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Critical temperature of (d + 1)-dimensional Ising films
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An alternative approach is proposed to treat the critical point for general Ising spin systems. From
the analytic properties of the free energy, we are in principle able to calculate analytically the critical
temperature T,(l) for (d + 1)-dimensional Ising films to any order cumulant as a function of the number
l of hyperlayers in the hyperfilm. Explicit expressions up to the fourth order are given. It is shown from
the general expression for T,' '(l) that [T,(l) T, ]/T—,=b/(I+a) in the hmit! —moo. Comparisons with
existing results for d=2 are discussed.
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The physics of phase transitions and critical phenome-
na covers a wide variety of subjects in many different
fields of science. It turns out that common features are
observed near critical points of various types in all
different systems. The study of critical points has been
and still is one of the most interesting topics of research.
The simplest approximation is the mean-field theory.
Substantial improvement of the mean-field theory may re-
quire a great deal of effort or the almost exact solution.
Thus Onsager's historical work [1] on the two-
dimensional Ising model represents a great leap forward
in the theoretical development. In fact, the Ising model
is the only example of a phase transition that can be
worked out with mathematical rigor.

While general properties of phase transitions were
rigorously treated by Yang and Lee [2], a totally diFerent
approach of exploiting symmetries was later developed
from scaling laws of Fisher [3],Kadanoff [4], GriSths [5],
and others to the renortnalization group of Wilson [6].
On the other hand, the method of high-temperature
series-expansion extrapolation (HTSEE) for locating
singularities and singular structures has proved the most
powerful one and the critical temperature and various
critical exponents for Ising model were determined with
fantastic accuracy [7].

The method of series expansion of a physical quantity
is based on the fact that the quantity diverges at the criti-
cal point which is then determined approximately by the
extrapolation procedure [7—10]. The question is, howev-
er, the following: Is it really necessary to expand a ther-
modynamic quantity that is divergent at the critical point
instead of the free energy itself for the determination of
the critical temperature?

We propose, in this paper, an alternative approach to
the problem and demonstrate that analytic expressions
for T, can be obtained formally for hyperfilms of dimen-
sion d+1 to an arbitrary order of accuracy. We start
with the variational

curn

ulant expansion (VCE)
developed in recent years in discussions of lattice gauge-

(2)

where 8'0 is the free energy for the corresponding nonin-
teracting system with the action

S=—g g+ s
pH;

(3)

where we have introduced the variational parameters g;.
8'o is exactly known [12]. The symbol ( ), represents
the cumulant averaged over the Boltzmann weight e .
The action S is defined by

s2(,
&

k~T' 1 k~T
(4)

and the corresponding trial action So is simply S in the
absence of the external field H,

For a uniform spin- —,
' Ising system in the absence of

external fields J1
=J, g; =g, and H, =0, the first-order

free energy 8'
& &

in the VCE is given by

1—W,s, = —in(2coshg) ——Y +gY,d 2

0 (sa)

field models [ll]. It has been shown very recently [12]
that in the high-temperature limit, the VCE is identical
to the well-known linked-cluster expansion (LCE). Fol-
lowing the notation of Ref. [12], we consider the Hamil-
tonian

H= —g J; s sj' —+ QHs1

S (I~)

where s'= —s, —s+1,...,s, J; stands for the exchange
energy between the spin pair i and j, p represents the
magnetic moment of a spin, and H, is the inhomogeneous
external field in the z direction. The variational cumulant
expansion of the free energy up to the order m is given by
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1'=tanhg . (5b)

The solutions of Eq. (6) depend on d and 8. Their quali-
tative behavior is shown schematically in Fig. 1. For
8)8, =2d, Eq. (6) has only one solution go=0 which
corresponds to the minimum of the first-order free ener-
gy. For 8 &8„there are three solutions for every given
8 value. g+ correspond to the minimum of W,s, and go
the maximum of 8',ff &. The situation is completely
analogous to Landau's theory of the second-order phase
transition [13]. In this analogy, g plays the role of the or-
der parameter (M, ) which is determined by minimizing
the free energy in Landau theory.

