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The dynamic usage of the technique of effective potentials is motivated and established. The one-loop
effective potential and the Gaussian effective potential are derived from Ehrenfrest’s theorem by using
adiabatic elimination. An application is made to the Hénon-Heiles problem, and comparison is made
with previous results; it is shown that quantum effects destroy chaos in two ways: (a) quantum fluctua-
tions make the curvature more positive and (b) tunneling dominates the dynamics.
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I. INTRODUCTION

Effective potentials are used to assess the impact of
quantum effects such as zero-point fluctuations and tun-
neling on the magnitude and the geometry of classical po-
tentials; they are a popular field-theoretic tool, used to in-
vestigate vacuum exchanges, ‘“quantum resuscitation”
(the creation of a finite-energy bound state in unbounded
potentials through fluctuation effects) rollover, and other
phenomena [1]. The philosophy being valid in ordinary
quantum mechanics (0+1 dimensions in the field-
theoretic nomenclature), we consider here the dynamic
use of effective potentials—with reference to “quantum
chaos” [2].

We use the term quantum chaos in the conservative
way: to refer to the study of the quantum mechanics of a
classically chaotic system (restricting ourselves to Hamil-
tonian systems H =T + V). Most such studies have used
various properties of the classical systems as windows
into the quantum mechanics. For instance, Birkoff-
Gustavson quantization [3] is based on the existence of
invariant torii (even if fragmented) in the classical phase
space. There is the idea of searching for ‘“‘scars” [4], in-
tensity peaks of highly excited wave functions along the
periodic orbits of the classical system, while the tech-
nique of trace formulas [5] estimates eigenvalues of the
quantum system from a weighted sum over these periodic
orbits. The study of spectral statistics [6], however, is
based on assumptions about the random distribution of
the matrix elements of the Hamiltonian. Gutzwiller’s
work [5] provides a fine review and exposition of these
techniques.

This variety of techniques comes about because the
measures (such as K entropy [7], Liapunov numbers [8]),
diagnostics (such as the Melnikov function [9], the tests
of Zaslavsky and Chirikov, Greene, and Mo [10], Toda,
Brumer and Duff (TBD) [l11], and Pattanayak and
Schieve (PS) [12]) and signatures of chaos lie, in general,
in phase space, are dynamical and have no direct inter-
pretation in quantum mechanics. It is in this context that
we consider a parallel approach, that of using classical
techniques of analysis by reducing the problem to that of
an effective classical problem, i.e., instead of considering
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Schrodinger’s equation in a given potential, we look at
Hamilton’s equations in a modified potential. This ap-
proach is local in the sense that quantum-mechanical
effects provide local corrections to the dynamics rather
than global, static characterizations. The approach is
valid for small values of Planck’s constant 4 (caveat: this
not in the sense of a tunable parameter but depending on
the characteristics of the problem) and is, in fact, in the
ground-state regime (the techniques mentioned previous-
ly are of the highly excited-state regime). Some of the di-
agnostics [11,12] for chaos are based on the geometry of
the potential; the effective potential technique is especial-
ly powerful in combination with such methods. In the re-
gion, therefore, of semiclassical dynamics, where quan-
tum effects may be said to provide corrections (a con-
venient mathematical fiction) this method holds. It must
also be emphasized that it is very simple and computa-
tionally cheap; yet it provides us with powerful insight
that we may use before more complicated methods of
analysis.

In Secs. II we derive the one-loop effective potential
(1ILEP) and the Gaussian effective potential (GEP) from
Ehrenfrest’s theorem by using the technique of adiabatic
elimination and thus establish a dynamical justification
for their usage. In Sec. III we apply the GEP (with an
exposition, for pedagogical purposes, of the method) to
the Hénon-Heiles problem. Comparison and contrast
with other studies is made. We finish with some observa-
tions regarding this technique and in Sec. IV state two
conjectures about quantum (or at least semiclassical)
effects on all potentials of this form.

II. DERIVATION OF THE GEP
A. Ehrenfrest’s theorem and the hierarchy

Consider, then, Ehrenfrest’s theorem; this is the most
direct way of seeing quantum corrections. We restrict all
arguments in the next two sections to particles of unit
mass moving in a one-dimensional potential, i.e., Hamil-
tonians of the form H =p?/2+ V(x). Generalization of
this to higher dimensions is straightforward. According-
ly the equations of motion for the centroid of a wave
packet are
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dt(x)—(p) (1a)
and

d .\ _[9V(X)

dt(p) <—-—ax > (1b)

where the { ) indicate expectation values. If V (assumed
analytic) is at most quadratic in x then the { ) factor,

<aV<x)>:ﬂ o

dx ax

()
and the centroid therefore follows the classical trajectory.

