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A thermodynamic description of the photorefractive effect is developed and used to evaluate thermal
fluctuations in the space-charge field of a photorefractive medium responsible for light-scattering noise.
Equilibrium grating properties are obtained through minimization of the Helmholtz free energy and are
found to be in agreement with results obtained by other methods. Thermal fluctuations in the space-
charge field are obtained from the curvature of the free-energy surface. These fluctuations give rise to
light-scattering fluctuations in the medium refractive index through the electro-optic effect and are the
fundamental source of light-scattering noise. Light-scattering fluctuations associated with the optical
Kerr effect are also examined. The signal-to-noise ratio and dynamic range of a photorefractive medium
are determined. Stochastic noise model calculations are presented for BaTiO; under conditions for
which the dominant noise contribution is associated with the photorefractive effect. Our results suggest
a very large dynamic range for photorefractive materials (120—140 dB) that should prove useful for opti-

cal signal processing applications.

PACS number(s): 05.40.+}, 42.70.Gi, 78.35.+c¢

I. INTRODUCTION

Photorefractive media constitute a large and versatile
class of nonlinear optical materials with applications to
holographic storage as well as to real-time optical infor-
mation processing. Two closely related theoretical mod-
els of the photorefractive effect have been put forth [1,2]
and successfully utilized over the past decade by a num-
ber of investigators for the description of nonlinear opti-
cal processes, including optical phase conjugation [3] and
coherent beam combination via two-wave mixing [4].
Nevertheless, it appears that few studies have been
directed at quantifying the fundamental limits to the pho-
torefractive effect set by noise. In particular, questions
related to the noise limits on photorefractive sensitivity
to weak incident signal powers (dynamic range) have ap-
parently not been previously addressed. In the present
study it is shown that there are noise limits to the dynam-
ic range of a photorefractive medium that are inherent in
the photorefractive effect itself. The quantitative deter-
mination of these limits is the foremost objective of this
paper.

During the past several years we have undertaken the
investigation of light-scattering noise associated with
nonlinear optical processes utilizing Kerr and artificial
Kerr media [5-7]. These studies were based on a novel
application of statistical thermodynamic methods to
quantitatively relate the response of the medium (e.g., the
strength of a grating formed by a pair of writing laser
beams) to the root-mean-square (rms) amplitude of the
spontaneous dielectric fluctuations that give rise to light-
scattering noise. Time-averaged noise powers for Kerr
media at room temperature and visible wavelengths were
found to be in the microwatt range [5,6]. Moreover, sto-
chastic simulations of nonlinear optical processes re-
vealed significant instantaneous fluctuations in the ampli-
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tude and phase of the output fields even for noise-free in-
cident signals at power levels well into the milliwatt
range [7]. The present paper extends these results to ma-
terials exhibiting the photorefractive effect. In the fol-
lowing sections it will be shown that the photorefractive
response is also fundamentally related to light-scattering
noise; however, the physics underlying this relation will
be shown to differ considerably from the Kerr media
case. In particular, it will be shown for photorefractive
materials that much lower signal power levels can be ac-
commodated before the effects of noise become sig-
nificant.

The present paper is divided into two main parts with
the first part (Sec. II) serving as the foundation for the re-
sults to follow. In Sec. II we present a new thermo-
dynamic approach to the photorefractive effect with the
objective of obtaining the Helmholtz free-energy surface
associated with grating formation in the presence of a
spatially modulated light intensity pattern [8]. The ther-
modynamic approach is described here within the frame-
work of the Kukhtarev [1] and hopping [2] models of the
photorefractive effect and is shown to give identical re-
sults for the equilibrium grating response. New expres-
sions for the energy, entropy, and donor site chemical po-
tentials associated with the formation of an index grating
via the photorefractive effect are also derived. While
these results are significant, the main reason for introduc-
ing the thermodynamic approach is that it leads naturally
to a derivation of the free energy associated with none-
quilibrium states for small departures from equilibrium.
The occupation of these nonequilibrium states through
thermal fluctuations in the medium will be shown to un-
derlie the presence of light-scattering noise.

The second part of the paper is directed at the study of
thermal fluctuations and light-scattering noise. Fluctua-
tions in the grating amplitude are obtained in Sec. III
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from the curvature of the free-energy surface. The ap-
proach is similar to that developed in Ref. [7] for Kerr
media and, where possible, we compare results for the
two models. Index fluctuations that give rise to the light-
scattering-noise associated with the photorefractive effect
are obtained in Sec. IV. The thermal fluctuations previ-
ously described for Kerr media [5S—-7] are also considered
here as a source of light-scattering noise for photorefrac-
tive materials that exhibit both optical Kerr and pho-
torefractive effects. An analysis is presented for the dy-
namic range of a photorefractive medium with noise grat-
ings associated with both the Kerr and photorefractive
effects. The results of a computer-simulated noise calcu-
lation for the dynamic range of the photorefractive ma-
terial BaTiO; are presented in Sec. V. Section VI con-
cludes with a summary and discussion of results.

II. THERMODYNAMIC ANALYSIS
OF THE PHOTOREFRACTIVE EFFECT

This section presents an overview of the origins of the
photorefractive effect followed by an analysis of the ener-
gy, entropy, and intensity contributions to the grating
free energy within the framework of the Kukhtarev [1]
and hopping [2] models. The first-order photorefractive
grating response is then obtained through free-energy
minimization.

