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EfFective potentials and chaos in quantum systems

Arjendu K. Pattanayak and William C. Schieve
Center for Statistical Mechanics and Complex Systems, Uniuersity of Texas, Austin, Texas 78712

(Received 6 March 1992)

The dynamic usage of the technique of effective potentials is motivated and established. The one-loop
effective potential and the Gaussian effective potential are derived from Ehrenfrest's theorem by using

adiabatic elimination. An application is made to the Henon-Heiles problem, and comparison is made

with previous results; it is shown that quantum effects destroy chaos in two ways: (a) quantum fluctua-

tions make the curvature more positive and (b) tunneling dominates the dynamics.

PACS number(s): 05.45.+b, 03.65.—w

I. INTRODUCTION

Effective potentials are used to assess the impact of
quantum effects such as zero-point fluctuations and tun-

neling on the magnitude and the geometry of classical po-
tentials; they are a popular field-theoretic tool, used to in-

vestigate vacuum exchanges, quantum resuscitation"
(the creation of a finite-energy bound state in unbounded
potentials through fluctuation effects) rollover, and other
phenomena [1].The philosophy being valid in ordinary
quantum mechanics (0+ 1 dimensions in the field-

theoretic nomenclature), we consider here the dynamic
use of effective potentials —with reference to "quantum
chaos" [2].

We use the term quantum chaos in the conservative
way: to refer to the study of the quantum mechanics of a
classically chaotic system (restricting ourselves to Hamil-
tonian systems 0=T+ V). Most such studies have used
various properties of the classical systems as windows
into the quantum mechanics. For instance, Birkoff-
Gustavson quantization [3] is based on the existence of
invariant torii (even if fragmented) in the classical phase
space. There is the idea of searching for "scars" [4], in-
tensity peaks of highly excited wave functions along the
periodic orbits of the classical system, while the tech-
nique of trace formulas [5] estimates eigenvalues of the
quantum system from a weighted sum over these periodic
orbits. The study of spectral statistics [6], however, is
based on assumptions about the random distribution of
the matrix elements of the Hamiltonian. Gutzwiller's
work [5] provides a fine review and exposition of these
techniques.

This variety of techniques comes about because the
measures (such as X entropy [7], Liapunov numbers [8]},
diagnostics (such as the Melnikov function [9], the tests
of Zaslavsky and Chirikov, Greene, and Mo [10], Toda,
Bruiner and Duff (TBD) [11], and Pattanayak and
Schieve (PS) [12])and signatures of chaos lie, in general,
in phase space, are dynamical and have no direct inter-
pretation in quantum mechanics. It is in this context that
we consider a parallel approach, that of using classical
techniques of analysis by reducing the problem to that of
an effective classical problem, i.e., instead of considering

Schrodinger's equation in a given potential, we look at
Hamilton s equations in a modified potential. This ap-
proach is local in the sense that quantum-mechanical
effects provide local corrections to the dynamics rather
than global, static characterizations. The approach is
valid for small values of Planck's constant h (caveat: this
not in the sense of a tunable parameter but depending on
the characteristics of the problem) and is, in fact, in the
ground-state regime (the techniques mentioned previous-
ly are of the highly excited-state regime}. Some of the di-
agnostics [11,12] for chaos are based on the geometry of
the potential; the effective potential technique is especial-
ly powerful in combination with such methods. In the re-
gion, therefore, of semiclassical dynamics, where quan-
tum effects may be said to provide corrections (a con-
venient mathematical fiction} this method holds. It must
also be emphasized that it is very simple and computa-
tionally cheap; yet it provides us with powerful insight
that we may use before more complicated methods of
analysis.

In Secs. II we derive the one-loop effective potential
(1LEP) and the Gaussian efFective potential (GEP) from
Ehrenfrest's theorem by using the technique of adiabatic
elimination and thus establish a dynamical justification
for their usage. In Sec. III we apply the GEP (with an
exposition, for pedagogical purposes, of the method} to
the Henon-Heiles problem. Comparison and contrast
with other studies is made. We finish with some observa-
tions regarding this technique and in Sec. IV state two
conjectures about quantum {or at least semiclassical)
effects on all potentials of this form.