We, of course, are interested in nonlinear gradients, so
that we can study chaos. The classical equation of
motion does not hold then for the centroid and to study
“corrections” we expand in Taylor series around (X )
and (p ). The expansions are of the form

<F<a)>=%(ﬁ">1«“<"’nzo, 3)

where F‘"’=8”F/8u”l<a>, U=u—{u). We use the
summation convention here and throughout the rest of
this paper. Using these and commutation rules of opera-
tors, we can generate a series of moment equations. In
general these are infinite in number; an arbitrary distribu-
tion (wave packet) is completely specified only if all mo-
ments are known. We have little interest in the entire
wave function and it would suffice to keep track only of
(%) and {p ), thus creating an “Ehrenfrest phase space.”
The infinite hierarchy, however, cannot be (or at least has
not been) reduced in general.

To proceed with the analysis, therefore, we might trun-
cate at a given order [13] (the mth). The truncation may
be justified if the potential (or the mth derivative) varies
slowly over the characteristic width of the wave packet;
all higher moments are assumed negligible. At that or-
der, then, one gets a closed set of equations. The trunca-
tion assumption may always be checked for self-
consistency by carrying an extra order along in the equa-
tions and ensuring that it does, indeed, stay small. The
equations thus generated with m =2 are five in number
and are analyzed at length in Ref. [13]. With m =4, they
are 14 in number (see the Appendix).

Another possible technique for reducing the number of
equations is to adopt a Hartree-like approach, requiring
that all n-point functions be expressible in terms of the
one- and two-point functions. We can achieve this by re-
quiring that the wave packet be always Gaussian. We
then get the following equations:

4z)y=0p), (42)
d .\ [V(R)
v < ax >
= — o 1 o V(2m+1) (4b)
m!

%@2):()?13@,?) , (4c)
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gf(fﬁ+ﬁf>:29(ﬁ2+<fﬁ+ﬁf>)~2<)?M)_>

dx
=20(#+(XP+PX))
— 1 — V12m) , (4d)
Q"(m —1)12"
where we have wused the standard relationships
for a Gaussian function, with (X%)=Q7!,

(X’™y=2mN1/m2m(1/Q™), (X""')=0, and
4P X =Hw+(RP+PX).

It 1s interesting to compare this set of equations (4)
with those obtained from Dirac’s variational technique

[14]. There we apply the principle that

F=fdt<\11,t \l/,t>

be stationary against the variation of |W,¢ ). An arbitrary
|W,t) yields Schrodinger’s time-dependent equation.
Cooper, Pi, and Stancioff [15] chose |W,¢) to be the most
general Gaussian function. Their Egs. (2.7) are the same
[16] as Egs. (4) above.

In both the above approaches we get a finite set of
equations being carried along with the equations for evo-
lution of (X ) and (p). In Sec. I B we derive from these
effective potentials.

., 0
that H

1

B. Effective potentials by adiabatic elimination

One well-recognized method used in other fields is of
adiabatic elimination or slaving [17]. We assume that the
time scales of the system are such that at each point in
(x ) space the system is effectively at a steady state. We
solve for these values of the moments and substitute them
in the Taylor expansion, which then gives us an effective
potential V z=(V)=1/n(X") V",

Asking that the odd moments be zero, thus mimicking
a particle, for instance, gives useful results. An iterative
solution [see the Appendix] at m =4 and with odd mo-
ments zero is

—1/2
(X2)=ﬁ VHR)
2 dx?
RyIp®
B 4y Oy @ _gp @) 2 (5a)
ﬁZV(I)VU)
4\
(X >—2V(1)V(I)V(4)_4V(1)V(2)V(3) ’ (5b)
1/2
(Pz):ﬁ F*VZR))
2 ax?
ﬁZV@)(V(l)V(4)__V(2)V(3))
LYy Iy Oy@ _apy @y (5¢)
The first order in # gives
—1/2
# | V(%))
V== | —— (6a)
X 2 dx?

