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Statistical properties of time-dependent wave functions for classically chaotic bound and scattering

systems with two degrees of freedom are studied numerically and analytically. For comparison, two-

dimensional systems that are classically nonchaotic are also studied numerically. Our numerical results

show that the wave functions for chaotic systems become spatially irregular after some characteristic
time, whereas no evident irregularities are observed in the nonchaotic systems. Spatial fluctuations of ir-

regular wave functions are shown to be reproduced quite accurately by the random plane-wave superpo-
sition approximation. This approximation predicts that the real and imaginary parts of an irregular

wave function are uncorrelated Gaussian stochastic functions with the same spatial pair correlation
function, which is expressed through a Bessel function. To assess this prediction, distribution functions

and spatial pair distribution functions for each of the real and imaginary parts, which must be Gaussian
for Gaussian stochastic functions, are computed numerically and found to be close to Gaussian.
Analysis of the widths of the numerical pair distribution functions enables us to obtain a pair correlation
function that is, in accordance with prediction, well approximated by the Bessel function.

PACS number(s): 05.45.+b, 03.65.Bz, 02.50.+s, 02.70.+d

I. INTRODUCTION

The quantum study of bound and unbound (scattering)
systems that exhibit chaos classically is an area of
research often referred to as quantum chaos. For bound
systems (see Eckhardt [1] for a review and a comprehen-
sive list of references), such studies are either time in-
dependent (statistical properties of energy eigenvalues
and eigenfunctions) or time dependent (time evolution of
wave packet and observables). For scattering systems,
the S matrix [2—5] has been the focus of investigations so
far. For reviews and additional references on classical
and quantum chaotic scattering, see Eckhardt [6], Smi-
lansky [7], Blumel [8], and Weidenmiiller [9]. Numerical
and experimental evidence accumulated so far indicate
that the statistics of energy levels and the statistical prop-
erties of the S matrix exhibit universality. In particular,
they follow the predictions of random matrix theory
[1,4,7,8].

Statistical properties of eigenfunctions also exhibit
universality. Numerical studies of real-valued eigenfunc-
tions P for two-dimensional classically chaotic bound sys-
tems [10—12] have shown that the distribution function
(denoted as DF throughout this paper) P(P) provides a
quantitative diagnostic for distinguishing spatially regu-
lar and irregular states. Irregular eigenfunctions have
P(P), which are well approximated by Gaussians, but
P(P) for regular eigenfunctions are non-Gaussians.
Furthermore, the spatial pair correlation function (denot-
ed as PCF) (P(r, )P(r2)) of an irregular eigenfunction is
given in terms a zeroth-order Bessel function of the first
kind whose argument depends only on the energy and
~r, —r2~ [11,13]. A similar property of the PCF was also
obtained for time-dependent wave function for the stadi-
um billiard [13]. These results were predicted by Berry

[14] with the assumption that an irregular eigenfunction
is well approximated by a superposition of random plane
waves. We shall refer to this approximation as the
PWSA (plane-wave superposition approximation).

In this paper, we apply the PWSA to complex-valued
time-dependent wave functions g for classically chaotic
bound and scattering systems with two degrees of free-
dom. Through our numerical studies, we found that the
wave function eventually becomes spatially irregular.
Using the PWSA, we show that the real part and the
imaginary part of an irregular wave function are uncorre-
lated Gaussian [15] stochastic functions; i.e., the DFs of
the real part P(Re(g) ) and the imaginary part P(lm(f))
are Gaussians with the same width and
(Re(1()) = (Im(1() ) =0, the spatial pair distribution
functions (denoted as PDF) P(Re(g, ),Re(gz), ~r, —r2~)
and P(lm(1(, ), lm(1(z), ~r, —rz~), are Gaussians, and so
are all corresponding higher-order distribution functions.
Furthermore, the PCF of the real part (and the imaginary
part) is given in terms of a zeroth-order Bessel function of
the first kind. Numerical evidence in support of our ana-
lytic results is provided. In particular, the numerical DF,
PDF, and PCF agree well with the predictions of the
PWSA.

To propagate the wave packet, the time-dependent
Schrodinger equation is integrated numerically. In Sec.
II, we will present the models and discuss the method of
integration and the choice of initial wave packets. The
PWSA will be discussed in Sec. III. Results are presented
and discussed in Sec. IV.