II. DERIVATION OF THE GEP

A. Ehrenfrest's theorem and the hierarchy

Consider, then, Ehrenfrest's theorem; this is the most
direct way of seeing quantum corrections. We restrict all
arguments in the next two sections to particles of unit
mass moving in a one-dimensional potential, i.e., Hamil-
tonians of the form 0 =p /2+ V(x). Generalization of
this to higher dimensions is straightforward. According-
ly the equations of motion for the centroid of a wave
packet are
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and

—„(X)=(P) (la) —(XP +PX ) =20(A' + (XP +PX ) }—2 X
Bx

=20(A' + (XP+PX ) )

—&p)=-
dt

aV(x }

BX
(lb) y(2m)

0 (
—1)!2

(4d)

where the ( ) indicate expectation values. If V(assumed
analytic) is at most quadratic in x then the ( ) factor,

av(x )

Bx
av
ax ((;) '

and the centroid therefore follows the classical trajectory.
We, of course, are interested in nonlinear gradients, so

that we can study chaos. The classical equation of
motion does not hold then for the centroid and to study
"corrections" we expand in Taylor series around (x )
and (P ). The expansions are of the form

&F(-. )) = ', &
U" &F". 0,

nt
(3)

—&x &=&P),d
dt

d—(p) =-
dt

av(x)
BX

0 m!2
y(2m + 1) (4b)

where F'"'=a"F/au "~(-}, U=u —(u ). We use the
summation convention here and throughout the rest of
this paper. Using these and commutation rules of opera-
tors, we can generate a series of moment equations. In
general these are infinite in number; an arbitrary distribu-
tion (wave packet) is completely specified only if all mo-
ments are known. %e have little interest in the entire
wave function and it would sufFice to keep track only of
(x ) and (P ), thus creating an "Ehrenfrest phase space. "
The infinite hierarchy, however, cannot be (or at least has
not been) reduced in general

To proceed with the analysis, therefore, we might trun-
cate at a given order [13] (the mth). The truncation may
be justified if the potential (or the mth derivative) varies
slowly over the characteristic width of the wave packet;
all higher moments are assumed negligible. At that or-
der, then, one gets a closed set of equations. The trunca-
tion assumption may always be checked for self-
consistency by carrying an extra order along in the equa-
tions and ensuring that it does, indeed, stay small. The
equations thus generated with m =2 are five in number
and are analyzed at length in Ref. [13]. With m =4, they
are 14 in number (see the Appendix).

Another possible technique for reducing the number of
equations is to adopt a Hartree-like approach, requiring
that all n-point functions be expressible in terms of the
one- and two-point functions. We can achieve this by re-
quiring that the wave packet be always Gaussian. We
then get the foHowing equations:

where we have used the standard relationships
for a Gaussian function, with (X ) =0
(X ) =(2m)!(I/m!2 )( I/II ), (X +') =0, and
4& P') (x') =x'+ (X'P+N').

lt is interestmg to compare this set of equations (4)
with those obtained from Dirac's variational technique
[14]. There we apply the principle that

r = Jdi(u i;~—-H e, t)
C}

Bt

B. E6'ective potentials by adiabatic elimination

One well-recognized method used in other fields is of
adiabatic elimination or slaving [17]. We assume that the
time scales of the system are such that at each point in
(x ) space the system is effectively at a steady state. We
solve for these values of the moments and substitute them
in the Taylor expansion, which then gives us an effective
potential V,s ——( V) = 1 jn!(X") V'"'.