A. Origins of the photorefractive effect

Initiation of the photorefractive effect occurs when a
spatial variation of light intensity causes a redistribution
of charge density and buildup of a space-charge field.
For example, let the spatial light intensity distribution
follow the simple sinusoidal grating form

I(x)=Iy[1+m cos(gx)], (2.1

characterized by average intensity [, grating wave vec-
tor q with ¢ =|ql, and intensity modulation ratio m. The
intensity grating induces a corresponding density

n(x)=ny[1+wcos(gx)], (2.2)

where n is the average density. In the hopping model, n
refers to the number density of hopping carriers of charge
q.. In the Kukhtarev model, n refers to the number densi-
ty of unionized donor sites.

A comparison of the Kukhtarev and hopping models is
presented in Fig 1. Each model assumes a uniform popu-
lation of fixed sites as well as a uniform distribution of
fixed countercharges to maintain overall charge neutrali-
ty. In the hopping model the fixed sites may be occupied
by a smaller number of mobile carriers of charge g,. The
latter are assumed to hop from site to site with a hopping
rate that is proportional to the local light intensity. The
net effect is to cause the carriers to diffuse from regions of
higher to regions of lower light intensity. As a result, the
density modulation ratio w in Eq. (2.2) is opposite in sign
to the intensity modulation ratio m In the Kukhtarev
model the fixed sites are occupied with a smaller number
of valence-band carriers whose charge may be either posi-

1811
__— CARRIER (@
(@] O (0]
== mm rrrr T mrr . ——— FIXED SITES
° ° o
T FIXED COUNTERCHARGE
HOPPING MODEL
___ CONDUCTION
T BAND
— CARRIER
DONOR— ..V .. _— (e)
- rer e ®  ___ FIXED SITES
HE Y T 3 +
// \
IONIZED DONOR —— ~— FIXED COUNTERCHARGE

KUKHTAREV MODEL

FIG. 1. Comparison of the Kukhtarev and hopping models.

tive or negative. For definiteness we assume the carriers
in both models to be electrons of charge g,=e=—]|e].
Mobility of carriers in the Kukhtarev model requires ex-
citation from the valence band into the conduction band,
which occurs at a rate that is proportional to the light in-
tensity. Generation and recombination of carriers is a fast
process compared to the overall redistribution of charge,
and the number of carriers in the conduction band at any
given time is negligible compared to the number of
valence-band carriers (donors). Redistribution of charge
in the Kukhtarev model may therefore be thought of as
due to the redistribution of the donor population through
accumulated generation, recombination, and transport of
carriers via the conduction band. Consideration of the
index change induced by the space-charge field through
the Pockels effect is reserved for Sec. IV.

To simplify the present analysis we will neglect contri-
butions to grating formation from the photocurrent, dark
current, and externally applied electric fields. We will
also neglect contributions from higher-order gratings
since our primarily interest is in the small modulation ra-
tio limit. The various components of the grating free en-
ergy will now be derived. These include contributions
from energy storage in the space-charge field,
configurational entropy, and the free energy associated
with exposure of the donor or hopping sites, depending
on which model is used, to a spatially varying light inten-
sity.

B. Energy stored in the space-charge field

The energy required to build up the space-charge field
Esc is [9]

Usc=(€o/87) [ Edc(x)dx , (2.3)

where ¢ is the static dielectric constant of the medium
and the integration is over the beam interaction volume
Vs. The space-charge field is related to the grating
modulation ratio w through Poisson’s equation

VEyc=—V®=4up /¢, , (2.4)
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where @ is the electrostatic potential and p is the net
charge density. The latter quantity follows from Eq. (2.2)
and is given by

p=ngew cos(gx) . (2.5)
The solution to Poisson’s equation is
Eg(x)=(4mnye /€4q )w sin(gx) . (2.6)

Substitution into Eq. (2.3) gives
Usc=(m/€))nge /q) Vsw>=1n VikT(kp /q ) w?* .
(2.7)

The last equality relates Ugc to the reciprocal Debye
screening length (k) defined through the relation

(kp)*=4mnge?/(€kT) . (2.8)

C. Configurational entropy

The entropic contribution to the free energy arises
from the spatial distribution of the charge carriers in the
hopping model (donors in the Kukhtarev model). This
configurational entropy is also a function of the density
modulation ratio w

S(w)=—k [ n(x)nn(x)dx+C

=—nokVsw?/4 (for w<<1) . (2.9)

Integration is over the beam interaction volume V. The
last equality follows from inserting n(x) from Eq. (2.2)
into the integrand and expanding the logarithm in the
small w limit. Note that the constant C has been chosen
so that S equals zero, its maximum value, for the uniform
charge distribution (w =0).

D. Chemical potential

Considering only the contributions from Ugc and — TS
to the grating free energy, one obtains from Egs. (2.7) and
(2.9) a parabolic free-energy function that is minimized
for w =0 (see Fig. 2), suggesting that the uniform charge
distribution is most stable and that no grating should
form. A third contribution to the free energy needs to be
taken into account, which directly incorporates the
effects of illumination with nonuniform light intensity
and serves as the driving term for grating formation. A
derivation of this new contribution to the free-energy
function is provided here separately within the frame-
work of the Kukhtarev and the hopping models of the
photorefractive effect. Despite differences in the underly-
ing physical mechanisms, it will be found that equivalent
results are obtained for each model.

1. Kukhtarev model

In the Kukhtarev model (Fig. 1) donors become ion-
ized in the illuminated region through the reaction

DD +e. (2.10)
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FIG. 2. Thermodynamic potentials for grating formation.