II. MODELS, NUMERICAL METHOD,
AND INITIAL WAVE PACKET

The potentials we have chosen for wave-packet scatter-
ing are shown in Fig. 1. Regions I, II, and III are regions
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FIG. 1. L-shaped potential (a) and elbow-shaped potential (b).
The box billiard and the S4 billiard are defined by the interac-
tion regions II in (a) and (b), respectively. R =0.2 and I.=0.05.

of zero potential energy; outside the boundaries, the po-
tential energy is infinite. Regions II will be referred to as
the interaction regions. The L-shaped potential [Fig.
1(a)] was first introduced by Hulburt and Hirschfelder
[16] in 1943 as an idealized model potential for collinear
three-body rearrangement scattering 2 +BC~ AB + C.
Classical scattering by this potential does not exhibit
chaos. A potential that exhibits chaotic scattering classi-
cally (the final vibrational action versus initial vibrational
phase displays fluctuations on all scales of the initial con-
ditions and the distribution of dwell time in the interac-
tion region is exponential [17]) is shown in Fig. 1(b).
Variants of this elbow-shaped potential have recently
been studied [5]; e.g., for the case in which the potential
in region III is infinite (the classical dwell-time distribu-
tion is also exponential), the S matrix was studied in a
microwave-scattering experiment and also numerically.
For bound systems, billiards defined by the interaction re-
gions II in Figs. 1(a) and 1(b) are chosen. Classically, the
box billiard in Fig. 1(a) is an integrable system while the
S4 billiard (we call it S4 since it is one-fourth of Sinai s
billiard) in Fig. 1(b) is chaotic.

Within the potential-free region, the time-dependent
Schrodinger equation (A'= 1,m = 1) has the form

denotes the wave-function value at time
n5 (n =0, 1,2, . . .) and grid point (x =jh
(j =0,1,2, . . . ),yk=kA (k=0, 1,2, . . . )), where 6 is the
grid spacing. Because this scheme is unconditionally un-
stable [18], it cannot be used for more than a few time
steps.

A conditionally stable, explicit integration scheme
given by Harmuth [19] for one dimension, and later ex-
tended to two dimensions by Askar and Cakmak [20],
can be obtained [21] by substituting the following
second-order finite difference formula for the time deriva-
tive

qn
J)

( y
+n1 yn

—1)
dt 25 jk jk (6)

into Eq. (1), yielding

2i5H Q"— (7)

and replacing the second derivatives in H g in the expres-
sion above by Eqs. (4) and (5). The resulting scheme is
stable if [21,22]

5 1

g2 4
(8)

g(x,y, O) =P, (x )g„(y ), (9)

To use this scheme, the values of g at t =5 are also need-
ed in addition to their initial values. In our numerical
studies, they were obtained using the unstable scheme
[Eq. (3)].

For wave-packet scattering, the initial wave packet was
chosen to represent a free atom A approaching a mole-
cule BC in its ground vibrational state

i ' ' =Hg(x, y ),. B&(x,y ) where the translational part is a normalized Gaussian
(1)

where
—(1 /4)

P, (x ) = 2mo exp
—(x —xo)

4~2
exp(i k„x ) (10)

Q2H= —— +
BX C)P

and the vibrational part is the ground-state eigenfunction
for a one-dimensional box of width L

Formally, Eq. (1) has the solution

g(x,y, t)=exp( iHt)g(x, y, O—) . (2)
2g„(y)=

1/2
UTERsin

exp( iH5 ) = 1 iH5 ,'(H—5 )2, — —— (3)

which is accurate to second order in time 6, and replace

One method [18] of obtaining an explicit integration
scheme is to expand the time evolution operator
exp( iH5 ) in a Taylor seri—es

The values of xo and o. were chosen such that the wave

packet was localized in region I, and k was chosen such
that the wave packet was moving towards region II ini-

tially.
For the bound billiard systems, the initial wave packet

was chosen to be a normalized two-dimensional Gaussian
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g(x,y, 0) =(2n.cr )
"~ 'exp

—(x —xo) —(y —yo)

40

Xexp( ik„x +ik y ) . (12)

The values of xo, yo, and o were chosen so that g was
essentially zero on the boundary of the billiard.

With the above choices of initial wave packets, the grid
spacing 5 was chosen to be much less than the smallest
de Broglie wavelength (the wavelength is 2m. /p, where p is
the momentum associated with the initial wave packets),
and the time step 5 was chosen such that the stability
condition (8) was satisfied.

