
PHYSICAL REVIEW A VOLUME 46, NUMBER 4 15 AUGUST 1992

Directed alternating lattices and the site-to-bond ratio for animals and trees
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We present here a brief summary of results on so-called "exotic" directed lattices having nonregular

periodicity. Such lattices, e.g., the Archimedean nets, are characterized by different site types and a
spread of coordination numbers. The evidence adduced here shows that the exponent structure for the

growth of animals and trees on such lattices is of the form predicted, with 80 for trees equivalent to 8 for
unrestricted animals, independent of the periodicity property. This supports the general form

8, =80—c, for cycles c =0. We quote values for the growth parameter (or inverse critical fugacity) A, for
bond trees and animal growth on selected directed lattices. The convergence of such series is well known

to be subject to the influence of subdominant singularities in addition to 8, and we report on results ob-

tained using the second-log-derivative scheme for the lattices of interest. Recent results from percola-
tion studies for the alternating nets [H. J. Ruskin, Phys. Lett. A 162, 215 (1992)] have proved particular-

ly encouraging for the Archimedean lattices, with 2=2.498+ —0.010, but uncertainties for the honey-

comb were found to be large. Investigation of the site-to-bond ratios for animals and trees on the honey-

comb gives somewhat smoother series behavior, which, though subject to confluence effects, supports a
much lower value of the effective coordination number. We quote S= 1.450+ —0.050.

PACS number(s): 05.50.+q

INTRODUCTION

The statistics of finite cluster growth on regular lattices
has proved a useful study in terms of the understanding
of various biological growth processes ([1]and references
cited therein) for dilute polymer problems [2], and more
recently in the formulation and understanding of various
lattice gauge theories [3]. For isotropic lattices, trees and
full animals have been shown to have the same critical
exponents in all dimensions [4,5] and their hierarchical
structure has been explored [6,7]. It was early noted [8]
that on general types of lattice all site trees are neighbor-
avoiding walks, and hence no proper zero-cycle
configurations are possible. This phenomenon is ob-
served for all lattices which are bond-to-site transforma-
tions of other nets, with additional numbers of loops
dependent on the valence partition. The establishment of

tb)

a similar hierarchical structure for directed animals [9]
has meant that the exploitation of recent developments
with respect to site-to-bond conversion for directed
graphs [10,11]has provided the means of direct investiga-
tion of the cyclomatic number partition of directed bond
configurations. Utilizing the information from site-to-
bond conversion, we explore here the singularity struc-
ture for directed animals and trees for the Archimedean
(3,3,3,4,4) and honeycomb nets (bond}, which fall into the
class of "exotic" lattices. These lattices are characterized
by alternating periodicity with coordination number, z,
having more than one value which is dependent on the
site type. The connectivity features of the different site
types thus provide different origins for cluster growth [il-
lustrated in Fig. 1(b} for the Archimedean]. Results for
the alternating nets are contrasted with those of the Ka-
gome lattice, which, despite regular periodicity (single-
valued z), shares several similar properties [Fig. 1(a), with
site types distinguished by the number of incoming and
outgoing bonds on the hexagon].

EXPONENT STRUCTURE AND SITE-TO-BOND RATIOS

The critical exponent structure which we investigate
for these exotic lattices assumes a generating function of
the form

'I / 1 W / I / F 1 / /

A o
A, (x)=1+ g A„,x",

n=1

FIG. 1. (a) Directed Kagome lattice showing different site
types. (b) Directed Archimedean lattice showing different site
types (different origins for cluster growth).

with

A„,-n 'A,,"=g A„Aon
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and

0 =0 —cc 0 (3)

where n is the size of the site (bond) cluster, A, is the
growth parameter or inverse critical fugacity, and 3„,is
the total number of directed animals with size n having c
cycles (or loops). A, can also be regarded as tree multipli-
city, where c =0 for trees. Further, the presence of sub-
dominant singularities is known to influence the conver-
gence of animal series, so that we may extend Eq. (1)
above [3,12] to write for animals of loop size c

—9
A„, ko-n , '(1+Bn + ) . (4)

A.(a)=(a +1)'+'/a' —k(a), k(a) )0 for a )a, ,

where

a =tlb =z —1+(zlb) —(zclb),

(5)

(6)

with z the "effective" coordination number, t the perime-
ter, b the number of bonds, and a, the critical ratio. In a
previous paper, Ruskin [13] has considered percolation

Thus by applying the second log-derivative scheme, we
may obtain information on the effect of the confluences.