To derive a chemical potential for this process, we adopt
the treatment of Reiss [10] and regard donor ionization
in a semiconductor as a chemical process through which
electrons are excited from fixed donor sites into the con-
duction band. Concentrations of the various species in
Eq. (2.10) are then related through an equilibrium mass
action expression, which in the present application is
dependent on the light intensity

K. (D=[D")[e]/[D]=sI/yy .

. .11

[D]=np is the number density (cm ) of unionized
donor sites, etc. The last equality in Eq. (2.11) gives the
ratio of rates for the forward to reverse processes in the
equilibrium of Eq. (2.10) as specified in the Kukhtarev
model. Here s is the cross section for photoionization of
donors, I is the light intensity, and ¥z is the recombina-
tion rate.

The conditions for which the ionization of impurities
in semiconductors follows the law of mass action are de-
scribed in Ref. [10]. In essence, we require the absence of
interaction. For electrons, this requires a concentration
in the conduction band sufficiently low that the classical
limit of Fermi-Dirac statistics is obeyed. This will be the
case when

Adn, <1, (2.12)
where
A=h/Q2rm kT)'? (2.13)

is the thermal de Broglie wavelength and n,=[e] is the
electron concentration. Setting 7" equal to room tempera-
ture and m, equal to the free-electron mass gives the con-
dition n, <<1.3X 10" for classical statistics to be valid.
Thus the inequality condition given by Eq. (2.12) is easily

satisfied for a photorefractive medium.
The chemical potential of a dilute distribution of elec-
trons in the conduction band takes the form
. =pl+kT In[e] , (2.14)

where u is the chemical potential in the standard state.
The standard state for each species is defined at a concen-
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tration of unit number density. We will also require the
well-known thermodynamic relation between the change
in standard state chemical potential and the equilibrium
constant [11]

Ay,0=y,2+y(;)+—y%=-—lenKeq . (2.15)
With the reasonable assumption that the chemical poten-
tial of ionized donors is independent of the light intensity,
we obtain from the condition that Au=0 at equilibrium,
the equality

Combining this last result with Eq. (2.14) gives
pp(D—pp(Iy)=kT In{[e(I)]/[e(I)]} , (2.17)

where [e(I)] is the number density of electrons at light
intensity I. From the structure of Eq. (2.17), we see that
[e(I)] is a measure of the fugacity or “escaping tenden-
cy” of the unionized donor species D.

The concentration of free electrons in a photorefractive
material is small to the extent that [e]<<[D*],[D].
This means that for a closed volume sample of the ma-
terial, the relative changes in species concentration with
light intensity will be dominated by changes in the elec-
tron concentration and fractional changes in the concen-
tration of ionized donors and unionized donors can be
neglected. Then [e(I)]/[e(Iy)]=1/I, from Eq. (2.11).
This last result is nothing more than a statement of the
proportionality between the concentration of free elec-
trons in the conduction band and the light intensity [12].
Equation (2.17) may be now be written in the form

pp(D—pp(Io)=kT In(I /I,) . (2.18)

Since a uniform intensity I, results for m =0, it is con-
venient to choose the energy scale so that the chemical
potential vanishes for this case: up(l,)=0. With this
choice of scale, our final form for the spatial variation of
the donor chemical potential with light intensity is

pp(x)=kT In[I(x)/I,]=kT In[1+m cos(gx)], (2.19)

where the last equality follows from Eq. (2.1). Integra-
tion over the beam interaction volume gives

U= [ n(opp(x)dx =kTngVsmw /2 (for m <<1) .
(2.20)

Equation (2.20) gives the direct contribution from light
intensity to the free energy of grating formation. We will
now show that an identical expression for U, is obtained
within the framework of the hopping model.

2. Hopping model

In the original formulation of the hopping model, the
intensity I(x) entered as a spatially dependent kinetic
prefactor to an exponential expression for the hopping
rate [2]. Alternatively, the spatially varying part of the
intensity may be expressed as a thermodynamic potential
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&4, still within the framework of the hopping model, by
simply transferring it from the intensity prefactor to the
exponent through the identity

I(x)=Iy[1+m cos(gx)]=I,exp[ P, (x)/kT] . (2.21)

The redefined kinetic prefactor I, is now a constant and a
new contribution ¢,, has been added to the potential.
Henceforth we will refer to ¢,, as the hopping potential.
From the last equality in Eq. (2.21) we obtain

&n(x)=KT In[1+m cos(gx)]=pp(x), (2.22)

showing that the hopping potential is equivalent to the
chemical potential uy. Thus, the intensity contribution
to the free energy takes the form

U= f n(x)¢,(x)dx =kTnyVgmw /2 (for m <<1),

(2.23)

which is identical to the expression obtained above using
the Kukhtarev model.

E. Free energy minimization

On combining Egs. (2.7), (2.9), and (2.20) [or (2.23)] we
obtain the Helmholtz free energy

F(w)=Up(w)+ Ugc(w)—TS(w)

=1n VskT[(kp/q)P+ 1 w?+Lin VskTmw (2.24)
for m, w <<1. Equation (2.24) is the main result of this
section. The various contributions to F(w) are shown in
Fig 2. Differentiation of Eq. (2.24) to obtain the
minimum in free energy gives

weg=—[kp/g’?+1]"'m . (2.25)
Substitution of this last result into Eq. (2.6) gives
EQ(x)=—(kTq/e)[1+(q /kp)*] 'm sin(gx) (2.26)

for the equilibrium space-charge field where Eq. (2.8) has
been used. Note that since U, is the only term in the free
energy that varies linearly with w, it is the driving term
(or symmetry-breaking term) for the formation of a finite
amplitude equilibrium grating in the medium. Minimiza-
tion of F(w) gives the equilibrium grating amplitude as a
linear function of the intensity modulation ratio m. [Sat-
uration effects have not been included in the calculation
due to the small m and w approximations used in Eg.
(2.24).]

