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%'e analyze the intensity fluctuation of multimode lasers by extending the linear-response theory of
McCumber for single-mode lasers. In the two-mode case, we prove analytically that the rate equations
allow for an additional dynamical oscillation frequency associated with the antiphase motion. This ex-

plains the self-organized collective behavior of two-mode lasers, i.e., that the total output behaves just
like a single-mode laser. The linear stability predicts the scaling law for this time scale, which results

quite generally through cross-saturation dynamics of population inversion. Experimental results in two
different laser systems confirm these predictions.

PACS number(s): 42.55.Rz, 42.50.Fx

It has been known that multimode lasers exhibit com-
plicated behaviors from the early dates of experimental
observation. Complex multimode laser dynamics have
recently been revisited as an intriguing subject for the
study of nonlinear dynamics in optical systems. The issue
of intensity fluctuation in the output of lasers has a long
history. McCumber predicted a noise peak in power
spectra corresponding to relaxation oscillations in single-
mode class-8 lasers, in which polarization dynamics can
be adiabatically eliminated, on the basis of linear-
response theory in 1966 [1]. On the other hand, Tang,
Statz, and deMars pointed out self-organized collectiue
behaUior in transient oscillations of two-mode lasers,
which implies that the total output behaves just like a
single-mode laser. In short, they showed that the intensi-
ties of the individual modes show irregular spiking but
the total output intensity could still exhibit a regular
damped relaxation oscillation much like that of the
single-mode laser on the basis of numerical simulations in
1963 [2]. They found that in some parameter regions
that the relaxation oscillations in the two modes tend to
oscillate in opposite phase —the maxima of one mode
tend to coincide with the minima of the other. However,
this does not insure the collective behavior and its physi-
cal interpretation is still an open question. Recently,
similar collective behaviors have been observed in intra-
cavity second-harmonic generation in rnultimode lasers
[3] and in deeply modulated multimode lasers [4] even in

pulsating regimes. This collective behavior is considered
to be basic to the understanding of complex dynamics in
multimode lasers. The purpose of this Brief Report is
twofold: to extend the McCumber theory to multimode
lasers for predicting time scales of intensity fluctuations
and to identify the mechanism responsible for the collec-
tive behavior in multimode lasers. We report on two
models and corresponding experiments that support the

theoretical predictions.
We begin by studying the Tang, Statz, and deMars

equations [2] for a two-mode laser, including the cross-
saturation effect due to spatial hole burning. The rate
equations are

dnp =w no I,—(2nD —n, )/2——yI2(2nD n2)/—2,

dn&
=noI, n, (1—+I, +yIz),

dt

n2 =y noI2 —n~(1+I, +yI2 ),
dIi

=~I~ [(2nD n, )/2 —1—],
dIz

=trI2 [y(2nD n, )/2 ——1] .

I is the average photon number in mode j and no the
space average of the population inversion, while n is
defined as

L
nj=(2/L) J n(x, t)cos(2k x)dx,

where k is the wave number of mode j and L is the
J

length of the laser cavity, which is filled with the active
medium. Thus, the dynamics of n& and n2 explicitly
takes into account the grating effects of standing-mode
patterns in the cavity. The optical pump parameter u is

scaled to the first laser threshold, y is the gain ratio of
the two modes, and ~ is the relative photon lifetime.
Time and ~ are scaled to the population lifetime.

The crucial role in the dynamics that we shall analyze
is played by the ratio P, 2 of the cross-saturation parame-
ter over the self-saturation parameter. In our model,
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laser, whose dynamics are governed by Eqs. (l} [6]. The
result is shown in Fig. 3, where these noises appear
through a small pump fluctuation. It is apparent that the
total output shows a single co& peak, while the modal out-
put exhibits additional coL peaks. This implies that the
antiphase characteristics exist even in the vicinity of sta-
tionary states.

Next, let us consider another laser system, i.e., a
Nd +-doped optical fiber laser (OFL) pumped by a diode
laser. When operated well above threshold, such a 1aser
is highly multimode. In spite of that, the dynamical be-
havior of the OFL presents some extremely simple collec-
tive features. When the pump power is increased from
zero, the laser exhibits a first threshold above which laser
radiation is emitted in a linear polarization state in a
wavelength band that broadens as the pump is increased.
Above a second threshold, radiation is also emitted in the
orthogonal polarization, first in a narrow wavelength re-
gion, and at higher pump power, in a wider range up to
50 cm '. The relative position of the two thresholds can
be adjusted by rotating the pump polarization or chang-
ing the stress applied to the fiber. These two linear polar-

ization states are the eigenstates of the polarization for
the cavity in the presence of the small stress-induced
birefringence due to bending of the 5-m-long fiber.