Asking that the odd moments be zero, thus mimicking
a particle, for instance, gives useful results. An iterative
solution [see the Appendix] at m =4 and with odd mo-

ments zero is
—1/2

a'v(&x )
BX

g2 y(3) y(3)

4 y(1) y(1) y(4) 8 y(1) y(2) y(3)

&x'& =
2 y(1) y( 1 ) y(4) 4 P (1)V(2) V(3)

1/2
a'v(&x &)

2 a.
g2 y(3)( y(1) V(4) y(2) y(3) )+

)2y( 1)y(1) V(4) 24'(1) V(2) y(3)

(5a)

(5b)

(sc)

The first order in A gives

a'v(&x ) )

ax

' —1/2

(6a)

be stationary against the variation of ~4, t ). An arbitrary
~%', t ) yields Schrodinger s time-dependent equation.
Cooper, Pi, and Stancioff [15] chose !4, t ) to be the most
general Gaussian function. Their Eqs. (2.7) are the same
[16]as Eqs. (4) above.

In both the above approaches we get a finite set of
equations being carried along with the equations for evo-
lution of (x ) and (P ). In Sec. II B we derive from these
effective potentials.

&x'& = &xP+Px), —
dt

(4c)
This would suggest that
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B. Computation of the VGEp
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is not real and positive semidefinite. As with the 1LEP
earlier (Sec. II), there is not a well-defined effective poten-
tial in this instance, not because of transitional concavity
but due to the unboundedness of the potential.

For the GEP this problem is not unresolvable, howev-
er. If we realize that this technique relies on evaluating
the reaction of a bound or at least quasibound state in a
given potential, we can extend the analysis for this and
other such problems in a simple physical way by closing
the potential at infinity. In this instance we do so by

embedding the unbounded cubic in a weak quartic (Er );
the physical problem is unaltered on time scales of in-
terest, since the attraction is to a global minimum at very
large values of r (for s vanishingly small) but the
mathematical realization of bound states is achieved.

Consider, therefore, the potential

V(x,y)= —,'(x +y )+—,'(x —3xy) +a[(x +y ) ] . (16)

A calculation similar to the one above gives

T
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+E 3[(2&) +(2~) ]+ ,'&co—+(x +y ) —+—+—(x cosP+y sinf3) +—(y cosp —x sinf3)20 co fL N
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r
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—x]2 2

BP II co

+ cos2P(4exy —y) ], (18a)

I

of the equations [29] shows that physical solutions always
exist for this particular case. The problem is solved; we
have computed an effective quantum-mechanical poten-
tial in the Henon-Heiles problem.

C. Interpretation, comparison, and contrast

we get

P= —,
' arctan

Further,

gives

4c,xy —y
x —2e(y —x') (18b)

The fact that the A' terms are radial [Eqs. (15), valid
within the false well] can be used to show, as follows, that
the Gaussian [30] curvature K of the potential is made
more positive by quantum fluctuations,

E~ V„Vy —V

=1—4r +A 1+2x (3y —x )

2
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0 —0 a+ —6m=0,3 2E,

N
(18c)

where

a =1+2(x cos2P —y sin2P}+4e(x +y )
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+8e(x cosP+y sinP) (18d}

BVg 0
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where

b = 1 —2(x cos2P ysin2P}+4—8(x 2+y ~)

+8m(y cosP —x sinP) (18f)

In Eqs. (18c) and (18e) we have two coupled cubic
equations which in general may not have real positive
semidefinite solutions. However, a systematic evaluation

The A terms are always positive for r (0.5. This implies,
then, that quantum effects tend to delay or reduce the
effects of chaos.

This compares favorably with previous findings.
Within the well, Hutchinson and Wyatt in their investi-
gations [25] of the dynamics of the Wigner distribution
function have argued that the c1assica11y stochastic be-
havior is delayed and reduced quantum mechanically.
Other studies [23], especially that of Noid et al. [26],
have found that the quantum spectrum has no signature
of the classical chaos. Carlson and Schieve [2) had, with
this same technique, analytically predicted that the
rounded-off potential reduces chaos.