III. THEORETICAL TREATMENT

Here we investigate some general and universal proper-
ties of spatially irregular wave packets within the PWSA.
The assumption is that the irregularity of wave functions
results from the fact that at each point of space the wave
function is a superposition of a very large number of
plane waves with similar amplitudes and uncorrelated
relative phases [14]. As we have mentioned in the Intro-
duction, the PWSA has been applied to real-valued eigen-
functions for bound systems. Time-dependent was pack-
ets are, however, complex valued. Thus the problem is to
describe the properties of both real and imaginary parts
of the wave packets. We shall show in this section that
the PWSA can be successfully applied to the analysis of
wave packets as well. Before we do so, we shall first ob-
tain some properties of PCF by considering general prop-
erties of wave-packet evolution in time.

C[X,X] has two parts: a time-dependent one and a time-
independent one (arising from the sum over n =n') N. u-
merical calculation shows (see next section) that for a
smooth wave packet, the time-dependent part decreases
rapidly with the increase of time. We believe this is due
to the interference of strongly oscillating terms, so that at
long times we observe only the steady-state spatial fluc-
tuations of X(r, t) and thus

c[x,x]=-,' Z I .I'c[e.,e. ] (18)

Formulas similar to (17) can also be written for C[g, q]
and C[X,ri]. The same arguments lead us to the con-
clusion that at large times

and

C[n rt]=C[X Xl (19)

C[X,ri] =C[g,X]=0 . (20)

Due to the smooth dependence of C[g„,g„] on s„, we
can write, in the case of small dispersion of energies in
the wave packet,

and discuss the spatial stochastic behavior of g(r, t) in
terms of the corresponding stochastic properties of the
functions X(r, t) and g(r, t). In particular, we shall con-
sider PCFs of X(r, t ) and ri(r, t ). For C[X,X], we have

C[X,X]= y la„a, lC[y„,y, ]cos(e„t+e„)
n, n'

X cos( e,t +8,) .

A. General considerations of PCF
C[X,X]=C[rt,rl]=C[fz, pz), (21)

First, let us consider a bound system. For simplicity of
discussion we shall take a two-dimensional billiard. The
time-dependent wave function can be represented by

g(r, t )= g a„P„(r)e (13)

where f„(r) are (real) eigenfunctions of the system corre-
sponding to eigenfunctions c.„and the amplitudes

a„=& lio~g„) = ~a„~exp( i e„)— (14)

X(r, t ) =Ref(r, t }, g(r, t ) =Imp(r, t ),

are determined by the initial wave function go(r) [see Eq.
(12)].

In general, the PCF C[g, P](l) at time t is defined by

C[g, g](l)=S 'Re f dr/'(r, t}P(r+l, t) . (15)
S

The size of the integration area S should be taken much
larger than the characteristic length of spatial correla-
tions of f(r, t ). In particular, for a two-dimensional bil-
liard, it is convenient to take S to be equal to the total
area of the billiard. In principle, if the wave-function
spatial fluctuations are homogeneous, then C[g, g] is in-
dependent of the size of S and its location in the whole
area of homogeneous irregularity.

Now let us introduce two real functions

&» =C[X,V~] C[~,VX]=o- (23)

Intuitively, this result is quite reasonable if we take into
account that irregular wave-function spatial behavior is
associated with classically chaotic systems in which a
classical trajectory passes through any small area many

where gz is the eigenfunction corresponding to the eigen-
value c„, which is closest to the most probable energy E
of the wave packet. Numerical calculations confirm the
validity of relations (19}and (20} (see next section). For-
mula (21) reduces the problem of calculation of the
wave-packet spatial PCF to calculation of the eigenfunc-
tion PCF. This means that any approximation (e.g.,
PSWA) that accurately describes the PCF of the eigen-
function also describes the PCF of the wave packet
correctly. A similar method of expansion in eigenfunc-
tions was applied in [13]to a PCF of the wave function it-
self (not just real and imaginary parts separately, as in
our case).

Additional arguments in favor of relation (20) can be
obtained by considering the flux density. Relation (20)
implies the absence of average fluxes in the system. The
flux density is

J=(1/2i )(g'Vf —QVQ') =(XVq —gVX) .

It is easily seen that if C[q,X]=C[X,q]=0,
C[X,Vg] =C[g, VX]=0. Thus
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times in arbitrary directions, thus giving only a small
contribution to the average flux through this area.