Since all the bonds are decoupled in the first-order cu-
mulant, the results are those of the mean-field theory.
Thus, at the bifurcation point or the mean-field critical
point,

k~T,
0" = =28

C

(=0 represents the point of infiection of the function
8 ff ] that is, 0, satisfies the condition

5 8',ff)

5g
(8)

Equation (8) identifies the critical temperature T„ in the
first-order approximation, for a uniform bulk spin- —, Ising
system in the absence of the external field. It is not

The dimensionality is denoted by d, and O=kz T/J
represents the reduced temperature. By setting to zero
the first variation of the function 8' ff, , one finds

tanhj .=2d

52
W,s (8„()cfr, fH c~ =0. (9)

It corresponds to the bifurcation point. This means that
we have assumed g to be the order parameter of the sys-
tem to any order of accuracy. The temperature depen-
dence of the parameter is not of concern to us.

To calculate the critical temperature, we first derive
the recursion formulas for the moments

(10)

where p, q are positive integers. The symbol ( )o stands
for the Boltzmann average of the enclosed quantity with
the weight e . It is easily shown that the moments satisfy
the following relations:

(A(p, q+1)) =gg; 1 Z + (A(p, q))
5 5

difFicult to see that the argument is valid for Ising systems
of arbitrary spin s.

This provides us with the insight that the critical tem-
perature may be determined to any order 8',ff by locat-
ing the bifurcation point. As has been proved in Ref.
[12), the VCE yields identical free energy to every order
in the high-temperature limit ( g =0) to the well-
established LCE in the same limit. It is therefore reason-
able to expect that /=0 corresponds to an extremum of
the function 8',ff for any higher-order m at high tem-
peratures and that for the mth-order cumulant, (=0
remains the solution as the temperature decreases until
the critical point. Consequently we conjecture that for
systems homogeneous throughout the bulk in the absence
of external fields, the critical temperature to the mth-
order cumulant approximation is determined by the con-
dition

X( A(p, q))0,

5 lnZO
( &(p+ i, q))0= g P;, +2

(
~

) Xl' XJ X)XJ
51nZo 51nZO 5 lnZO+ +

5x, 5x 5x, 5xj
(12)

where x, =(,. +mH, . /ks T, P;~ measures the exchange in-

tegral Jj in the unit of k&T, and Zo=e is the parti-
tion function for the corresponding free energy 8'o of the
noninteracting system. For a system of N spins, the mo-
ments are polynomials of X and are related to cumulants
of the same order by the well-known relation

(S~S(),=the linear term of (S~S()0 . (13)

FIG. 1. Schematic diagram of solutions to Eq. (6). When
0)0, ( =2d ), there is only one solution. When 0 & 0„there
are three solutions.

Next, we note that

52
(SmSn )g2 =0, n ) 3, m =0, 1,2, . . . , (14a)
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s)g2
=0, n ~3, (14b)

because So involves P only when n &3. From the rela-
tions (11)and (13) one finds

(s"s ),=0 (s"), , (15)

which leads to

Q2 $2

, (s"s,'), =, (s"s,),

=2 (s"),
5(2

Similarly, one can show that

(16a)

52
0 e

5 Wo= —2
g=o 5$ g=o

2
(16b)

Starting from the first-order cumulant in Eq. (5a) and
making use of Eqs. (14) and (16), one can prove by the
matheinatical induction that Eq. (9) reduces to

52 1 5'
(Sm —1) (Sm)

m 5/2
=0 (17)

up to any order m. Equation (17) implies immediately
that the critical temperature T,' ' calculated to mth order
in the VCE is given by

Q2 Q2
T (m) — (Xm) (Xm —()

m g2 (18a)

where X =ks Ts as defined in Eq. (4). Therefore we find
the critical temperature for the system simply by extend-
ing m to infinity, namely,

T, = lim T,' '. (18b)

Before the result is applied to any model system, a few
remarks about the implications of Eqs. (18) are in order.
Since we have not specified the spin statistics, the lattice
structure, the dimensionality, and the range of exchange
interactions in our formalism, the method can be general-
ized without much difhculty to other systems which ex-
hibit second-order phase transitions. Since the ratio
(5 /5( )(X ), /(5 /5$ )(X '), diverges linearly with
increasing m around the critical point, and the propor-
tionality constant is ksT, ' ' according to Eq. (18a), the

critical temperature is somehow related to the infinitely

long-range interactions and the size of the system. This
means that T, is related to all infinitely connected cou-

pled bonds or to some kind of scaling of this coupling.
All the finite characteristic lengths become ineffective
and the correlation length at this point becomes infinite.
The critical temperature depends upon the dimension of
the system rather than its detailed character.

