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Influence of noise on periodic attractors in the Lorenz model: Zero-frequency spectra& peaks
and chaos
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The infiuence of weak external noise on the Lorenz model has been studied in parameter ranges where

it is characterized by pairs of nonsymmetrical periodic attractors. The investigations, based on electron-
ic analog and digital techniques, have shown that the noise can give rise to pronounced zero-frequency
spectral peaks of complicated shape and to chaos.

PACS number(s): 05.40.+j, 05.45.+b

I. INTRODUCTION

It has been shown both theoretically [1,2] and experi-
mentally [3] that when dynamical systems with coexisting
stationary attractors (e.g., bistable systems) are perturbed
by weak external noise, zero-frequency peaks appear in
the spectral densities of their fluctuations. Such peaks
are Lorentzian in shape and have widths defined by the
reciprocal transition probability of jumps [4) between the
attractors. Zero-frequency peaks have also been observed
[5] for periodically driven bistable systems in the chaotic
regime. It appears likely that this phenomenon is univer-
sal in character, so that it might be expected to manifest
itself in any situation where noise induces transitions be-
tween coexisting states.

In the more complicated attractors of higher-
dimensional systems, however, we will see that a quite
different mechanism can also contribute to the formation
of zero-frequency peaks. Even if the motions within each
individual attractor of a coexisting pair (or set) of period-
ic attractors are of the same frequency, the dephasing
effect of jumps between them will interrupt the periodici-
ty of the wave form. In such a situation we might expect
to observe a phenomenon rather similar in form to that of
the chaos induced by the external perturbation of homo-
clinic orbits [6] when the applied fiuctuations result in a
random sequence of pulses, each of which corresponds to
motion along one half of the homoclinic orbit. It was
shown recently that for white (5-correlated) noise, the
latter type of phenomenon can be detected through stud-
ies of power spectra [7] and Lyapunov exponents [8]. Er-
ratic motion of a very similar kind has also been observed
[9] in a one-dimensional system perturbed by simultane-
ous periodic and random fluctuations, even though the
unperturbed system possessed no homoclinic structure.

In the present paper we extend these investigations to
the Lorenz system [10]. We present and discuss the re-
sults of analog electronic and digital computer simula-
tions of noise-induced jumps between pairs of its nonsym-

metric stable orbits. In the course of this work we have
observed zero-frequency peaks of non-Lorentzian shape
in the power spectra of the system, and we have found
evidence that the random motion giving rise to these
peaks differs substantially from stochastic motion of the
Brownian type; it is, however, strikingly similar to the er-
ratic motion generic to systems with deterministic chaot-
ic behavior.

II. NONSYMMETRIC ORBITS
IN THE LORENZ MODEI.

x= —o(x —y)+rl(t), (q(t)g(t')) =2Do(t t') . —(2)

It is well known [10] that the Lorenz system

x = —o(x —y), y =rx —y
—xz, i = bz+xy, —

with the standard values 0.=—,
' and b =10, exhibits chaot-

ic dynamics over a very large range of the control param-
eter r. This behavior is well illustrated by the results of
Fig. 1, where the largest Lyapunov exponent A, „obtained
from z(t) in a digital simulation, is plotted as a function
of r. A positive value of A, , is considered to be the signa-
ture of chaotic dynamics. There are a number of places,
however, where A, , dips down to zero. These are the
well-known [10] periodic windows in which the motion is
nonchaotic. (It should be noted that a plot such as Fig. 1

cannot be expected to reveal all such periodic windows
because of their extreme narrowness, combined with the
necessarily finite step size in r: details of the digital simu-
lations and their analysis are given below. The number of
windows is in reality infinite [10].)