A similar qualitative analysis can be done for the
scattering problem as well. In this case, g„can be associ-
ated with some basis of discrete eigenfunctions, complete
in the interaction area supporting the irregular behavior.
However, due to the finiteness of the dwell time in the in-
teraction region, we cannot use the above arguments con-
cerning the asymptotic time independence of the Auctua-
tions of y(r, t) nd rt(r, t). But the statement about the
stochastic independence of their spatial Auctuations is
supported by qualitative arguments concerning the aver-
age fiux [see Eq. (23)] and numerical evidence. It is clear
that in a scattering system, the average Aux is nonzero so
that fiuctuations of g(r, t) and v)(r, t) are in principle
correlated, but for classically chaotic systems this corre-
lation is rather small, giving a nonzero average Aux much
smaller than Auctuations of the Aux itself.

The idea of this subsection is to demonstrate that after
some time of evolution, there is some decoupling, as ex-
pressed by Eq. (20), of the spatial fiuctuations of irregular
wave functions. This will be demonstrated again below,
using the PSWA.

B. Plane-wave superposition approximation (PWSA)

Here we obtain spatial correlation functions of time-
dependent wave functions using the PWSA [14]. It is
clear, however, that the PWSA becomes valid only after
some initial period of "relaxation" toward irregularity.
In this subsection, we consider the properties of wave
functions at given times; thus for brevity in what follows,
we shall omit the time argument of all functions con-
sidered.

According to the PWSA, the wave function P(r) can
be represented by

1V

g(r)= g (A /"t/N )exp[ik(n r)+i8. ], (24)
j=1

where k = ~k ~

=VE /2 is the absolute value of the wave

vector, n~ =k /k are unit vectors in the direction of k,
A are real amplitudes of the plane waves (assumed to be
of the same order of magnitude), and 6],. are relative
phases of the waves distributed randomly over the inter-
val (0,2m). The parameters of the plane waves are time
dependent (except for k), but here we are not going to an-

alyze time correlations and thus ignore their time depen-
dence. Both A and I9 are taken to be independent of r.
In reality they may depend on r but the characteristic
scale of this dependence is on the order of the size &S of
the billiard, while the scale of effects considered below is
the wavelength A. =k ' « v'S. Thus we can neglect A

and 0- dependences on r. Note that unlike eigenfunc-
I

tions of bound systems, any time-dependent wave func-
tion is complex, and no a priori constraints can be im-
posed on the parameters of representation (24).

Now let us consider the stochastic properties of
y(r) =Reit)(r) and v)(r) = Imp(r) predicted by representa-
tion (24). It is easily seen that

(25)

in agreement with Eq. (20). The angular brackets in Eq.
(25) denote an average over the directions n and over the
phases 0.. Hereafter, for brevity, we shall omit sub-

scripts n and 0. from our notation for averaging. Thus
the PWSA predicts statistical independence of spatial
y(r) and rt(r) fiuctuations so that we can describe them
separately.

Some additional comments on the PWSA and in par-
ticular on the expression (25) are needed at this point. In
the previous section [Eq. (15)] we defined PCF's as aver-

ages (integrals) over the area in which the wave function
is irregular. Here they are replaced by averages over n
and 0 . These two types of seemingly different averages

are, however, closely connected. Integration over the
area at a given ~r

—r'~ =I would result in 5(k —k. , )-5ji'
terms, but the same terms also arise due to integration
over independent stochastic variables 0 . Moreover,
there is another more fundamental relation between these
two kinds of averages. The PWSA ascribes continuous
distributions to n and t9 at each point in space. That is

not actually the case because at each point, P(r) results
from the interference of only a finite number (which may
not be large) of plane waves (ensemble of waves). The
continuous distributions, however, arise when we consid-
er the whole area of wave-function irregularity because
the irregularity implies that the ensemble of plane waves

is different at different parts of the area. An average over
the area is equivalent to an average over the ensembles of
plane waves corresponding to different parts of the area,
and hence over continuous distributions of n and 0 .
The correspondence of these two kinds of averages also

implies the dependence of any PCF, say PCF (25), only

on 1= ~r
—r'~ and not on r and r' themselves. This will be

demonstrated below [see Eq. (28)].
According to the central limit theorem, both y(r) and

g(r) are Gaussian stochastic functions (Gaussian stochas-
tic processes in r) [15]. To prove this statement, say for

y(r), let us consider the generating functional

F[f]= exp i f dr f(r)y(r) (26)

where f(r) is some smooth trial function localized in S.
Substituting expression (24) for y(r)=Ref(r) into Eq.
(26) we get in the limit N » 1

