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The eigenvalue moment method (EMM) is a precise technique for generating converging lower and

upper bounds to the low-lying eigenenergies of singular quantum Hamiltonians. We apply it to the quar-

tic anharmonic double-well oscillator problem, P' —Z x +x, recently studied by Saavedra and Buen-

dia [Phys. Rev. A 42, 5073 (1990)]. In addition, we introduce important algorithmic modifications to the

conventional EMM formulation, leading to more efficient applications.

PACS number(s): 03.65.Ca, 03.65.Ge, 02.30.+g, 02.60.+y

Over the past few years the eigenvalue moment method
(EMM) has been developed into an effective and simple
technique for generating converging lower and upper
bounds to the low-lying eigenenergies of multidimension-
al quantum Hamiltonians [1—4]. Although EMM may
not necessarily be the preferred technique for determin-
ing all eigenenergies for different Hamiltonian parameter
values, it does allow one to test the reliability of other fas-
ter, but potentially less precise, methods. A case in point
is the recent study by de Saavedra and Buendia [5] on the
eigenenergies of the double-we11 quartic anharmonic os-
cillator,

u (p+2)=Eu (p)+Z u (p+1)+2p(2p —1)u (p —1)

for p ~0. (3)

The energy E appears as a parameter. Once the moments
u (0) and u (1) are specified, all the other moments can be
generated. The linear dependence on these initialization
variables or missing moments [1) is made manifest
through the relation

I

u(p)= g ME(p, j)u(j), (4a)
i=o

where, also,

a= —8„' —Z'x'+x4 . ME(i j)=5;~ for 0&ij &1 . (4b)

For the ground-state energy Eg case corresponding to
Z =5, the EMM bounds are —3.41014276123982950
& E & —3.410 142 761 239 829 35. The calculation by de
Saavedra and Buendia predicts —3.410 142 761 239 826.
We compare the numerical predictions of both methods
in Table I.

In this work we will only focus on the ground-state ei-
genvalues for the system represented by Eq. (1). The
EMM analysis can be readily implemented for the excited
states [6]. Our objective is only to emphasize the
relevance of an EMM analysis. In addition, we discuss
other algorithmic improvements to the original EMM
analysis presented in Refs. [2] and [3]. These are dis-
cussed in the Appendixes.

Consider the ground-state eigenvalues of the double-
well quartic anharmonic oscillator problem

[ —8„Z2x +x ]%(x)=—E %(x) . (2)

We will transform the con6guration-space problem into a
moment problem [7]. The parity-symmetric structure of
the ground-state wave function permits the use of
Stieltjes inoments u(p)= f dyy~%(&y )/&y. The cor-
responding Stieltjes moment equation is then

The (energy-dependent) Mz(p, j) coefficients satisfy the
same moment recursion relation as the moments, with
respect to the p argument. They can be generated numer-
ically.

Clearly, the homogeneous nature of Eq. (3) motivates
the specification of an appropriate normalization. One
convenient choice is

u(0)+u(1)=1 .

Solving for u (0) and performing the appropriate substi-
tution in Eq. (4a) yields the relation

u (p) =RE(p, O)+RE(p, 1 )u (1), (6)

where

ME(p, O) for j =0
E P~1 ME(p j ) ME(p 0) forj —

1

It is a well-known theorem that the bosonic ground-
state wave function must be of uniform signature [8],
which can be taken to be positive. Quantization through
the EMM theory takes place by imposing the necessary
and sufficient conditions for the moments [u(p)] to be
the moments of a positive distribution [7]. These take on
the form [2,3]
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ij =0
Cu(m+i +j)C, )0, (8)

for all Cs, m =0, 1, and O~i, j &N where 0 N (~.
Inserting Eq. (6) into Eq. (8) results in an infinite num-

ber of linear constraints on the missing moment u(1).
For a given N, one must determine the energy parameter

values admitting a u (1) solution set to Eq. (8). This can
be done effectively through implementation of a linear
programming based cutting method applied on Eq. (8)
[2,3]. The reader can consult the appropriate references
for a detailed description of its implementation. An im-
portant part of this procedure is the determination of cut-
ting vectors C which have nonpositive expectation value