The investigation of a critical site-to-bond ratio for
directed animals examines the form [10] for size-
dependent growth by means of the bond perimeter distri-
bution, i.e.,

thresholds for selected alternating bond lattices, and has
obtained estimates of z for these cases. For the Ar-
chimedean lattice, results were good, with z-2. 5, in
agreement with the conjectured exact value based on
averaging the number of sites of different types. Esti-
mates were less satisfactory for the honeycomb lattice,
given the characteristic oscillation of sign for the percola-
tion series. However, there was some evidence to show
that z could be as low as 1.5, which would support a con-
jecture based on similar configurational considerations.
Furthermore, Eqs. (5) and (6) above clearly indicate that
an investigation of trees (cycle or loop size c =0) and an-
imals with c & 0 should provide an alternative estimate of
z. The hierarchical structure of exponents for these
fixed-cycle clusters is expected to be of the form given in
Eq. (2), with some support for this assumption provided
by earlier studies [2,11,14]. Here we investigate series for
both trees and animals for selected directed nets with reg-
ular and alternating periodicity.

RESULTS

Series data on the total number of directed animals are
given by Ruskin [14] for the Archimedean (3,3,3,4,4) to
order 14 (15) for the bond (site), and for the Kagome
bond and site to order 22. The honeycomb bond animals
are given in Table I, and the bond trees for Archimedean,
Kagome, and honeycomb lattices are given in Table II.
Relevant site-to-bond ratios, denoted (t ) Ib and (s ) Ib,

TABLE I. Honeycomb bond animals.
TABLE II. Bond trees.

1

2

3

4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

2

3
6

11
22
44
89

182
374
775

1611
3363
7042

14 790
31 139
65 697

138 869
294029
623 492

1323 898
2814 533
5990 156

12 761 699
27 213 259
58 079 355

124 051 993
265 155 766
567 141 107

1213 817 958
2599 382 044

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Honeycomb

2

3
6

11
22
43
86

173
350
712

1452
2975
6108

12 577
25 944
53 626

111020
230 189
477 902
993 373

2067 084
4305 588
8976 406

18 729 822
39 111032
81 728 463

170 896 956
357 570 769
748 580 760

Kagome

4
10
27
76

221
657

1982
6039

18 543
57 305

178 049
555 650

1740 394
5468 171

17 226 909
54 399 777

172 142 129
545 724 610

1732 885 298
5510 656 445

17 547 367 745
55 942 528 625

Archimedean

5
16
56

206
781

3019
11 831
46 837

186 876
750 267

3027 441
12 267 584
49 885 928

203 473 454
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TABLE III. Bond averages.

Kagome

Animals
&s &/b (t &/b

Animals
(s)/b

Honeycomb

(t &/b

Trees
(s)/b

4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

1.4634
1.3579
1.2870
1.2357
1.1966
1.1658
1.1410
1.1207
1.1037
1.0892
1.0768
1.0660
1.0565
1.0481
1.0406
1.0339
1.0278
1.0223
1.0173

0.8636
0.7818
0.7159
0.6774
0.6435
0.6197
0.5994
0.5829
0.5692
0.5576
0.5476
0.5389
0.5313
0.5245
0.5185
0.5132
0.5083
0.5039
0.4999
0.4963
0.4929
0.4898
0.4870
0.4843
0.4819
0.4796

1.1629
1.1380
1.1188
1.1040
1.0919
1.0818
1.0735
1.0664
1.0603
1.0550
1.0503
1.0462
1.0425
1.0392
1.0362
1.0335
1.0310
1.0288
1.0267
1.0248
1.0230
1.0214
1.0199
1.0184

0.8636
0.7818
0.7209
0.6844
0.6517
0.6298
0.6104
0.5955
0.5827
0.5720
0.5629
0.5549
0.5480
0.5418
0.5364
0.5316
0.5272
0.5232
0.5197
0.5164
0.5134
0.5106
0.5081
0.5057
0.5035
0.5015

1.1667
1.1429
1.1250
1.1111
1.1000
1.0909
1.0833
1.0769
1.0714
1.0667
1.0625
1.0588
1.0556
1.0526
1.0500
1.0476
1.0455
1.0435
1.0417
1.0400
1.0385
1.0370
1.0357
1.0345