F(fl= rt (t
—— ' fdr Jdr ftr)f(r )cos(kt r)+'())] os(k'n(n, r')+t)c, ]

J

=exp —,' fdr f dr—'C[y,y](r —r')f(r)f(r' } . , (27)
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TABLE I. Parameter values for the initial wave packets and finite difference scheme, together with

"earlier" and "later" time values for each of the four models studied.

Parameter

Xo

Xo
k„
ky

5
Earlier time
Later time

Box billiard

6.25 x 10-'
0.025
0.025
800
800

5x 10-4
4X10

4.6x10-'
1.6X10 "

L-shaped

2.5X 10
0.1

5 x10-"
4x 10-'

1.5x10
3x10-'

S4 billiard

6.25 x10-'
0.076
0.076
800
800

5x10
4x 10-'

2.5x10
6x10-'

Elbow-shaped

2.5X10
0.3

10
10

1.5x 10-'
2.5x10

where

C[X,X](r—r') = &X(r)X(r') ) = &X )Jp(k ~r
—r'~ ), (28)

Jo is a zeroth-order Bessel function of the first kind and

C[X,X](0)=&X ) = g A, /N /2=A /2 . (29)

For billiard systems, if we take S to the whole area, we
get [11]

P(X(,X2, lr( —r21) = & &(X&
—X(r() )~(X2—X(r, ) ) )

=(1/2m+P+P )

Xexp[ —(X(—Xz) /4p

(X +—X )'/4P+) (34)

where

(35)

C[X,X](0)=(1/S)fdrX2(r)=1/2S .

In deriving expressions (27)—(29), we have used the evi-
dent relations

and

g(kl ) =C[X,X](1)/C[X,X](0)=Jp(k&) .

The same expression is valid for P(g, , re, ~r,
—

rz~ ).

(36)

and

& cos[k(n, .r)+8 ] ) =0 (30)

&cos[k(n, r)+8 ]cos[k(n, r')+8. ,])
=(5„,/2)&cos[k[n (r —r')) j ) . (31)

Formula (27) is nothing else but the definition of a Gauss-
ian process, i.e., X(r) is actually a Gaussian function with
PCF [15]

6
C[X,X](r—r')=

$ f, F[f]If(T)=f(r')=p

Similar calculation shows that g(r) is also a Gaussian
function with

C[v], rj]=C[X,X] (33)

in agreement with relation (19).
Until now, only a Gaussian distribution of amplitudes

(for some billiards) has been considered as a demonstra-
tion that an irregular eigenfunction is a Gaussian func-
tion [10,12]. However, the distribution of amplitudes is
only a crude integral property of stochastic functions. A
much more persuasive argument in favor of the Gaussian
statistics of spatial fluctuations of X(r) [and g(r)] is the
Gaussian form of the PDF whose two widths are deter-
mined completely by the PCF. For any Gaussian func-
tion X(r), the PDF is known to be [15]

(b)

FIG. 2. Contours of positive Re(g) for the box and S4 bil-
liard systems: (a) at earlier times; (b) at later times.
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At earlier times (see Table I}, the wave functions are
regular in appearance in all four systems. For the billiard
systems, this is illustrated in Fig. 2(a) by the contours of
positive y. The DF's P(y) for all four systems are abso-
lutely non-Gaussian (Fig. 3) and so are the functions P( g)
(not depicted). For the chaotic systems, the functions
P(t)) are very similar to the corresponding functions
P(y).