The preceding thermodynamic description of the pho-
torefractive effect is supported by the fact that Egs. (2.25)
and (2.26) are identical to the usual expressions for the
grating amplitude obtained by more conventional
analysis. Further support comes from the agreement be-
tween the derivations carried out separately for the Ku-
khtarev and hopping models. The principal advantage of
the thermodynamic description is that fluctuations about
equilibrium are also readily obtained by methods that will
now be described.
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III. GRATING FLUCTUATIONS ASSOCIATED
WITH THE PHOTOREFRACTIVE EFFECT

In the preceding section it was shown that the forma-
tion of a space-charge grating entails a reduction of the
Helmholtz free energy relative to its value for a spatially
uniform charge distribution. In the present section it is
shown that at finite temperatures, the minimum free-
energy configuration is not necessarily the one charac-
teristic of the medium at any given instant in time. In-
stead, the grating amplitude is free to fluctuate about its
minimum free-energy value over a range determined by
the curvature of the free-energy surface. Thus the free-
energy surface determines both the equilibrium grating
response and the fluctuation range. Fluctuations in the
grating amplitude are thus inherent in the photorefrac-
tive effect itself. It is important to note in this regard
that grating fluctuations of the type described in the
present section can occur only as the result of displace-
ments of electrical charges throughout the beam interac-
tion volume—by the same mechanisms as those underly-
ing formation of the free energy minimizing signal grat-
ing. Furthermore, upon removal of the illumination
source, the fluctuation component will be frozen in place
in the same manner as the signal component to serve as a
sensibly permanent record of the information present in
the writing beams together with a statistical sample of
the thermal noise.

A very general thermodynamic method for deriving
fluctuation amplitudes about an equilibrium state is pro-
vided by the Einstein fluctuation formula [13]. This for-
mula states that the probability of a fluctuation Sw occur-
ring spontaneously is proportional to exp[ — F(8w)/kT ]:

P(dw)= A exp[ —F(bw)/kT] , (3.1

where dw =w —w,, is the fluctuation amplitude, F(éw)
is the reversible work required to create the fluctuation
configuration deliberately through the application of
external constraints, and A is a normalization constant.
For constraint-type processes occurring at constant
volume and constant temperature, the reversible work is
given by the Helmholtz free energy. Taylor expansion
about the equilibrium or minimum free-energy state gives

_ 1 9*F

F(w)—=F(w, )= 2, 3.2)

2w Y e
where terms of higher than quadratic order have been
neglected. The second derivative gives the curvature of
the free-energy function near its minimum value. Inspec-
tion of Egs. (3.1) and (3.2) shows that the fluctuations in
w are Gaussian with mean

(W) =w,, (3.3)
and variance equal to
e 1
(Iswl?)=kT | &£ (3.4)

2

The thermodynamic analysis of the previous section
has furnished an explicit form for F(w), which is now
utilized. Substitution from Eq. (2.24) into Eq. (3.4) gives
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2
swf; = LngVekT[(kp /g ?+1] 3.5)
for the curvature, and
(18w]?Y =2(noVs) (kp/q)?+1]7! (3.6)

for the variance of fluctuations in the density modulation
ratio w. The first and second terms in square brackets
correspond to the separate contributions from the space-
charge field [Eq. (2.7)] and the entropy [Eq. (2.9)], respec-
tively. The intensity-dependent term makes no contribu-
tion to curvature since it is linear in w.

Corresponding fluctuations will also occur in the
space-charge field through Poisson’s equation. With the
aid of Eq. (2.6) we obtain

(|8Egc|?) =(4mnge /eq )*( 18w |*) /2

=[16mnge’/(e3q* V) [(kp /g)*+1]171, (3.7)

where the factor of 1 results from averaging the square of
the sine function over the beam interaction volume. This
result can be written in a more compact form. Using Eq.
(2.8) and expanding notation to include the wave-vector
dependence of the fluctuation gives

(I8Esc(q)|?) =(4mkT /e,Vs)[1+(q /kp)*] 7" . (3.8)

The expression in square brackets reflects the nonlocal
properties of the photorefractive medium and results in a
reduction in fluctuation amplitude for k, comparable to
g. This reduction is due to the energy required to break
correlations that would otherwise be present when the
Debye screening length exceeds the grating spacing. A
similar phenomenon occurs in a Kerr medium near a crit-
ical point [7] and is discussed in Sec. IV. It is useful to
consider two limiting forms of Egs. (3.6) and (3.8).

A. Diffusion limit (g2/k3 <<1)

In crystals such as BaTiO; and SBN, the photorefrac-
tive effect is diffusion limited. This limit is characterized
by the property that the Debye screening length, or
correlation length, is much shorter than the grating spac-
ing. Equation (3.6) for the fluctuations in w reduces to

(|6w\2>diﬁlimn:2(”oVs)7l(‘I /kp )?

=qekT /(2mn3e*Vy) . (3.9
Similarly Eq. (3.8) becomes
(I8Esc(@)?) gigt timic = 4Tk T /€Vs) . (3.10)

In the diffusion limit the grating fluctuations are dom-
inated by the curvature contribution to the free-energy
function from Ugc; fluctuations are limited in size by
buildup of the corresponding space-charge field and are
independent of the number of unionized donor sites
present in the beam interaction volume. For this limiting
case, Eq. (3.10) may be deduced immediately from Eq.
(2.3) and the equipartition theorem
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Use=(eo/8m) [ Edc(x)dx

=(goVs/8m)(|8Egc|?) =kT /2 . 3.11)

The last equality is identical to Eq. (3.10).