This would suggest that
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172
fi | V(X))
Ver=Vetass T ax2
X

2 (6b)

Let us compare this with the one-loop-effective potential
(ILEP) [18]. It is explicitly constructed to incorporate
only the lowest-order corrections in # arising from vacu-
um fluctuations and does not seem to agree with our ex-
pression in Eq. (6b) until we remember to include the

contribution from the (P2) term [19], ie., set
VeﬁE <ﬁ >>
172
#i | PV ((%))
Veﬂ'= class += T a2 = VlLEp . (6¢c)
2 dx

Stevenson has criticized the 1LEP at length [20]. We
note that it breaks down for concave potential surfaces.
Concavity (in two or more dimensions) is, in fact, a diag-
nostic for chaos [11,12]. The problem of breakdown is vi-
tiated by considering higher-order corrections in # but is
not necessarily removed.

We therefore consider Egs. (4). Using adiabatic elim-
ination there, we set the left-hand side of Egs. (4c) and
(4d) equal to zero. From (4c) we get (XP+PX ) =0 and
substituting that in Eq. (4d) we get

0=20#"— L — ven
Q™(m —1)2m
) 2 1
=40—(1$2+ (2m)>
0Q <2 Q"m 12" v

— ) 1424 1
40— (3P + V)
—10-2¢A) . @)
FYO)

Therefore, V,q(x,Q)=(H ), where Q minimizes ( # ).
This is the Gaussian effective Potential (GEP) [20] which
normally obtains directly from a static variational ap-
proach.

Thus, we have derived the GEP from Ehrenfrest’s
theorem and established a dynamical justification for it.
It is a well-studied potential and the equations derived
from it have been shown to give to a very good approxi-
mation the same dynamics as Egs. (4) [15]. To see the use
of the GEP in quantum chaos, we study as an example
the well-known chaotic Hamiltonian: the Hénon-Heiles
problem. In Sec. III we use directly the static approach

and make the following changes to conform with conven-
tion:

(X*)=#(2Q)"! (8a)
and

(p*) =110, (8b)
with (p ) =0.

III. APPLICATION OF THE GEP

A. Chaos in the Hénon-Heiles potential

This potential has been a well-studied problem since it
was proposed in 1964 [21]. Both analytical and numeri-

cal [22] techniques have been used to demonstrate and
analyze the existence of classical dynamical chaos in this
problem. It has proved particularly of interest as a
molecular model and therefore the quantum mechanics of
the system has attracted the attention of many research-
ers [23-26]. The primary attempt has been to find the
energy spectrum of the problem. This potential is un-
bounded from below, however, and does not have a well-
defined spectrum, except in a metastable sense; Waite and
Miller [24] considered that in their study of the lifetimes
of these metastable states.

Originally the problem of a star in an axis-symmetric
galactic potential, it is modeled by a two-dimensional po-
lynomial for a particle with unit mass and in Cartesian
coordinates is

Vix,p)=Lx?+y?)+1(x3—3xp?) . 9)

This is a shallow two-dimensional false well with three-
fold rotational symmetry, as shown in Fig. 1. As the ra-
dius increases, the initial harmonic well shape changes
gradually in the presence of the cubic term. This has
been treated as a perturbation of the two-dimensional
harmonic oscillator, as we argue later, to the detriment of
the analysis.

The cubic term provides three “mountains” alternating
with three narrow “passes” to the unbounded “valleys”
beyond. These ionization cusps are at a value of
V.=0.1667, and studies of the classical system have been
restricted to bound particles, E < V.. The simplest ap-
proach used is to numerically integrate Hamilton’s equa-
tions through the four-dimensional phase space and then
examine Poincaré sections in the (x,p,) plane. Trajec-
tories are termed regular or chaotic depending on wheth-
er they form closed curves in the Poincaré plane or not,
respectively; this criterion indicates a conserved quantity
(an isolating integral of motion) other than the total ener-
gy, for the regular motion. As the total energy of the sys-
tem is increased (as we climb upwards for the well) there
is generally agreed to be a transition to chaos, at
E =0.0833 [27], in exact accordance with TBD and PS
geometric criteria [11,12]. This being a Hamiltonian sys-
tem, the above integral cannot then be global; numerical-
ly unobservable chaos may exist at all energies.
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FIG. 1. The Hénon-Heiles potential.
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B. Computation of the Vggp

We proceed as follows: given a two-dimensional Ham-
iltonian H, we compute the expectation value of the ener-
gy (W|A|W¥), where V¥ is a two-dimensional normalized
Gaussian function of the form exp[—(1/2%)r;Q;r;]
(r;=x/—x;, and i,j =1,2), Q;; being a symmetric 2X2
matrix that depends in general on the position variables
x;. The elements of the matrix can be defined completely
in terms of two frequencies () and o (in the principal
directions of the Gaussian function) and an angle 3 that
specifies the orientation of these axes with respect to the
x and y axes of the potential (see Fig. 2). We then mini-
mize the computed matrix element with respect to all
three parameters at each X: Vggp=ming , gV,, where
V,=(¥Y|H|¥), Q=0(X), o=0(X), and B=L(X).