The periodic orbits within the nonchaotic windows are
of two distinct kinds: the symmetric type of orbit, which,
when it exists, is the only attractor of the system, and
nonsymmetric orbits, which always exist in pairs. In the
latter case, the system is bistable. We have studied jumps
between these nonsymmetric orbits induced by a single
white-noise source of intensity D in the first equation
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FIG. 2. Plots (a) and (b) sshow the computed x-y projections
of the air of Lorp

'
orenz periodic attractors for r=100.00. The

cross and plus symbols in (a) indicate the positions of the
centers of mass for (a) and (b), respectively, which dift'er

significantly from each other. Plots (c) and (d) provide the cor-
responding information for the pair of attractors at r =126.49;
note that their centers of mass are almost coincident

FIG. 3. T ical x typ ( ) time series (arbitrary ordinate scale)

r=10 .
from the electronic model, after filtration of hi h fre
r = 00. The abscissa scale is in terms of the dimensionless time

units of Eq. (1). The plot in (b) represents an expanded view as

compared to that in a .(a). Jumps between orbits manifest them-

selves as chans c anges in the direction of relaxation. Jumps of phase
within an individual orbit take place without change of relaxa-
tion irection, as shown by the circled example in (b).
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(see Fig. 4) in the latter. Jumps to the orbit of opposite
symmetry are also manifested by discontinuities in the
phase of the periodic motion; it is also evident from the
data [e.g. , circled part of Fig. 3(b)] that phase jumps can
occur during an orbit within one attractor.

The general expression for the zero-frequency peak in
the power spectral density of such signals, obtained in the
Appendix, is

1.0
q mme
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I I ~ I I

10.0
INCINASING NOISE INTENSITY
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I I I I I I e

neo
S(co)=

q 2
+m!II!

A +N A, +co
(3)

0 1 2

where n and n are respectively the average number of
jumps between orbits and the average number within or-
bits, per unit time; A is the average time between in-
terorbit jumps; 5 is the distance between the centers of
mass; A, is the relaxation constant; and !II! is the spec-
trum of the periodic component in a half period.

It is evident from (3) that the dependence of S(co) on
external noise intensity is complicated by mutually com-
petitive processes. It is intuitively reasonable, however,
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FIG. 5. Zero-frequency power spectral peaks measured for
the electronic model with r =100 for various intensities D of
external noise, as indicated.
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FIG. 6. Low-frequency power spectra determined from the
digital simulation for various intensities of external noise
(D=0. 1, 0.3, 1.0, 3.0, 10.0): (a) r =100; (b) r =126.49. The plot
in (c) shows the result of a separate digital simulation for
r =126.49, seeking evidence for a zero-frequency peak, which is
clearly evident in the results. The noise intensities used, denot-
ed at the position of the arrow, were D = 1.0X 10 '; 3.0X 10
6.0x 10-'; 1.0x10-'; 1.0x10-'.
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to guess that for the orbit with r =100 [Figs. 2(a), 2(b),
and 3] the zero-frequency peak will broaden and diminish
with increasing noise intensity due to the relatively large

and the rapid increase of A. For the orbit with
r =126.49, on the other hand [Figs. 2(c), 2(d), and 4],
6=0 and the second mechanism involving the term

S(co ) =m
~
II

~
(4)

due to periodicity violation may be expected to dominate.
The power spectrum in this latter case should, if any-
thing, increase with increasing noise intensity due to the
rapid growth of m, corresponding to the rate of jumping
between two points on the same orbit, because every such
jump implies a break in the periodic sequence: see Fig. 3.

Some examples of low-frequency power spectra mea-
sured for the analog electronic model for a series of noise
intensities are shown in Fig. S. The results for r =100
show very much the type of behavior expected: there is a
pronounced zero-frequency peak that broadens with in-
creasing noise intensity owing to the increased rate of
hopping between the attractors. For r =126.49, on the
other hand, the peak was weaker by a factor of —10 and
its variation with noise intensity was in the opposite
direction. The extremely small power in the peak strong-
ly suggested that it might, in fact, merely represent an ar-
tifact of the low-pass 61tering. This idea was confirmed
by performing digital simulations of the same system, us-

ing the raw (unfiltered) signal.
The digital simulations were carried out using the algo-