B. Trap density limit (¢2/k3 >>1)

For small values of the trap density [14], the space-
charge field will be limited by the size of n, appearing in
Eq. (26) rather than by the diffusion field (kTq/e). In
this limit, the correlation length is much greater than the
grating spacing and Eq. (3.6) for the fluctuations in w
reduces to a simple temperature-independent form

<|8w|2)trap~ limit=2/(n0VS) . (3.12)

Corresponding fluctuations in the number density follow
from Eq. (2.2):

(187 (@)* rap timic =10/ Vs - (3.13)

It is interesting that an identical expression to Eq.
(3.13) is obtained for particle number density fluctuations
in a Brownian suspension. In that well-known case [15],

(|18n(qQ)1?)=ndkTB;/Vs=ny/Vs , (3.14)

where B is the isothermal compressibility and 6n(q)
here refers to a fluctuation in particle number density of
wave vector q. The last equality in Eq. (3.14) follows
from the independent-particle assumption for which
Br=1/(nykT). Equation (3.14) was used previously as a
starting point for the analysis of light-scattering fluctua-
tions and noise in an artificial Kerr suspension medium
[5].

The preceding results are best understood by noting
that fluctuations in the trap density limit are controlled
by the entropy term in the free energy and are not limited
by energy storage in the space-charge field. Noise in this
limit may be thought of as due to statistical fluctuations
in the trapped electron density. The corresponding fluc-
tuations in the space-charge field are obtained from Eq.
(3.8) in the limit g%/k} >>1:

€ ISESC(q”Z)trap timit = (47K T /€,Vs ) kp /g )

=16m"nqye?/(edq?Vs) , (3.15)

where the last equality, which provides a manifestly
temperature-independent form for the fluctuations in this
limit, follows using Eq. (2.8).

IV. LIGHT-SCATTERING NOISE

Light-scattering noise arises from thermal fluctuations
in the space-charge field [Eq. (3.8)], which induce corre-
sponding fluctuations in the linear dielectric constant via
the Pockels effect [Eq. (4.1) below]. The dielectric fluc-
tuations, in turn, give rise to scattered or diffracted light
as noise. The effect may be best understood by consider-
ing the processes involved during the writing and the
readout of a pure sinusoidal grating component as shown
in Fig. 3. During the write stage [Fig. 3(a)] the

LIGHT-SCATTERING FLUCTUATIONS AND THERMAL NOISE. ..

1815

\ Writing
\ Beams

(a)

Read
Beam

lread

(b)

FIG. 3. (a) Beam configuration for writing a signal grating of
intensity modulation ratio m (solid curve). I, and I, are the in-
tensities of the pump and signal beams, respectively. The
dashed curve depicts a noise grating of the same phase and same
wave vector q. (b) Read configuration showing diffracted signal
(solid arrow) and diffracted noise (dashed arrow) from the field-
induced and fluctuation grating components, respectively.

information-containing signal grating, represented by the
solid curve, is formed from the equilibrium space-charge
field of Eq. (2.26) via the Pockels effect. This grating may
be probed during the read stage [Fig. 3(b)] by measuring
light diffracted from it, preferably using a nonabsorbing
frequency so as not to induce erasure. The diffracted sig-
nal is represented by the solid arrow labeled I 4 in the
figure. Of particular relevance are those fluctuations in
the dielectric constant, represented in Figs. 3(a) and 3(b)
by the dashed curves, that have the same wave vector as
the signal grating (q). Light scattered from such fluctua-
tions during the read stage is indistinguishable from light
diffracted from the signal grating and is therefore treated
as noise. The scattered noise component is represented
by the dashed arrow in Fig. 3(b). Noise due to scattered
light from defects in the material is not treated in the
present study, which addresses the fundamental noise
limits associated with the photorefractive effect itself.

The symbols Ae and de will be used throughout this
section to designate variations in the dielectric constant
of the medium due to signal-induced response and to
noise, respectively. In all cases considered in this section,
the presence of a signal grating Ae(q) is attributed solely
to the photorefractive effect. In particular, it is assumed
that the Kerr effect makes no contribution to the signal
as will be the case, for example, when the incident light
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intensities are low. To determine noise, all fluctuations
having the form 8e(q) need to be considered, independent
of their source, as potential contributions. There are two
sources: (i) the fluctuations inherent in the photorefrac-
tive effect as describe above, and (ii) thermal fluctuations
in density, which through the Clausius-Mossotti constant
de /dp induce corresponding fluctuations in the dielectric
constant of the medium independent of the photorefrac-
tive effect. Each of these sources will now be separately
considered.

A. Light-scattering noise associated
with the photorefractive effect

The first source of grating fluctuations to be considered
is fundamentally connected with the photorefractive
effect itself. As noted above, this source arises from
thermal fluctuations in the space-charge field 8Eg,
which in turn produce fluctuations in the linear dielectric
constant e through the Pockels effect. Following the no-
tation of Shen [16]

de=eY8Eq , 4.1)

where €% is related to the electro-optic tensor » and the

refractive index of the medium ng. The standard rela-
tions An=—1n3rE for the index change and Ac
=2ng An yield

2
(S/N)pg =B _ hre2e o j(8med) (14 (g /kp P]~ =g Vs /2)[1+(kp /g )]~ 'm?

< [66(q)|2>PR

Equation (4.5) provides a useful comparison of the mean-
square amplitudes of the signal and noise gratings in a
photorefractive medium. Interesting features of the
signal-to-noise ratio include its lack of a dependence on
the light intensity other than through the modulation ra-
tio m. In addition, there is no contribution from the
Pockels coefficient, which cancels by contributing in the
same fashion to both signal and noise. Finally, we have
the unusual property that the signal-to-noise ratio in-
creases with temperature—with direct proportionality
obtained in the diffusion limit. This last finding may be
traced to the temperature dependence in the space-charge
field responsible for the signal grating [Eq. (2.26)].