Central
limiting

value
0.908 0.414 0.978 0.447 0.995

are given in [13] for the Archimedean bond lattice, and
Table III gives the appropriate ratios for the Kagome
and honeycomb lattices, together with the central value
obtained from asymptotic extrapolation. For the Ka-
gome lattice (with z=2), (s &/b ratios are included for
completeness but (t ) /b averages are not given, since
these follow directly [Eq. (6)] for z known and constant.
For the honeycomb trees, (s & lb are counted according
to the usual definition s =b +1, and, as can be seen from
Table III, closely parallel the animal sequences, giving

slightly higher central values. Estimates of the growth
parameter (or tree multiplicity) for the bond trees for all
lattices and for the honeycomb bond animals are summa-
rized in Table IV, together with central values for the
dominant critical exponent (eo and 8, respectively).
These are seen to be in good agreement with the form
predicted ([9] and references cited therein), with exponent
estimates for trees well within the error bounds quoted by
Ruskin [14] for the unrestricted animals. (The animal es-
timates for Archimedean and Kagome lattices are repro-

TABLE IV. Summary of growth parameter and dominant exponent estimates for bond trees. An-
imal estimates are included in comparison.

Kagome site animals
Kagorne bond animals
Kagorne bond trees
Archimedean site animals
Archimedean bond animals
Archimedean bond trees
Honeycomb bond animals
Honeycomb bond trees

2.7000+0.0025
3.426+0.006

3.2660+0.0005
3.416+0.004
4.477+0.007

4.2350+0.0025
2.21875+0.0005
2. 1778+0.0002

0.505+0.005
0.515+0.015
0.500+0.005
0.505+0.010
0.510+0.020
0.500+0.005
0.500+0.005
0.500+0.001
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TABLE V. Three point fits, A, B, and P.

Lattice

Honeycomb

Kagome

Archimedean
(Sub 2)

(Sub 1)