The Hénon-Heiles potential being polynomial in x and
p, the calculation of the matrix element is simplified by
using the number representation

(2Q) " V2aq+ah)

X x cosB —sinf
51 |y sinB  cosB | | (2w)""Xa,+al) |’
(10a)
5 172
—i ) (an-l—a}l)
Px cosB —sinf3
=1 12 )
sinB  cosf
Py —i %] (a,+al)
(10b)

with [aa,ai ]=38,,, i-e., they are the canonical creation
(a') and annihilations (a) operators; the trial function
is the ground state for these operators, i.e.,
ag|¥)=0=a_|¥). We have set #=1; it is reinstated us-
ing dimensional considerations later.

For H =%p2+ V(x,y) as in Eq. (9), we have, for exam-

FIG. 2. Vggp for the Hénon-Heiles potential. #=0.05 and
e=10""%
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ple, for the cubic part,
(W|2p2|¥) =xp2+2p(20) 'sinBcosB
—2y(20) " 'sinB cosB
+y(20) 'sin?B+x (20) 'cos?B,  (lla)
and further
(W[R3W) =x3+3x{(2Q) ' cos’B+(2w) 'sin?B] .
(11b)

Proceeding in this manner we get

V,=(¥|a|v)
ST R ERTPLEE NITPC PRI I .
4 2 3 4 1Q o
1|1
el —y sin2B) .
0 (x cos2B3—y sin2f3) (12)

The minimization conditions are

a—Vg—=0= 11 (—y cos2B—x sin2f3) (13a)
B Q | ? ’

av, - . )

T=%—lﬂ —107%(x cos2B—ysin2B) , (13b)
and
Ve -2 -2 :
$=0:%—%w +1lo7%(x cos2B—y sin2f) . (13c)

The first of these three equations gives
B=+arctan(—y /x) (14)

and when we substitute that in the other two, we obtain

VGEP=%(x2+y2)+§(x3—3xy2)+g(ﬂ-&—w), (15a)

where

Q=(1+2#)1"? (15b)
and

o=(1-2r"?%. (15¢)

Looking at Egs. (14) and (15) we note the following.

(1) The terms due to quantum mechanics (the terms
with # multiplying them) are purely radial [28]. A
quantum-mechanical particle responds to a modified
shape of the potential. It avoids the narrow areas
(termed quantum claustrophobia [20]) and this, along
with fluctuations and the orientation, smooths the poten-
tial. We postpone a full discussion to Sec. III C.

(2) Further, the angle B that indicates the orientation of
the particle’s principal axes shows that the wave packet
tends to align with its narrower profiles lined up with the
valleys. The angle follows the original 27 /3 symmetry of
the well.

(3) However, we see from Egs. (15) that at values of the
radius greater than 0.5 the frequency » (and hence Vggp)
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is not real and positive semidefinite. As with the 1LEP
earlier (Sec. II), there is not a well-defined effective poten-
tial in this instance, not because of transitional concavity
but due to the unboundedness of the potential.

For the GEP this problem is not unresolvable, howev-
er. If we realize that this technique relies on evaluating
the reaction of a bound or at least quasibound state in a
given potential, we can extend the analysis for this and
other such problems in a simple physical way by closing
the potential at infinity. In this instance we do so by

1825

embedding the unbounded cubic in a weak quartic (er*);

the physical problem is unaltered on time scales of in-

terest, since the attraction is to a global minimum at very

large values of r (for & vanishingly small) but the

mathematical realization of bound states is achieved.
Consider, therefore,the potential

V(x,p)=1Hx2+y?)+Lx3—=3xy 2 +el(x>+p?)*] . (16)