As the intensity modulation ratio is reduced, the effects
of noise become more dominant. A useful measure of
noise dominance is provided by the condition m =m, for
which the signal-to-noise ratio equals unity. From Eq.
(4.5) we obtain

(m?)pr=[8me?/(kTq%€,Vs)[1+(q /kp)*]

=(2/no V) 1+(kp/q)?] . (4.6)

It follows that the best dynamic range (i.e., the smallest
value of m,) is predicted for photorefractive materials
operating in the diffusion limit (g /kp)* << 1.

Equations (4.5) and (4.6) take on a particularly simple
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eP=—ngr. (4.2)

Combining Eq. (3.8) for the mean-square fluctuations in
the space-charge field with Eq. (4.1) gives

(18e(q)|?) pr =47k T /€, V[ 1+(q /kp)?] [ P)? .
4.3)

A subscript PR has been added to designate those fluc-
tuations associated with the photorefractive effect. Equa-
tion (4.3) is the central result of the present study. It pro-
vides the extension of our previous investigations of
light-scattering noise in Kerr media [4,5] to materials ex-
hibiting the photorefractive effect.

The field-induced change in the dielectric constant fol-
lows from Egs. (2.26) and (4.1). Squaring and averaging
over the beam interaction volume gives

(1Ae(q)|*) =1(kTq /e [1+(q /kp)*] (e Pm? .
(4.4)

Here there is no need to attach the PR designation since
it is assumed throughout that only the photorefractive
effect contributes to the signal grating.

An important quantity is the time-averaged signal-to-
noise ratio defined here as [8]

@.5)
[
form in the trap limit:
(S/N)pgr=noVsm?/2 (trap limit) 4.7)
and
(m3)pr=2/(nyVs) (trap limit) . 4.8)

It is important that Egs. (4.7) and (4.8) be used only in the
trap limit n, <<e€,kTq*/(4me?). Thus the signal-to-noise
ratio cannot be improved over its value in the diffusion
limit by simply increasing n, in Eq. (4.7) beyond the trap
limit range. The diffusion limit remains the most favor-
able condition for maximization of signal to noise.

B. Light-scattering noise associated
with the optical Kerr effect

The second source of grating fluctuations to be con-
sidered is fundamentally associated with the Kerr effect.
These fluctuations are present whether or not the Kerr
effect makes any contribution to the signal grating. A
full discussion of light-scattering noise associated with
the Kerr effect is presented elsewhere [6,7]. Here we
need only to adapt these findings, summarized in the next
paragraph, to the present case that the signal grating is
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formed by the photorefractive effect.
The nonlinear dielectric constant or Kerr coefficient €,
is defined by the relation

e(r)=¢,+€EXr) , (4.9)
where €, is the background dielectric constant at optical
frequency (€, =n2) and the overbar signifies averaging
over an optical period. The mean-square amplitude, or
variance, of the spontaneous dielectric fluctuations asso-
ciated with the Kerr effect is given by the following ex-
pression [6]:

(|18€|*) x =87kTe,/ Vs , (4.10)
where the subscript K designates fluctuations associated
with the Kerr effect.

Kerr media have correlation lengths that are much
shorter than an optical grating spacing and Eqgs. (4.9) and
(4.10) will provide a good description. Nevertheless there
remain important cases where long-range correlations are
important. Examples include fluids near a critical point
and liquid crystals near a second-order isotropic-nematic
phase transition. Equations (4.9) and (4.10) have been
generalized to describe such cases [7] and it is useful to
examine the generalized version of Eq. (4.10) in order to
illustrate certain similarities with the fluctuations associ-
ated with the photorefractive effect. In Ref. [7] we found
that as the correlation length approaches the grating
spacing, both €, and &€ acquire increasingly strong
wave-vector dependence. Using the Debye-Fixman
square gradient model to evaluate the free energy of grat-
ing formation near a critical point we obtained [7]

(18€(q)|?) x =8mkTe)q)/ Vs

=(8mkTe,/Vs)1+(q/q,)*] !  (4.11)
as the generalized version of Eq. (4.10), where g, is the
reciprocal of the correlation length. The square-
bracketed correction for long-range interaction becomes
important when the correlation length approaches the
grating spacing. Structural similarity between Egs. (4.3)
and (4.11) is striking. Apart from the physical distinction
between the correlation length and the Debye screening
length in the two models, Egs. (4.3) and (4.11) differ only
by the nondimensional factor 2¢,¢,/[£'?]%

For any medium having a finite optical Kerr
coefficient, it is necessary to consider the fluctuations de-
scribed by Eq. (4.11) as a potential source of light-
scattering noise. For the case of a photorefractive ma-
terial we have the relation

(S /N). = SlAe(q)I)
K (lsetq)2) g
=(S/N)pr(18€(q)1?)pr/{18e(q)1*) ¢ -
(4.12)

Evaluating the right-hand side using Eqgs (4.3), (4.5), and
(4.11) for the usual situations that g /g, << 1, we obtain
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(S/N)x =[kTq*e;Vsm?/(8me))1{[eP1?/2¢€4¢, )

X[14(q/kp)?] 2. (4.13)

By analogy with Eq. (4.5), the effects of noise become
dominant when the modulation ratio is reduced to the
level m =m, for which the signal-to-noise ratio equals
unity:

(m?)x=[8me?/(kTq%€,Vs)1{2€0€, /[P 1}

X[1+(q/kp)*]* . (4.14)

From Egs. (4.13) and (4.14) it is seen that light-scattering
noise is again minimized for photorefractive materials
operating within the diffusion limit. In the following sec-
tion we will examine the factor in curly brackets in order
to compare the relative importance of light-scattering
noise originating from thermal fluctuations associated
with the Kerr and photorefractive effects for typical pho-
torefractive media.