rithm of Ref. [12]. The integration time step was kept
very small and was typically —10 of the period of re-
volution around the attractor. Examples of the low-
frequency power spectra obtained in this way are shown
in Fig. 6. It is immediately evident from Fig. 6(a) that
the existence of a zero-frequency peak for r=100 is
confirmed; but Fig. 6(b) apparently shows that there is no
such peak for r =126.49. It appears, therefore, that the
e6'ect of the phase discontinuities resulting from interor-
bit and intraorbit hopping in the latter case is just not
large enough to produce a maximum at co=0 for the
unfiltered signal, at least within the resolution provided
by the simulations. This inference was tested by perform-
ing a new digital simulation with enhanced statistics, con-
centrating especially on the shape of the spectral density
at low frequencies. The result is shown in Fig. 6(c). It is
evident that there is indeed a very weak zero-frequency
peak that at first increases with increasing D, but is
quickly overcome by the low-frequency tail of the max-
imum due to the periodic part of the motion.

It is found that the shape of the zero-frequency peaks
for r =100 [Figs. 5 and 6(a)] is neither Lorentzian as in

[1, 2], nor exponential as in [6, 7]; it appears, rather, to be
a combination of such line shapes just as (3) would imply.
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distinguished from each other by analysis of the high-
frequency wings of their spectral peaks, a Lorentzian
shape being generic for stochastic motion and an ex-
ponential one for chaotic motion. From this point of
view, (3) suggests that the spectra of noise-induced jumps
between two antisymmetric orbits should be regarded as
being composed of a mixture of stochastic and chaotic
components. It is therefore of some interest to investi-
gate the nature of the chaos that is induced in the system.

The character of the dynamics was investigated by
determination of its Lyapunov exponents [14] for the case
of the digital simulation. Figure 7 shows the variation of
the largest Lyapunov exponent A.

&
with r for several

di6'erent noise intensities within and close to the periodic
window near r = 126.49. (We indicate the three
Lyapunov exponents of the system, in decreasing order,
by A, „A.~, and A, 3, respectively. ) It is immediately evident
that even the weakest noise intensity causes the width of
the window to shrink, and as the noise intensity increases
further, it disappears altogether and A.

&
then becomes pos-

itive throughout the region plotted. For the strongest
noise intensity, nothing remains of the periodic window
except a slight dip in A,

&
at the relevant values of r. This

suggests that the dynamics induced by the noise is indeed
chaotic and that we are dealing with another example of
"noise-induced chaos" rather similar to that discussed in

[8], albeit for a totally difFerent kind of system. The ori-
gin of this interesting phenomenon is not yet fully under-
stood. A possible explanation is that the noise can tran-
siently drive the system away from its stable periodic or-
bit towards neighboring (unstable) chaotic orbits, which
it then follows briefly before returning again. Consistent
with this idea, the change from nonchaotic to chaotic be-
havior occurs in a relatively gradual way as the noise in-
tensity is increased, which would cause such excursions
to become correspondingly more frequent. Figure 8 plots
the variation of the three Lyapunov exponents as a func-
tion of noise intensity for r =126.5 in the middle of the
periodic window. It can be seen that for noise intensity

III. CHAOTIC AND STOCHASTIC MOTION 0.0
126
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I
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The periodic perturbation of a homoclinic orbit can in-
duce chaotic behavior in a system [6, 8]. A rather similar
response in terms of the low-frequency power spectra can
also be induced by external white noise [7, 8]. It was sug-
gested in [13] that chaotic and stochastic motion could be

FIG. 7. Effect of external noise on the largest Lyapunov ex-

ponent A.„in the vicinity of the periodic window at r = 126.49:
k, is plotted as a function of r for the indicated noise intensities;
the lines are guides to the eye.
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APPENDIX
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To calculate the power spectrum of the signals depict-
ed in Figs. 3 and 4 we use the construction proposed in
Ref. [6] but point out first that the signal is equivalent to
the pulse sequence

x(t)= g ( —1)"s(t t„)+ g—( —1) 'p(t t, ), —
n=1

FIG. 8. Three Lyapunov exponents A, &, A.2, A,3 plotted as func-
tion of noise intensity for r =126.5 near the middle of a periodic
window. Note that A, 3 has been scaled down by a factor of 10.

above —10, A,
&

gradually rises toward the value of 2
seen outside the periodic window (see Fig. 1). The ex-
ponent corresponding to perturbations parallel to the at-
tractor is always zero. Even in the presence of noise, the
stretching of such perturbations will be diffusive (propor-
tional to &t) rather than depending exponentially on t.
This role is initially played by A, &, subsequently by A,2.
The three exponents should sum to —(o+b+I), the
divergence of the flow in phase space, at least in the limit
of zero noise. Since this equality is only reasonably well
satisfied by the measured exponents, the small negative
change that appears to occur in A, 3 is unlikely to be
significant.