A calculation similar to the one above gives

Vg=%(x2+y2)+§(x3—3xy2)+£[(x2+y2)2]+%(ﬂ+w)+% é+i +% é——i (x cos2f—y sin2p3)
+e [3{20) 72+ (20) " + 100+ (x2+y?) %+; +%(x cosB-+y sinB):+ %(y cosB—xsinB)? | . (17)
.. . s f
On applying the minimization conditions of the equations [29] shows that physical solutions always
av 1 exist for this particular case. The problem is solved; we
8 =0= |=——— |{sin2B[2¢( y2—x?)—x] have computed an effective quantum-mechanical poten-
B Q tial in the Hénon-Heiles problem.
+ cos2B(4exy —y)} ,  (18a)
C. Interpretation, comparison, and contrast
we get . .
The fact that the 7 terms are radial [Egs. (15), valid
B=1 arctan 4exy —y (18b) within the false well] can be used to show, as folloyvs, that
2 x —2e(y?—x?) the Gaussian [30] curvature K of the potential is made
more positive by quantum fluctuations,
Further, )
Ke<V,V,—Vy
oV, )
aQ a2 142 30X L—il :
; r2 (03 QS
gives
P (19)
3 — =
@-Qia © 6e=0, (18¢) The 7 terms are always positive for r <0.5. This implies,
then, that quantum effects tend to delay or reduce the
where effects of chaos.
_ . 24 .2 This compares favorably with previous findings.
@ =142(x cos2B—y sin2f)+delx"+y") Within the well, Hutchinson and Wyatt in their investi-
. o2 gations [25] of the dynamics of the Wigner distribution
+8e(x cosBty sinB)” . (18d) function have argued that the classically stochastic be-
Also havior is delayed and reduced quantum mechanically.
Other studies [23], especially that of Noid et al. [26],
EV_gz have found that the quantum spectrum has no signature
dw of the classical chaos. Carlson and Schieve [2] had, with
gives this same technique, analytically predicted that the
rounded-off potential reduces chaos.
3 2¢ . Let us now look at Egs. (17) and (18) [31]. The
o'~ |B +?{ —6e=0, (18¢) effective potential is evaluated numerically and may be
seen in Fig. 2. We see that though the effective
where quantum-mechanical terms are initially additive, clearly,
_ . 2. o after a critical distance from the origin, the particle tun-
b=1—2(x cos2B—y sin2B)+4e(x"+p°) nels out. This happens as soon as the larger valley (the
+8e(y cosB—x sinB)? . (18 global minimum at ~r=¢"!) begins to dominate. It

In Egs. (18¢c) and (18e) we have two coupled cubic
equations which in general may not have real positive
semidefinite solutions. However,a systematic evaluation

looks abrupt, but interpreted semiclassically, means that
there is a transition energy after which the particle is
effectively free on the time scale of the classical dynamics.
The seemingly fully radial nature of this tunneling may
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Vgep(0.51.6)
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H

0.71 -0.70
>4
4 o

FIG. 3. Vgep as a function of 6, #=0.05, e=10"°, and
r=0.51.

seem puzzling since one intuitively expects that the parti-
cle tunnels out along one of the valleys but not along the
erstwhile mountains. However, the particle can and does
tunnel transversely between the valleys, thus lowering the
effective height of the mountain; secondly, a closer in-
spection of the potential as a function of the angle 6
(Fig. 3) reveals the same 27 /3 symmetry as the original
problem. On the scale of Fig. 2, tunneling effects so dom-
inate as to mask this.

The energy dependence of the tunneling is qualitatively
quite independent of the (rescaled) value of #, provided it
is small (but nonzero) compared to the classical energy.
In a molecular problem, rescaling by the system parame-
ters yields an order of magnitude estimate of #=0.05
[32]. Figures 4 and 5 show, respectively, the dependence
of the critical barrier energy and its location (distance
measured along a classical valley, i.e., along 6=1) on the
value of 7. It is necessary to consider relative energies for
comparison at differing values of #; not subtracting the
zero-point energy gives confusing results [24].

0.430 0.482 0.494 0.43 0.4%8 0.500
L L ;

C
)

0.480 0.482 0.484 0.486 0.488

T T T T T T T —T———
0.010 0.019 0.028 0.037 0.046 0.055 0.064 0.073 0.082 0.091 0.100

h

FIG. 4. Barrier distance r., i.e., radial distance of ionization
cusps at 8, =m/3,1,6m/3, as a function of # as it is scaled.

)

AN
N

N

N

Vaep(re.0.) — Vgep(0)

0.055 0.058 0.061 0.064 0.0 0.070 0.073 0.07%6 0.079 0.082 0.085

T T T T T — T ]
0.010 0.013 ©0.028 0.037 0.046 0.055 0.064 0.073 0.082 0.031 0.100

h

FIG. 5. Barrier height Vggp(r.,0,.)—Vgep(0), i.e., relative
height of ionization cusps, as a function of # as it is scaled.

