerically in
our model. The system should be resistant to noise,
which will not destroy the correlations. On the other
hand, the model should display localization if the noise is
so large that it can destroy the correlations. And indeed
it does behave in this way.

We have proved the nonuniversality of the self-
organization process for our model. However, as we not-
ed before, exponents will be modified even for the original

We would like to thank Per Bak for valuable discus-
sions of this subject. Also, we would like to express our
gratitude to Jens Feder for allowing us to use one of his
computers rather intensively. K.C. gratefully acknowl-
edges the financial support of Carlsbergfondet and Emil
Herborgs Legat. Z.O. thanks the Weizmann and Full-
bright Foundations for support during this research.
Both authors appreciate the support and hospitality of
Brookhaven National Laboratory. This work was sup-
ported by the Division of Basic Energy Sciences, U.S.
DOE, under Contract No. DE-AC02-76CH00016.

APPENDIX A

Assume the force on a block at position (i,j ) is above
the threshold value, that is

Fe Fi j=E1[2xij—,
1 j —i+, j]

+E2[2X;j X; j 1 Xi j+1]
+EL x; (Al)

+E2[2X;j Xi j 1 Xi i+1]+ElX; j (A2)

where we exploit the fact that nearest-neighbor blocks of
(i,j) cannot be supercritical at the same time, i.e.,

1+1,j l+1,j
l,J+1 I,J%1

(A3)

The slipping block (i,j ) affects the force on nearest-
neighboring blocks. As an example, we calculate the
change of force on block (i,j+1). The force on block
(i,j +1) is

Fi,j+1 E1[2xij+1 xi —1,j+1 xi+1,j+1]
+E2[2x; +,—x; —x; +2]

+ELXi j+ 1 ~ (A4)

Thus the change of force due to a slip at position (i,j ) is

Fi j+ I E2dxi' J (A5)

Notice that the force on block (i,j + 1) may very well be
affected by a slip at position (i,j +2) but that does not in-
terfere with this argument. An expression for the change

If x, denotes the displacement of block (i,j ) from the
relaxed position after the block has slipped to zero-force
position, then

O=E1[2X;j Xi 1 j X;+1 j. ]
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in displacement of block (i,j ),

dX. =X. Xij ij ij
is obtained by subtracting Eq. (Al) from Eq. (A2),

0 F;—, =[2K, +2K~+Kt ]dx, ,
Finally, substituting Eq. (A7) into Eq. (A5), we find

E2
,J +1 2g +2~ +~,J6F

1 2 L

(A6)

(A7)

(A8)

0 F—; t. —[2Kt+K~+KL, ]dx; I, ,

resulting in

K1
6F-i+1,L 2g ++ +~ i, L sc I', LF. =e F

1 2 L

If the model is isotropic, E, =E2 =EC, then

4&+&L

(B2)

(83)

(84)

APPENDIX B

We can express the elastic ratio esc used when boundary
blocks slip in terms of the bulk a,

The boundary condition is free if the blocks in the
boundary layer are connected only to blocks within the
fault, i.e., the force on a boundary block, say, at site
(i,L ), is given by

~sc=
1 —a

If a block in one of the corners slips, we use

a
&sc

1 —2n

(85)

(86)

F;L —K)[2x;J x, )J x;+)l]
+K2[x;i —x; —1]+KLx;, .

If this blocks slips, we find

(81)

For a simulation of the model with open boundary con-
ditions, we use the same o. all over the lattice. That is, if
block (i,L) slips, we increase the force on the three
neighboring blocks (i%1,L) with an amount equal to
ancF, L, , wh««ac=a is d~fi~~d in Eq. (3).
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