Lower bound Upper bound

TABLE I. Bounds for the ground-state eigenvalue of the double-well quartic anharmonic oscillator.
The maximum number of moments used is denoted by P. All computations were done in double pre-
cision on the Cray supercomputer.
Z2 p

8
12
16
20
24
28
32
36
40
44
48

0.63
0.657 1

0.657 633 75
0.657 652 875
0.657 652 999 5

0.657 653 005 16
0.657 653 005 179 6
0.657 653 005 180710
0.657 653 005 180714 95
0.657 653 005 180715 121 75
0.657 653 005 180715 123 04

0.67
0.658 5

0.657 660 75
0.657 653 375
0.657 653 007 0
0.657 653 005 26
0.657 653 005 181 2
0.657 653 005 180728
0.657 653 005 180715 20
0.657 653 005 180715 124 75
0.657 653 005 180715 123 07

(Value given in Ref. [5]: 0.657653005180715)

8
12
16
20
24
28
32
36
40
44
48

—3.6
—3.46
—3.410 5
—3.410 18
—3.410 144
—3.410 142 79
—3.410 142 761 37
—3.410 142 761 254 95
—3.410 142 761 239 974
—3.410 142 761 239 836
—3.410 142 761 239 829 50

—2.5
—3.40
—3.408 6
—3.410 13
—3.410 141
—3.410 142 74
—3.410 142 760 59
—3.410 142 761 237 4
—3.410 142 761 239 506
—3.410 142 761 239 828 0
—3.410 142 761 239 829 35

15 8

12
16
20
24
28
32
36
40
44
48
50

(Value given in Ref. [5]: —3.410142761239826)
—52.5 —46.5
—50.970 —50.445
—50.875 —50.815
—50.845 —50.840
—50.841 5 —50.841 1
—50.841 395 —50.841 377
—50.841 387 95 —50.841 386 75
—50.841 387 302 —50.841 387 248
—50.841 387 286 25 —50.841 387 283 78
—50.841 387 284 402 1875 —50.841 387 284 3110625
—50.841 387 284 383 9625 —50.841 387 284 380 9250
—50.841 387 284 382 1625 —50.841 387 284 381 3625

8
12
16
20
24
28
32
36
4(3

44

(Value given in Ref. [5]:
—152
—149.6
—149.26
—149.227
—149.221
—149.219 6
—149.219 46
—149.219456 5
—149.219456 171
—149.219 456 142 89

—50.841 387 284 381 90)
—143
—148.5
—149.12
—149.213
—149.219
—149.219 3
—149.21944
—149.219455 8
—149.219456 115
—149.219456 13963

(Value given in Ref. [5]: —149.219456 142 1913)
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( C ~At
~
C ) ~ 0, relative to some appropriate Hankel mo-

ment matrix At; J=u(m+i+j). In Refs. [2] and [3]
such cutting vectors were obtained by determining the
negative eigenvectors of the associated Hankel matrix.
This procedure is costly; however, a more effective ap-
proach is via either an XS' matrix decomposition or
through the generation of AL-orthogonal vectors
[(V'"'~JR~V'") =X(k)5& &]. These are discussed in Ap-
pendixes A and 8, respectively.

The numerical results of the preceding analysis are
given in Table I. In order to avoid too large numbers, we
rescaled the Stieltjes moments according to
u~(p)=u(p)/A~. The corresponding rescaled moment
equation is

u~(p+2)=EA u~(p)+Z A 'ut, (p+1)
+2p(2p —1}A uz(p —1), (9)

where we choose A=Z .
Although no numerical error analysis of the basic

EMM theory is available, we have always used the fol-
lowing empirical rule for determining the reliability of
the generated eigenenergy bounds: so long as there is only
one energy interval of allowed (feasible} energy values,
the generated bounds are acceptable. That is, if at any
order of the calculation we observe intermittent feasible
energy intervals (separated by energy intervals which are
not allowed or infeasible), then the numerical reliability
of the results are suspect.