Most of the previous studies used large basis sets, both
for the spectrum and the dynamical study of quantum er-
godicity. This suffers from the difficulty that by treating
the problem as a perturbation of the sample harmonic os-
cillator, one cannot see the tunneling effects clearly.

The study that did investigate the metastability [24]
agrees with our results. Firstly, we both see the marked
transition from a strong to a weak dependence of the life-
time of a state on its energy. Secondly, a rescaling of
their values of this critical energy agrees well with ours
[33].

To summarize, the above discussion demonstrates that
in the Hénon-Heiles potential (1) quantum-mechanical
fluctuations tend to smooth out the irregular behavior,
and (2) more dominantly, the unboundedness causes a
particle placed within the potential well to tunnel out at
energies associated with the classically chaotic regime of
this potential. It may, in fact, be appropriate to say that
quantum effects destroy chaos.

For this particular case, then, we have remarkably
good results. This simple and largely analytical method
looks at both the chaotic dynamics and the metastability
associated with the potential and agrees well with previ-
ous results on both. Within the framework of this tech-
nique, results have a straightforward physical interpreta-
tion. We account for the disagreements with other stud-
ies through the argument that this study brings together
both aspects of the problem, whereas other studies treat-
ed one or the other.

IV. CONCLUSION

Finally, we make the following two generalizations for
all similar potentials.

(1) “Quantum claustrophobia” and the fact that a semi-
classical particle samples and responds to the geometry of
a neighborhood rather than a point will tend to add radi-
al terms to the effective potential which make the curva-
ture positive. Hence, quantum effects delay chaos.

(2) The tunneling commences at the geometrically pre-
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dicted onset for stochasticity, i.e., where the potential be-
comes concave. Hence, through tunneling, quantum
effects remove chaos.
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APPENDIX

At m =4, the equations generated from Ehrenfrest’s
theorem are as follows:

%?2(?) , (Ala)
%(ﬁ)z—‘V(l)"‘%(§2>V(3)——é—(j}3>V(4)—‘5l;<,?4>V(S)
(A1b)
4 (g)=(2P+P%) (Alc)
%<ﬁ2>=<)?ﬁ+ﬁ)?>V‘”—()?ﬁ)?)V‘”
—HRP+PRVY (A1d)
%uﬁwfﬂ=z<<ﬁ2>—<)?2>V‘2’—g<)?3>v‘3’
—KxHvey, (Ale)
%@%:3@@?)%@4@) , (A1
()= =3P V= 3(PRP) VD - 1 RPIR )Y
+#VS (Alg)
%(i’ﬁf)=2<ﬁX’13>—<)?2>V‘“—()?3)V‘2’
—H{RHVIH(RP+PR (D), (Alh)
L(PRP)= (P +(P?)(p) —(RP+PR )V
—2{XPXYVP—(XP+PXHVY | (Ali)

(89 =2(RP+ER)+HX) ) | (A1)
%(ﬁ“)=—4<ﬁ YW —(RP+PRHVD (A1K)
L (RP+PRY) = =2V 2RIV 6 RP2D)
+6(XPX)(p)—3#, (A1D)
L (PR +RP*)=2(P) +(P)(p) —6( TRV
—6(XPXYVP+3#V? | (Alm)
L (RP2R)=(PR+P)+(RPR) (5) 2 KPRV

— 26 PR+ XP v | (Aln)

To solve iteratively (this gives consistent results) we
first consider only the first five equations. We set all mo-
ments of order greater than 2 to zero, and use the ap-
proximation of a minimum uncertainty state:
4(P2)(X?)=#*+(XP+PX). We then impose the
steady-state condition to obtain

-1,2
2 dx?
and
1/2
sy # | PV ((R)) (A2b)
(P?) 5 P

We now consider Egs. (Ala)-(Aln). Substituting the
solutions (A2a) and (A2b) gives us the same equations
back; they are now all of second order in 7. We set all
odd moments to zero, and impose the steady-state condi-
tion. We are left with the equations

0=(PH)—( XYY —1L(R*)yW | (A3a)
0=—3(PHYyyV—H(XPR )WV +#VP,  (A3b)
0=—(XHVV-L(XHy?, (A3c)
0=—2(X* )V P +6(XP?R)—3#, (A3d)
0=2(P*) —6(XP’X )V D +32¥? . (A3e)

The solutions to these equations added to the solutions
(A2) give us the solutions cited in Egs. (5) above.
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