V. ESTIMATES OF DYNAMIC RANGE

The methods developed in the previous sections are il-
lustrated in this section for the write and readout of a
simple sinusoidal grating using the configuration shown
in Fig. 3. For the writing-beam configuration of Fig. 3(a),
the intensity modulation ratio is

m=21,I,)"*/(I,+1,) , (5.1

where I, and I, are the intensities for the pump (7, ) and
the signal (I,) beams. For light of wave vector K,
=K, =K, the resulting grating is of wave vector ¢ =|q|:

q=2Ksin(6/2) , (5.2)

where 0 is the angle between the writing beams. Both K
and 0 are measured in the material with refractive index
ng. The dynamic range is defined as the range of intensi-
ty ratios that two writing beams can induce a detectable
photoretractive grating.

In the read stage [Fig. 3(b)], the intensity of the
diffracted beam (signal plus noise) is proportional to the
square of the total grating amplitude

Ijg~(a,+8a;)*, (5.3)

where a; and 8a, are the amplitudes of the signal and
noise grating components, respectively. From Egs (2.26)
and (4.1),

a,=—(kTq/e)[1+(q/kp)?] 'e®m . (5.4)

The noise grating component is Gaussian distributed
with mean

(8a,;)=0 (5.5a)
and variance
(18a,1?)=2(|5¢l) . (5.5b)

The factor of 2 in Eq. (5.5b) corrects for averaging the
square of the sinusoidal spatial dependence of &€ over the
beam interaction volume. The right-hand side of Eq.
(5.5b) is evaluated using Egs. (4.3) or (4.11), depending on
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whether the noise in question is associated with the Kerr
or photorefractive effects.

Experimentally, it is expedient to conduct measure-
ments under the condition that g =k, since it follows
from Eq. (5.4) that the diffraction efficiency is maximized
when this condition is satisfied. Under this condition the
signal-to-noise ratio from Eq. (4.5) is nyVgm?/4, which
equals unity for a writing-beam intensity ratio
I,/1,=1/(nyVs). Figure 4 shows a calculation of light-
scattering noise in the diffracted read beam for BaTiO,
under the maximum diffraction efficiency condition. The
figure shows the logarithm of the diffracted read beam
power [in arbitrary units due to the unknown prefactor in
Eq. (5.3)] versus the logarithm of the writing-beam ratio
I,/I,. The beam interaction volume was set equal to the
product of the beam cross-section area and the interac-
tion length. For the present calculation, the beam diame-
ter was set at 0.15 cm and the interaction length at 0.2
cm, corresponding to the experimental measurement con-
ditions used in Ref. [17]. Other parameters used in the
calculation, which were chosen as representative of Ba-
TiO;, are listed in Table I. As described below, the
light-scattering fluctuations associated with the Kerr
effect are relatively less important for BaTiO; and were
omitted from the calculation of Fig. 4. This will not al-
ways be the case for other photorefractive materials as
shown below.

To obtain Fig. 4, the right-hand side of Eq. 5.5(b) for
the noise variance was evaluated using Eq. (4.3) with
q =kp. To generate the figure, the x coordinate (log
writing-beam ratio) was randomly selected, with uniform
distribution along the scale of the figure. Next, the signal
grating amplitude a, was obtained from Eq. (5.4) with m
from Eq. (5.1). Finally, a value for 8a, was sampled from
the Gaussian distribution having mean and variance
specified by Egs. (5.5a) and (5.5b). Gaussian probability
sampling was achieved using a standard computer pro-
gram incorporating the Box-Muller transformation for
the generation of normal deviates from random numbers

/

(&)
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\og‘O[D\FF SIG. POWER (arb. units) ]

- T T T T
16 12 -8 -4 0
109, (WRITING BEAM RATIO)

FIG. 4. Light-scattering noise in BaTiO; as simulated using
the stochastic noise model. The figure shows scatter due to in-
tensity fluctuations in the diffracted read beam as a function of
the writing-beam ratio I,/I,. The intensity fluctuations arise
from light-scattering fluctuations in the medium inherent in the
photorefractive effect.
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TABLE 1. Parameters for estimation of dynamic range.
Values for ng, r, and ¢, are representative of BaTiO; from Ref.
[4] and ny, also for BaTiQs, is from Ref. [17]. The assignment
for €, is based on a recent measurement, which suggests that the
Kerr coefficient for BaTiO; is comparable to that for CS, [19].

R 2.4 (A=0.514 pm)

r 1640 pm/V (4.9X 10 ° erg”'2cm’/?)
€ 1000

g'? —1.6X1073 erg”'"?cm®? (= —ngr)
€ 4.8%X107" erg”'cm®

T 300 K

ng 4.8X10" cm ™3

sampled uniformly on the interval {0,1] [18]. The above
procedure was repeated 1000 times to obtain an equal
number of points for good statistical sampling of the
noise.