The response of this laser to pump modulation has
been investigated in both the sinusoidal and the square
pulse regimes. The output intensity is analyzed simul-
taneously in both of the linear polarization states dis-
cussed above and the total intensity has also been record-
ed. The response to small sinusoidal modulation exhibits
two resonances, a strong one at the frequency co~ of the
usual relaxation oscillations and a weaker one at a low
frequency mL which is not related in a simple way to cuz.
The low-frequency ~L varies with the stress-induced
birefringence, but it exists even in the degenerate situa-
tion in which both thresholds coincide.
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FIG. 3. (a) Oscillation mode spectrum of a 300-p,m-thick
LNP laser pumped by an Ar laser; (b) noise power spectrum for
the total intensity; (c) noise power spectrum for I, . w=7.5 and
v=10 .

FIG. 4. Experimental recordings of the response of the OFL
to pulse excitation; (a) refers to the intensities and (b) refers to
the corresponding power spectra.
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The dynamical properties of the two modes are more
clearly visible when the transient response of the laser to
a pulsed perturbation of the steady state is observed.
Qualitatively different signals are obtained depending on
the observed quantities. The intensities I, and Iz along
both linear polarization axes exhibit simultaneously slow
and fast relaxation oscillations, while the total intensity,
which is recorded on an independent detector, shows
only the fast frequency component. As the total intensity
is just the sum of I& and Iz, this indicates that the low-

frequency components of I, and I2 destructively interfere
and consequently are in antiphase. Such a behavior is il-
lustrated in Fig. 4(a) where the OFL measured intensities
I&, Iz, and I, +I& have been plotted. Correspondingly,
in Fig. 4(b) we have plotted the power spectra ofI„Iz,
and I, +I2. There is no evidence of a low-frequency os-
cillation in the power spectrum of the total intensity,
while the polarization selected intensity displays such a
component near 6 kHz.

The relation between co+ and coL versus the pump in-

tensity is shown in Fig. 5. As for monomode lasers, the
frequency of the relaxation oscillations tends to zero as
the first threshold is approached. The low-frequency os-
cillation exists only above the second threshold, i.e.,
where both polarization clusters are oscillating. Figure 5
illustrates the excellent agreement with the proposed
scaling law over the entire attainable range of experimen-
tal parameters.

The double resonance to weak modulations and the
transient behavior featuring antiphase motions, together
with the scaling law shown above, imply that, surprising-
ly, hundreds of modes form clusters in two subsets, one
associated with each polarization direction, and each
cluster may be described as one mode. (A similar cluster-
ing of many oscillating modes was reported for dual-
polarization LNP lasers, in which each polarization
behaves like a single-mode FM laser [7].)

To confirm this fact, numerical simulations were also
undertaken on a model designed to describe the OFL as a
system of two lasers sharing the same cavity and coupled
by cross-saturation terms:

de J. =w —(1+I +PI3 )n~,
dt

dI
=«[(n +pn3 ~

—1)IJ+a(nJ+pn3 J)],dt

j=l or 2 (6)
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FIG. 5. Dependence of the oscillation frequencies of the sys-
tern vs the pump power. The first threshold is at 3 mW and the
threshold for bimode operation at 3.5 mW. Here, oscillation
frequencies ~& and coL are measured frequencies.

where P is the cross-saturation parameter and a is associ-
ated with spontaneous emission. Other notations are the
same as Eq. (1}.This model has common features with
the two-mode model given by Eqs. (1) and with the exper-
iment, namely, a low-frequency relaxation oscillation
with the scaling law (5} and antiphase behavior for the
low-frequency response to pulsed perturbation of the
steady state in the region of bimode oscillation.

In conclusion, an additional time-scale intensity fluc-
tuation in two-mode lasers has been predicted analytical-
ly. This time scale, featuring antiphase motion, is shown
to appear quite generally through the cross-saturation dy-
namics of population inversion. The scaling law and an-
tiphase motion, which is the origin of the self-organized
collective behavior, have been confirmed in two different
laser systems. The theoretical analysis has been extended
to the N-mode problem and a detailed presentation of
this generalization is included in Ref. [8].
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