Let us now look at Eqs. (17) and (18) [31]. The
effective potential is evaluated numerically and may be
seen in Fig. 2. We see that though the effective
quantum-mechanical terms are initially additive, clearly,
after a critical distance from the origin, the particle tun-
nels out. This happens as soon as the larger valley (the
global minimum at —r=E ') begins to dominate. It
looks abrupt, but interpreted semiclassically, means that
there is a transition energy after which the particle is
effectively free on the time scale of the classical dynamics.
The seemingly fully radial nature of this tunneling may
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dieted onset for stochasticity, i.e., where the potential be-
comes concave. Hence, through tunneling, quantum

sects remoue chaos.

—(X ) =2(X'P+PX )+4(X )(P),
dt

—(p') = —4(P') v"' 2—(x P+PX &v"',
dt

(Alj)

(A 1k)
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At m =4, the equations generated from Ehrenfrest's
theorem are as fo11ows:
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( ) (Ala)
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2 6 24
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dt

+6&xpx) &p &
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2&PL—'+xP'& v"'. (A 1n)

To solve iteratively (this gives consistent results) we
first consider only the first five equations. We set a11 mo-
ments of order greater than 2 to zero, and use the ap-
proximation of a minimum uncertainty state:
4(P )(X ) =Pi +(XP+PX). We then impose the
steady-state condition to obtain
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2&XPx &
v'" (x'P+—Px'& v"', —

(Alh)

(P ) = —3—(P ) V"'—3(PX'P) V' ' '(XP X) V'—'—
dt 2

() (P2) (X2) V(2)v(3) I (X4) V(4)

0= —3(P ) V"'—'(XP X) V"—'+A' V

0= —(X ) V"'—-'(X ) V' '

0= —2(X ) V' '+6(XP X& —3tri

0 2(P4) 6(XP2X) V(2)+3g2V(2)

(A3a)

(A3b)

(A3c)

(A3d)

(A3e)

The solutions to these equations added to the solutions
(A2) give us the solutions cited in Eqs. (5) above.

We now consider Eqs. (Ala) —(Aln). Substituting the
solutions (A2a) and (A2b) gives us the same equations
back; they are now all of second order in A'. We set all
odd moments to zero, and impose the steady-state condi-
tion. We are left with the equations

[1]The papers of Stevenson (Ref. [20]) and that of Cooper, Pi,
and Stancioff (Ref [15]) provi.de detailed references and
studies of these phenomena.

[2] Carlson proposed this approach as part of his Ph. D.
thesis. The relevant discussion is in L. Carlson and W. C.
Schieve, Phys. Rev. A 40, 5896 (1989).

[3]J. B. Delos and R. T. Swimm, Chem. Phys. Lett. 47, 76
{1977)and references therein.

[4] P. W. O'Conner, J. Gehlern, and E. Heller, Phys. Rev.
Lett. 58, 1296 {1987)and references therein.

[5] M. Gutzwiller, Chaos in Classical and Quantum Meehan
ics {Springer-Verlag, Berlin, 1990).

[6] A. M. Ozorio de Almeida, Hamiltonian Systems: Chaos
and Quantization (Cambridge University Press, Cam-
bridge, England, 1988).

[7] See, for example, G. M. Zaslavsky, Chaos in Dynamic Sys-
tems {Harwood Academic, Chur, Switzerland, 1985).

[8] V. I. Oseledec, Trans. Moscow Math. Soc. 19, 197 (1968).
[9] V. Melnikov, Trans. Moscow Math. Soc. 12, 1 (1963); J.

Guckenheimer and P. Holmes, Non-linear Oscillations,



1828 ARJENDU K. PATTANAYAK AND WILLIAM C. SCHIEVE 46

Dynamical Systems and Bifurcations of Vector Fields
(Springer-Verlag, Berlin, 1983).

[10]G. M. Zaslavsky and B. V. Chirikov, Usp. Fiz. Nauk 105,
3 (1972) [Sov. Phys. Usp. 14, 549 (1972)];J. M. Greene, J.
Math. Phys. 9, 760 (1968); 20, 1183 (1979);K. C. Mo, Phy-
sica 57, 445 (1972).