At later times (see Table I), i.e., for times much longer
than the characteristic dynamical time of the systems
(time of flight between the walls), the wave functions for
nonchaotic systems remain regular but the wave func-
tions for chaotic systems become irregular [contours of
positive y are shown in Fig. 2(b) for the billiard systems].
The DF's P(g) and P(tl) for the nonchaotic systems are
still non-Gaussian [the DF's P(y) are shown in Fig. 4(a)],
but for the chaotic systems they approach Gaussians
[Figs. 4(b) and 4(c)]. Note that in agreement with analyti-
cal considerations, the Gaussian DF's P(y) and P(ri) for
each of the chaotic systems are of the same width, and
for the S4 billiard, the numerical variance agrees well
with I/2S as predicted. For the chaotic systems, the
PDF's P(y„y2, 1) are also Gaussian and the elliptical

contours are oriented at 45' [Figs. 5(a) and 6(a)), in agree-
ment with the prediction of Eq. (34). The corresponding
PDF's P(ri„q2, 1) are also Gaussians with the same pa-
rameters. Finally, the contours of P(y„r12, 1} shown in

Fig. 7 are very close to concentric circles, indicating the
absence of correlations between y=Rel( and g=lmttj for
both chaotic systems.

Our numerical results for the S4 billiard and elbow-

shaped scattering systems show that the DF's P(y) and

P(t)) are very well approximated by Gaussians [Figs. 4(b)
and 4(c)], whereas the deviations from Gaussians for the
PDF's (Figs. 5, 6, and 7) are more pronounced. This can
be explained as follows. In each case, we used the same
number of data points (y or ri grid values) to construct
both the DF's and PDF's as normalized histograms.
However, if N data points produce good statistics for the
DF's then N data points are needed for the PDF's. For
the elbow-shaped scattering system, the number of data
points in each histogram bin of the PDF was no more
than 100. Thus, the statistical deviation is at least of the
order of (100) ' =10%. Because the grid size for the
S4 billiard is two times smaller than the grid size for the
elbow-shaped scattering system, the deviation for the S4
billiard is expected to be two times smaller. Our numeri-
cal results support this expectation (compare Figs. 5 and
6). Unfortunately, any decrease in the grid size results in
a large increase of computer memory needed to integrate

(aj

ReNI)

0.0 I 4—

Re(t(11)

O. I 8

0.007-

0.09—

I

20
I

40 60

FIG. 5. Typical pair distribution function
P(Re(f, ),Re($2), I ) for the S4 billiard (I = 10 ') at a later time:
(a) contours; (b) cross sections along Re(l(2)=Re(p, ) (wider
curve) and along Re($2)= —Re(tP, ) (narrower curve). In (b),
the corresponding cross sections of the Gaussian prediction (Eq.
34) are included for comparison; the horizontal axis is the dis-
tance along the diagonals in (a).

IO 20 30

FIG. 6. Same as Fig. 5, but for the elbow-shaped scattering
system (I=10 ) at a later time.
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FIG. 7. Typical contours of the pair distribution functions

P(Re(l(, ), lm($2), l ) at later times for (a) the S4 billiard
(1=5X 10 ); (b) the elbow-shaped scattering system (1=10 '). —0.4

IO 12

the Schrodinger equation. We could not use a smaller
grid size for the scattering system because the total area
in which the equation has to be integrated is much larger
than that of the corresponding billiard system and thus a
lot more memory is required. This brief analysis shows
that accurate calculation of the PDF's requires more nu-
merical effort than the DF's.

The validity of the PWSA can be demonstrated more
convincingly by extracting the quantity g(kl) from the
widths of the numerical PDF P(g&, y2, 1) for different I
values and comparing it with the analytical expression
(36). For both chaotic systems, the agreement between
numerical and analytical g(kl) is good, especially at small
x =kl (Fig. 8). The large deviations at large values of I
[numerical g(kl) amplitudes are smaller] are mainly due
to the large spread of wave vectors k in the initial wave
packet. In addition, we should also take into account
that the plane-wave superposition is only an approxima-
tion, thus giving a somewhat incorrect prediction for
g(kl) at large I. Indeed, a similar discrepancy between
numerical and analytical g(kl) has been observed [11]for
irregular eigenfunctions (without any spread in k by
definition) of some chaotic bound systems and is believed
to be due to the inaccuracy of the expression (36) at large
distances. Finally, the aforementioned statistical error in
constructing the numerical PDF's is another source of
discrepancy between numerical and analytical g(kl ).

The quantity g(kl) can be also obtained directly from
the definition appearing in Eq. (36) by calculating the
averages (y(r)y(r')) and (y (r)). Although this

FIG. 8. (a) g(x) extracted from the widths of the numerical
pair distribution function P(Re(g, ),Re(fz), l) (crosses), and

g(x) computed directly from definition (diamonds) for the S4
billiard, where x=kl. The solid line is a zeroth-order Bessel
function of the first kind Jo(x ). For (b), same as (a) but for the
elbow-shaped scattering system.

method does not give us any information about higher-
order correlation functions, it makes it possible to re-
move the inaccuracy of g(kl) caused by statistical error
in the numerical PDF P(g„y2, l). The deviations of the
direct calculations from the analytical formula (36)
remain approximately the same (Fig. 8). This means that
the discrepancy seems to result mainly from the spread of
k in the initial wave function.