Expansion of the right-hand side of Eq. (5.3) gives
three terms, each corresponding to a different region seen
in Fig 4. The first term (a?) dominates in the high probe
power (low noise) region. In this case, the linear behavior
(with unit slope) predicted from Eq. (5.1) for I, $0.11, is
observed. As the probe power is reduced further, the
next-to-leading term in the expansion (2a,8a,) begins to
play a role. This term, which vanishes on time averaging,
results in a symmetric distribution of scatter about the
average diffracted beam power due to noise. This behav-
ior is seen in the mild noise region of Fig 4. With still
further reduction of probe power (i.e., reduction of a,)
the third term in the expansion (8a?) begins to dominate.
This last term, which does not vanish on time averaging,
results in a diffracted power due entirely to noise. The re-
sulting scatter is independent of the power in the probe
since in this region the signal grating amplitude is much
smaller than the rms fluctuation amplitude due to noise.
This effect is best seen in the smallest writing-beam ratio
range of Fig. 4. The probe power level for which the
signal-to-noise ratio is unity may be computed analytical-
ly from Eq. (4.6). For the present values of Vg and n, we
obtain I,/I,=5.9X 107" for (S/N)pg=1.

We turn next to the comparison of Egs. (4.6) and (4.14)
for their relative importance in limiting the dynamic
range of a photorefractive medium. Setting (m?3)g
=a(m?)pg We obtain for a

a={2¢e,/[ PP} [1+(q/kp)’]

={4eyn, /(njr)}[1+(q/kp)*] . (5.6)

For BaTiO;, the parameters in Table I yield a value of
0.035 for the expression in curly brackets and dynamic
range is limited by thermal fluctuations in the space-
charge field. For different materials and/or different
writing-beam configurations, the curly bracketed expres-
sion in Eq. (5.6) may easily exceed unity, in which
case light-scattering noise associated with the Kerr
effect will dominate. Values of a are computed for
several other photorefractive materials in Ref. [17].
There we find a values of 0.93 for KNbO;, 1.56
for Ba,Sr, ,K,_,Na,NbsO,; (BSKNN), and 3.75 for
Sr,Ba; _ Nb,O4 (SBN); all for the maximum diffraction
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efficiency condition g/kp=1. Thus for KNbO; and
BSKNN we predict that the thermal light-scattering fluc-
tuations associated with the Kerr and photorefractive
effects are of comparable size, while for SBN fluctuations
associated with the Kerr effect are of greater importance
to limiting dynamic range.

Finally we note that there will be a photon shot-noise
contribution arising from fluctuations in the incident in-
tensity of the weak writing beam when the latter becomes
sufficiently small that few photons from this beam arrive
during the time required for photorefractive grating for-
mation [20]. The photon shot-noise limits to the
minimum writing-beam ratio were evaluated for each of
the various photorefractive materials listed above and
found to be in the 1071 to 1017 range [17]. Thus, for
these materials, the photon shot noise is predicted to be
about 1-2 orders of magnitude smaller than the thermal
noise associated with either the Kerr or photorefractive
effects. The results presented in this section suggest a
very large dynamical range for photorefractive materials
that should prove useful in optical signal processing ap-
plications.

VI. DISCUSSION

In this paper a thermodynamic description of the pho-
torefractive effect has been presented within the frame-
work of the Kukhtarev and hopping models. The
Helmholtz free energy for grating formation was derived
as a sum of separate contributions from energy storage in
the space-charge field, configurational entropy, and
intensity-dependent chemical potential of the donor (or
hopping) sites, and found to be equivalent for the two
models. Thermal fluctuations in the space-charge field
were obtained from the curvature of the free-energy sur-
face near its minimum value and shown to give rise to
light-scattering noise fluctuations in the linear dielectric
constant through the electro-optic effect.

Two sources of light-scattering noise in photorefractive
materials were examined in the present study and found
to be associated with either the photorefractive or Kerr
effects. In both cases thermal fluctuations in the linear
dielectric constant give rise to scattered light noise. In
the former case, the dielectric fluctuations arise from
fluctuations in the space-charge field through the
electro-optic effect. In the latter case the fluctuations are
those previously associated with the Kerr coefficient of
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the medium through the fluctuation dissipation theorem
[5-7]. The corresponding expressions for the dielectric
fluctuations [Egs. (4.3) and (4.11)] are remarkably similar,
especially when the photorefractive medium, with its De-
bye screening of the space-charge field, is compared to a
Kerr medium with screened long-range correlations near
a critical point [7].

Calculations were presented for the dynamic range of a
photorefractive medium both analytically and through
computer simulation using the stochastic noise model [7].
For BaTiO;, the dominant contribution to noise was
found to be from those fluctuations associated with the
photorefractive effect. Elsewhere we have shown that for
KNbO; and BSKNN the contributions from noise associ-
ated with the Kerr and photorefractive effects are compa-
rable in magnitude, while for SBN the dominant contri-
bution is from fluctuations associated with the Kerr effect
[17]. These results suggest a very large dynamic range
for photorefractive media, approximately 140 dB for
BaTiO; (cf. Fig. 4) and 120-140 dB for the other materi-
als mentioned above.

The preceding analysis has shown that light-scattering
noise in photorefractive materials is inseparable from the
photorefractive effect itself in the same manner that
light-scattering noise in Kerr media was previously
shown to be inseparable from the Kerr effect [5-7]. As
such the present study provides the natural extension of
our previous investigations for Kerr and artificial Kerr
media to materials exhibiting the photorefractive effect.
Within each class of materials, the physical processes un-
derlying signal generation and noise are equivalent, since
without the fluctuations that give rise to the noise, no
driven response of the nonlinear medium to applied opti-
cal signal fields can occur. This manifestation of the fluc-
tuation dissipation theorem implies certain fundamental
limits on the design of devices employing nonlinear opti-
cal media for signal processing applications, particularly
in applications requiring miniaturization, weak signal
amplification, high signal throughput, or high densities of
information storage. Future studies will utilize the
signal-to-noise ratio to evaluate the channel capacity for
optical information processing using a photorefractive
medium.
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FIG. 1. Comparison of the Kukhtarev and hopping models.