Honeycomb trees

Discrimination

(s) Ib

(s) Ib

(s) Ib

(t)Ib

(s) Ib

(t)Ib

(&) Ib

0.413 82
0.413 64
0.413 86
0.413 84
0.413 88
0.413 90
0.413 94

0.976 51
0.976 52
0.976 64
0.976 68
0.976 70
0.976 75
0.976 79

0.906 36
0.907 29
0.907 51
0.907 40
0.907 33
0.907 41
0.907 56

0.948 76
0.944 29
0.943 87
0.943 65
0.943 53
0.943 76
0.944 09

1.349 03
1.355 45
1.357 15
1.358 74
1.359 93
1.360 31
1.360 32

0.941 49
0.943 15
0.943 60
0.944 16
0.944 63
0.944 82
0.944 86

1.376 80
1.363 75
1.361 56
1.360 53
1.359 87
1.360 30
1.36099

Q AHA 5Q

0.445 44
0.445 05
0.445 20
0.445 16
0.445 09
0.445 14

1.753 60
1.745 83
1.755 66
1.754 81
1.756 74
1.758 06
1.760 22

1.032 19
1.032 73
1.037 44
1.039 24
1.040 23
1.042 52
1.044 85

2.095 18
2.11548
2.121 10
2.11803
2.11585
2.11834
2.123 85

1.11839
1.090 20
1.087 03
1.085 07
1.083 69
1.086 71
1.091 56

2.879 45
2.91647
2.929 45
2.944 67
2.958 38
2.963 52
2.963 81

1.033 67
1.043 17
1.046 61
1.051 79
1.057 18
1.059 85
1.060 36

2.365 26
2.273 02
2.255 11
2.245 03
2.237 36
2.243 22
2.253 96

1.666 40
1.718 62
1.691 32
1.700 10
1.697 85
1.692 99
1.696 62

—0.975 03
—0.972 90
—0.975 54
—0.975 31
—0.975 81
—0.976 14
—0.976 68

—0.951 29
—0.951 55
—0.953 71
—0.954 51
—0.954 95
—0.955 93
—0.956 92

—0.950 74
—0.956 44
—0.957 96
—0.957 16
—0.956 61
—0.957 23
—0.958 53

—0.968 37
—0.941 89
—0.939 18
—0.937 65
—0.936 66
—0.938 69
—0.941 73

—0.927 60
—0.941 17
—0.945 30
—0.949 64
—0.953 22
—0.95446
—0.954 53

—0.928 45
—0.938 18
—0.941 25
—0.945 40
—0.949 35
—0.951 17
—0.951 49

—1.003 13
—0.963 11
—0.955 89
—0.952 16
—0.949 52
—0.951 40
—0.954 64

—1.002 56
—1.01709
—1.009 71
—1.012 06
—1.01147
—1.01021
—1.011 17
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duced here for convenience. ) As we might expect, the
growth parameters for trees are lower for all lattices than
those for the unrestricted animals. The asymptotic limit
for central 0 is subject to some curvature in all cases, al-
though this is less marked for the longer series. Trees in
all cases tend to underestimate the exponent value with
respect to the exact result predicted by Dhar [2]. Biasing
the sequences with respect to exact 0 leads, however, to
generally good agreement with respect to the limiting es-
timates of A, , and this is reflected in the uncertainties
quoted. It would appear, therefore, on the evidence of
the tree and animal data, that the property of nonregular
periodicity does not modify the hierarchy of the exponent
structure.

Given the known shortcomings of ratio procedures
with respect to confluence singularities of the type typi-
cally found for animal and Sxed-cycle series, we have also
looked at the correction for the subdominant singularity
as described in Eq. (4) together with the limiting behavior
of the averages, (r ) lb. Results for the modified asymp-
totic form for the averages A+Bb ~ (Eq. (6) and [15])
are given in Figs. 2(a) and 2(b) for P, together with three
point fits on A, 8, and P (Table V). Here, P does not
necessarily relate to the sum of 8, +w [Eq. (4)] but de-
pends on the amptitudes A„,. The numerical evidence
appears good for a central estimate of /=1. 0 (honey-
comb animals and trees), although the Archimedean re-
sults (based on shorter sequences) would suggest a lower

TABLE VI. Sequences for w (second log-derivative scheme) animals and trees.

Kagome

Site

—2.463 06
—0.897 78
—0.61962
—0.809 01
—0.724 52
—0.459 78

Bond

0.260 53
—0.001 61
—0.063 45

0.253 09
0.379 39
0.401 19

Trees

Honeycomb

8.218 17
—6.31687

2.568 86
1.450 93
2.491 42
1.102 75
0.805 47
1.781 98
1.472 02
1.431 00
1.174 99
1.416 27

39.321 43
—38.046 87

16.997 20
—11.39097

6.830 82
—2.922 40

1.473 62
9.983 18
0.084 13
2.00403

—0.38005
1.494 64
0.132 50
1.294 18
0.520 94
0.965 67

Archimedean
Subnet 1

—3.017 12
—2.242 89
—0.996 11

0.008 66
0.249 69
0.427 38
0.534 66
0.511 33
0.456 37

—0.33926
0.435 47

—0.983 05
0.396 87
0.185 16
0.261 94

Subnet 2 —0.715 40
1.837 17
0.421 79

—0.453 74
—0.464 19
—0.649 33
—0.695 77
—0.521 06
—0.287 12

1.258 90
2.048 95
3.572 76
3.408 48
2.784 51
3.209 27
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value, $-0.955. The Kagome results fall fairly smoothly
between those for the alternating lattices. An overall es-
timate, taking all sequences into account, supports
/=0. 985+0.025. Results obtained from applying the
second-log-derivative scheme directly to estimate w
(Table VI and Fig. 3) afford rather poor determination of

the subdominant animal exponent. The irregularities of
the sequences obtained are clearly seen from the table,
with only the Kagome lattice (site values included for il-
lustration) showing some degree of stability and suggest-
ing w =0.8+0. 1, which excludes the 1/n correction, sug-
gesting that the leading one is indeed a scaling correction.

1.02-

1.01-

0.99-

0.98-

0.96-

I

0.00
I

0.01
I

0.02 0.03 0.04 0.05

1/b

0.06

1.00-

0.99-

0.98-

0.97-

0.96-

0.94-

0.00 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

1/b

0.13

FIG. 2. (a) Three-point fit sequences for p (modified exponent) honeycomb and gb and Ka arne. X, honeycomb animals (t ) /b; &,
honeycomb animals (s ) /b; w, honeycom treesb s ( t ) /b' + Kagome animals (s ) /b (b) Three-point fit. sequences for P (modified ex-
ponent) Archimedean(3, 3,3,4,4). Sublattice I: ~, (t)/b; 0, (s)Ib Sublattice 2: L. , (t)/b; 8„, s I .
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W
1.2-

1.0-

0.8-

0.6-

0.4-

0.2-

0.0-

—0.2-

—0.4-

—0.6-

—0.8-

—1.0-

0.00 O.R 0.02 0.03 0.04 0.05 0.06 0.07

FIG. 3. Kagome sequences for w (second log-derivative scheme). ~, bond; o, site.