V. CONCLUSION

We considered the statistical properties of time-
dependent wave functions for two classically chaotic sys-
tems: the S4 billiard and the elbow-shaped scattering
system. In order to understand statistica1 properties of
spatially irregular wave functions, we have gone beyond
the distribution functions of y =Ref and q = Imp and in-

troduced their spatial pair distribution functions. The
pair distribution functions are very sensitive to charac-
teristic features of Auctuations.

Analysis of our numerical results shows that the spatial
fluctuations of the real and imaginary parts of irregular
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wave functions, at least at short distances comparable to
k ', where k is the average wave vector, are Gaussian, in
agreement with the predictions based on the plane-wave
superposition approximation. Thus, our wave-packet cal-
culations have confirmed the validity of the representa-
tion of an irregular wave function as a superposition of
many plane waves with random phases and isotropic dis-
tribution of wave-vector directions.

ACKNOWLEDGMENTS

Funding for this research was provided by the Queen' s
Advisory Research Council and by the Networks of Cen-
tres of Excellence in Molecular and Interfacial Dynamics
(CEMAID), supported by the Government of Canada.
Partial support for D.M.W. was provided by NSERC of
Canada.

[1]B.Eckhardt, Phys. Rep. 163, 205 (1988).
[2] T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pan-

dey, and S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981).
[3]P. Gaspard and S. A. Rice, J. Chem. Phys. 90, 2242 (1989);

90, 2255 (1989).
[4) R. Blumel and U. Smilansky, Phys. Rev. Lett. 60, 477

(1988); Physica D 36, 111 (1989); Phys. Rev. Lett. 64, 241
(1990).

[5] E. Doron, U. Smilansky, and A. Frenkel, Phys. Rev. Lett.
65, 3072 (1990);Physica D 50, 367 (1991).

[6] B. Eckhardt, Physica D 33, 89 (1988).
[7) U. Smilansky, in Chaos and Quantum Physics, edited by

M. J. Giannoni, A. Voros, and J. Zinn-Justin (North-
Holland, Amsterdam, 1990).

[8] R. Blumel, in Directions in Chaos, edited by H. Bai-Lin, D.
H. Feng, and J. M. Yuan (World Scientific, Singapore,
1991),Vol. 4.

[9] H. A. Weidenmiiller, Comments Nucl. Part. Phys. 16, 199
(1986).

[10) M. Shapiro and G. Goelman, Phys. Rev. Lett. 53, 1714
(1984).

[11]S. W. McDonald and A. N. Kaufman, Phys. Rev. A 37,

3067 (1988).
[12]R. Aurich and F. Steiner, Physics D 48, 445 (1991).
[13]P. Brumer and M. Shapiro, in Evolution of Size Effects in

Chemical Dynamics Part 1, edited by I. Prigogine and S.
A. Rice (Wiley, New York, 1988); M. Shapiro, J. Ronkin,
and P. Brumer, Chem. Phys. Lett. 148, 177 (1988); Ber.
Bunsenges. Phys. Chem. 92, 212 (1988).

[14] M. V. Berry, J. Phys. A 10, 2083 (1977).
[15]N. G. Van Kampen, Stochastic Processes in Physics and

Chemistry (North-Holland, Amsterdam, 1981).
[16]H. H. Hulburt and J. O. Hirschfelder, J. Chem. Phys. 11,

276 (1943).
[17]A. Lo, B. L. Lan, and D. M. Wardlaw (unpublished).

[18]E. A. McCullough and R. E. Wyatt, J. Chem. Phys. 54,
3578 (1971).

[19]H. F. Harmuth, J. Math. Phys. 36, 269 (1957).
[20] A. Askar and A. S. Cakmak, J. Chem. Phys. 68, 2794

(1978).
[21]K. M. Christoffel and P. Brumer, Phys. Rev. A 33, 1309

(1986).
[22] P. M. Agrawal and L. M. Raff, J. Chem. Phys. 74, 5076

(1981).