IV. CONCLUSION

s(t ) =b,e '8(t ),

1, 0&t&T
&T("= o, t & T,«0

and rewriting the expression for the signal in terms of the
convolution integral

xT(t) =f dt'[ar(t t')s(t')+pr—(t —t')p(t')], (A3)

(A2)

where

where 5 is the distance between the two steady states; A,

is the relaxation constant towards these steady states;
8(t)=1 for t)0 and 8(t)=0 for t &0; p(t tj) is—the
periodic orbit with period ~; t„ is the random sequence of
times corresponding to jumps between the two orbits; and
t is the random sequence of times corresponding to all
jumps of phase of the periodic component due both to
jumps between the attractors and also to jumps of phase
inside one and the same orbit. The random variable a.
takes values 0 and 1. Introducing the window function

We have studied the influence of weak external noise
on the Lorenz model in parameter ranges where it is
characterized by pairs of nonsymmetric attractors. The
noise results in jumps between and within the attractors,
possessing both chaotic and stochastic features. The cor-
responding spectral densities for r =100 exhibit narrow
zero-frequency peaks of complicated shape that are con-
sistent with (3); those for r =126.49 exhibit only negligi-
ble peaks at zero frequency, as shown in Fig. 6(c). The
distinction is readily understandable in terms of the
difference in the center of motion (Fig. 2) between each
pair of attractors, which is significant for r=100 and
near zero for r=126.49. The variation of the largest
Lyapunov exponent with noise intensity (Figs. 7,8) pro-
vides a convincing demonstration that the system exhib-
its noise-induced chaos. Although the latter
phenomenon obviously differs from its deterministic
equivalent in that the chaos disappears as the noise inten-
sity tends to zero, it must of course also be borne in mind
that all real systems are inevitably subject to noise, both
of environmental origin and arising from internal fluctua-
tions (e.g., thermal noise, or from spontaneous emission
in the case of a laser).

aT(t) =g T(t) g ( —1)"5(t t„), —
n=1

pr(t)=fr(t) g ( —1) '5(t —t, ),
j=1

we readily obtain the power spectrum

(A4)

&(~)= »m —
& lar(~}l'ls(~}l'+ IPr(~}l'III(~}l'&T~ oo T

(A5)

I
pT(co)= g ( —1) 'exp( idiot ). — .

j=1

(A6)

We have assumed that phase jumps are statistically in-
dependent of jumps between the two orbits. Carets

tdenote Fourier transforms and II(co)= e' 'p(t)dt is the
Fourier transform of one-half period of tie periodic com-
ponent. If N interorbit jumps and M phase jumps occur
in time T, we have

N/2
az.(co)= g exp( icot2„)—exp( —i cot2„& ), —
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The assumption that the time between two interorbit
jumps At has an exponential distribution
p(ht) =A exp( A—b, t), and that phase jumps are uniform-
ly distributed, allows the averages to be performed

2

lim —~a (co)~
1 2 neo

7~00 T A +cg)

gives the final expression

neo
S(co)= +m

~
II

~

A +co A, +co
(A8)

(A7)

lim —~PT(co) ~

=m,
T~oo T

where n is the average number of jumps between the two
orbits per unit time, and m is the average number of
phase jumps per unit time. Use of the result

When A =0 and there are no phase jumps, (A8) takes the
form of the zero-frequency peak from [1—3]: the only
difference is the prefactor n, the number density of jumps
[15], which is a quantity easily measured in experiment.
Where jumps between the two attractors can be regarded
as instantaneous and the distance 5 between them equal
to zero, we recover the results of [6].
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