While the precision is not particularly good, it is compa-
rable with that attained for studies on the Lee-Yang edge
singularities and other allied problems [16], with w in
broad agreement with subsequent estimates [3,11].

From the central limiting values of the ratios given in
Table III, we find the effective coordination number for
the directed honeycomb lattice to be z =1.450+ —0.050,
which is low compared with the percolation series results
[13]. These were shown to support a central value as
high as z =1.75, but with the smoother earlier sequences
favoring the lower bound, z =1.5, the large uncertainties
being ascribed to the characteristic honeycomb series os-
cillation of sign for larger n. Unfortunately, the
conQuence effects present in the animal data in this in-
stance also inhibit a more precise interpretation, although
the evidence again suggests that a value close to 1.5
(roughly equivalent to that found for percolation data) is
more likely to be correct.

From the central limiting value for the average
perimeter-to-bond ratio following Duarte [11],we predict
the asymptotic value of the growth parameter for the
honeycomb lattice to be A, =2.362+ —0.007. For the Ar-
chimedean lattice, the central limiting value for (t)/b
quoted by Ruskin [13] predicts an asymptotic value of
A, =5.002+ —0.008. The higher asymptotic values for
both honeycomb and Archimedean lattices are predict-
able, or course, since the region of interest is now a & a,
[Eq. (5)].

CONCLUSION

Investigation of the dominant exponent behavior for
trees and animals on selected "exotic" lattices with both

regular and alternating periodicity provides evidence in
support of a hierarchical exponent structure, which is
unaffected by the periodicity, with 8 for unrestricted an-
imals equivalent to 8& for trees. Estimates of the growth
parameters for the trees on selected lattices and for the
honeycomb animal data are also given, and an analysis of
the site-to-bond ratios for the honeycomb series suggests
that the "effective" coordination number governing the
lattice behavior is lower than that originally conjectured
by percolation analyses. We quote z =1.450+ —0.050.
The effect of conQuent singularities on the exponent esti-
mates for the exotic lattices is investigated for the animal
and tree series, but while numerical evidence supports an
exponent P for the averages in the region of 1.0 (particu-
larly for longer sequences), results of estimating the an-
imal correction term w directly are not conclusive. The
best estimates for w are obtained from the Kagome lattice
and broadly support those of previous works, with
w =0.8+0.1.
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APPENDIX: RECURSION RELATIONSHIP

In terms of the enumeration of clusters, the linkages of
the different site types can be vitally important, and the
establishment of recursion relationships for cluster
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growth on the different sublattices can provide a substan-
tial reduction of effort required. Taking the Kagome lat-
tice as an example, it is well known that the isotropic lat-
tice has three sublattices defined by three different root-
site types. For the directed (anisotropic) Kagome lattice,
however, there is redundancy in site types, with two of
the three being equivalent, owing to preferred directions
of linkage. Hence, the directed Kagome lattice has two
sublattices, dependent on the two distinct site types,
which we can denote I and II. As the Kagome lattice is
built up from hexagons and triangles, we can distinguish
between these, with type I on the triangle having two in-
coming bonds, and type II having one incoming and one
outgoing bond. Consequently, type-I sites can be exactly
counted for a tree configuration of given size s. Further,
since the Kagome trees are bond-to-site transformations
from the honeycomb lattice (i.e., self-avoiding walks), we
can establish a recursion relationship as follows. From
any type-I site, we can progress to either a type-I or a
type-II site but not both, since we are interested in self-
avoiding walks (SAW's). Thus, the number of SAW's for
a type-I site is given by

(A 1)

Further, since the type-II progression represents a branch

from a type-I site en route to another type-I site, we have

i.e.,

N, =N, i+N, (A2)

N =2N'
s s —1 (A3)

For trees with more than one branch, an exact relation-
ship is not straightforward, because as branches grow
there is the possibility of interaction leading to a
configuration that is not a tree. Growth parameters on
the two sublattices will be equivalent, but in this case
also, we have from Eqs. (A 1) and (A2) the result that only
type-I sites need to be enumerated and that
I, '=k,'Vs &3.

In other words, only one site type is relevant for
enumeration purposes, with initial conditions given by
N ]

= 1 N2 =2. For type-II sites as defined above, trees
are not equivalent to SA%'s, since the root site has two
outgoing bonds, i.e., two branches. Clearly, since we can
regard type-II sites as intermediary points on the type-I
sublattice, SAW's are one branch trees in the type-II sub-
lattice, and we have directly for SAW's
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