It can be shown that T, as given by Eq. (18b) coincides
with that derived from the high-temperature LCE of the
susceptibility X by the ratio method [8]. The idea of the
ratio method is based on the fact that y diverges at the
critical temperature. The point is that our method is
developed on the basis of the analytic properties of the
free energy as a function of g and e. That X diverges at
T, is a consequence rather than an assumed knowledge
on which the high-temperature series approach is based.
Thus we have provided, in certain sense, a justification
for the ratio method. It should be emphasized that the
trial action in the VCE can in principle take a variety of
forms. Hence other order parameters can also be
identified and Eq. (9) will then lead to different expan-
sions for the determination of T, .

Since there has been considerable experimental interest
in the finite-size effect on the phase transition in magnetic
thin films in recent years [14,15] and since highly accu-
rate numerical results for the critical temperature of Ising
films [9,10] are available for comparison, we calculate T,
for a (d+1)-dimensional Ising films of spin —, with free
surfaces. For definiteness, the lattice structure is taken to
be hypercubic, although the method applies equally well
to other structures. From the recursion formula (12) and
Eq. (13), we calculate the cumulants (S ), up to the
desired order m. The results obtained at this point are
perfectly general because the cumulants are expressed in
terms of average spins at different lattice sites with ex-
change integral J; between any pair. Assuming n.arest-
neighbor interactions, topologically equivalent terms are
summed according to the geometry specified in the prob-
lem. Various graph methods may be devised for this pur-
pose. For instance, in our fourth-order calculation six to-
pologically distinct connected graphs are involved. The
second-order variation of the results thus obtained are
then substituted in Eq. (18a) for the critical temperature.
The procedure is nontrivial and the calculation is tedious.
%e present in the following, up to the fourth-order cu-
mulant, the critical temperature as a function of the di-
mension d and the number I of hyperlayers in the
hyperfilm:

For m =1,
(, ) J (2d+2)l —1 l)2

For m =2,

T(2) l
J (2d +3d+1)l —36d —3d —8 )

ks (d +1)l —1

For m =3,

(20)
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T(3)(1)—
k~

T,"'(2)=
k~

For m =4,

T(4)(1)—
k~

T( )(3}—
k~

(12d ++24d +14d +2)1 —36d-—30d —8

3[2d +3d+1)l —4d —2]

24d +12d —2d —1

6(2d +d)

(48d + 120d +88d + 18d

(24d +48d
18d +3)1 —192d-—216d —92d —28

d +28d +4)1 —72d —60d —16
l~4,

72d +84d +24d —19d —2

36d +36d +12d —2

48d +24d —20d —4d —3

24d +12d —2d —2

(21a)

(21b)

(22a)

(22b)

(22c)

The correspondin T f
dil 'b'"n'db 1

' g, ora(d+1- '

'
e y etting l ~~. It i

fi -od 1 (19)'
e
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b
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ical exponent for finite systems, Eq. (24} implies that
A, =1, in contrast to a =0, A, =1.56 predicted by the
HTSEE method [10]. While experimental data [14] seem
to support A, = l.56, it has been observed by Allan [9] that
Eq. (24) also fits the high-temperature extrapolation data.
Furthermore, Domb [16] and Binder [17] also predicted
A, =1. It is important to point out that A, is derived even
though the convergence in the limit m ~ Oo to the true
T, remains to be proven.

As a final remark we note that, for hyperfilms with
periodic boundary condition, all spins on the torus are
equivalent. Equation (18a}always leads to the bulk criti-
cal temperature for m (I, since there is no graph which
goes around the torus and connects to the initial point.
The situation is exactly the same in the high-temperature
extrapolation [10]. Therefore the critical exponent can-
not be derived for this case in the present theory because
there is no general formula for T, when m ~ l.
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