[11]M. Toda, Phys. Lett. A4$, 335 (1974); P. Brumer and J.
W. Duff, J. Chem. Phys. 65, 3566 (1976).

[12]A. K. Pattanayak and W. C. Schieve, in Proceedings from
Workshop in Honor of E. G. G. Sundarshan, edited by A.
M. Gleeson (World Scientific, Singapore, in press).

[13]M. Andrews, J. Phys. A 14, 1123 (1981).
[14] P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376

(1930).
[15]F. Cooper, S.-Y. Pi, and P. N. Stancioff, Phys. Rev. D 34,

3831 (1986).
[16]To see the equivalence, one has to equate our variables

(x ), (P ), (X' ), and (X'P+PX') with their q, p AG, and
4AGH. Also remember that we have set m =1; they have

inadvertently set m =1 for certain terms in their Eqs. (2.6)
and (2.7) and thereafter.

[17]H. Haken, Synergetics (Springer-Verlag, Berlin, 1977).
[18]This form of the 1LEP is given in Stevenson's paper (Ref.

[20]).
[19]The static effective potential ought to include the contri-

bution from the momentum term, as can be seen from con-
sidering the SHO, but using this for dynamics seems to
contradict Ehrenfrest's theorem. This does not alter our
qualitative conclusions.

[20] P. Stevenson, Phys. Rev. D 30, 1712 (1984).
[21] M. Henon and C. Heiles, Astron. J. 69, 73 (1964).
[22] For example, see H. H. G. Helleman, and T. C. Bountis, in

Stochastic Behauior in Classical and Quantum Hamiltoni

an Systems, edited by G. Casati and J. Ford (Springer-

Verlag, Berlin, 1983); R. C. Churchill, G. Pecelli, and D.
L. Rod, J. Diff. Eqs. 17, 329 (1975). See A. J. Lichtenberg
and M. A. Lieberman, Regular and Stochastic Motion

(Springer-Verlag, Berlin, 1983), Chap. 2 for more refer-
ences.

[23] See S. A. Rice, Quantum Dynamics of Molecules (Plenum,
New York, 1979) and references therein.

[24] B. A. Waite and W. H. Miller, J. Chem. Phys. 74, 3910
(1981).

[25] J. S. Hutchinson and R. E. Wyatt, Phys. Rev. A 23, 1567
(1981).

[26] D. W. Noid, M. L. Koszykowski, M. Tabor, and R. A.
Marcus, J. Chem. Phys. 72, 6169 (1980).

[27] J. Ford, in Fundamental Problems in Statistical Meehan

ics, edited by E. D. G. Cohen (North-Holland, Amster-
darn, 1975), Vol. 2.

[28] The earlier published calculation (Ref. [2]) erred slightly,
which meant that the fact that these terms were radial
could not be seen.

[29] This has been done using the technique of Grobner bases

[B. Buchberger, in Recent Trends in Multidimensional
Systems Theory, edited by N. K. Bose (Reidel, Dordrecht,
1985)]. By using this technique the two coupled equations
are reduced to independent polynomial equations in the
two variables, both of which may be demonstrated to have

positive real solutions.
[30] The Gaussian curvature is used to measure a surface's

concavity. It has nothing to do with the fact that we are
using the GEP.

[31]The potential segues smoothly in using the two sets of
equations as we move from the inside to the outside of the
well. We use the first set only for computational conveni-
ence inside the well, whence it can be analytically shown
that the A terms add to the curvature.

[32] Distances of the oder of 10 ' m, energies of the order of
10 ' J, and a reduced mass of the order of 10 "kg were
used. The resultant estimate is consistent with Refs. [25]
and [26].

[33] The rescaling is required for consistency in the definition

of the ground-state energy, as has been argued already.

The comparison is couched in qualitative terms since the

rescaling was done off plots from the paper in question,

not a recommended procedure for accuracy.