There are now good theoretical arguments to support
this rule. In a recent communication by Ashbaugh and
Sundberg [9], they have rigorously argued (from a
mathematical perspective) that for most potentials, there
can be no segmentation of the feasible energy set (it must
be a continuous interval). This is also supported by a
different theoretical analysis by Handy and Ndow [10]
corresponding to a Euclidean time formulation of the
basic EMM analysis. The latter yields automatic bounds
on the ground-state energy without having to partition an
arbitrary energy interval.

Two additional comments are in order. First, in the
original linear programming analysis of the sextic anhar-
monic oscillator [2], feasible energy interval segmentation
was observed. In that work we used both an inefficient
linear programming moment theory and algorithm. A
reinvestigation of the sextic problem with a more efficient
code (corresponding to that employed in Ref. [3]) showed
no feasible energy segmentation, in keeping with the pre-
viously cited works. Second, in the course of investigat-
ing an earlier work by Bessis, Vrscay, and Handy [11],
the use of the Jacobi method to recursively generate the
Hankel-Hadamard (HH) determinants (an important
theoretical component of the EMM theory) gave errone-
ous bounds, for certain parameter values of the potential
function. Such behavior was anticipated because of the
presence of small denominators and the consequential
propagation of errors. In such cases, a direct calculation
of the HH determinants always led to the correct energy
bounds, regardless of the parameter values. The numeri-
cal structure of the EMM theory is in keeping with the
latter.

On the basis of the preceding discussion, we are

confident of the results quoted in Table I. Also note that
computer time (and not any evidence of numerical insta-
bility) limited the extent to which we could generate
higher-order bounds.

We have established the relevance of an EMM analysis
for calculating precise ground-state energy bounds for the
quartic anharmonic double-well oscillator. Also, we have
improved the algorithmic efficiency of the conventional
EMM analysis through the X'M generation of cutting
vectors.

This work was supported through grants from the Na-
tional Science Foundation and the Pittsburgh Supercom-
puter Center. The author acknowledges useful discus-
sions with Professor Eugene Wachspress, who suggested
the relevance of an XS-decomposition analysis, and Pro-
fessor Daniel Bessis for additional observations.

APPENDIX A: LQ-CUTTING PROCEDURE

As indicated previously, an important part of the linear
programming based cutting procedure [2,3] involves the
determination of vectors with nonpositive expectation
values (when they exist) relative to a given symmetric
(Hankel) matrix (C~JR~C) 0. For simplicity, we will
assume that the matrix indices are equal to or greater
than unity (JR; and i,j ~ 1). In earlier references [2,3],
such cutting vectors were found by determining the ap-
propriate nonpositive eigenvectors of the associated sym-
metric matrix AfThi, s. can be computationally expen-
sive. Alternatively, one may use the more economical
X'M decomposition to realize the representation
A=X2)X', where X is a lower triangular matrix (the t
denotes the transpose} with all diagonal entries equal to
unity and 2) is a purely diagonal matrix [12]. Any diago-
nal entry that is nonpositive, 2); ~0, generates a cutting
vector through the relation (i is kept fixed)

C„=5
k

The only drawback in using XS-cutting vectors, as op-
posed to identifying nonpositive eigenvectors, is that
more of the former type of cutting vectors may be re-
quired in order to "cut" a given "polytope" within the
cutting method formalism [2,3]. For completeness, we
outline the XQ-decomposition process for generating a
cutting vector. This will also enable the reader to better
appreciate an alternate formulation given in Appendix B.

We adopt an inductive strategy. Let JM, be a symmetric
matrix. Assume that the submatrix formed from the 6rst
d rows and columns, JR&, has an XR representation
JKq=XC, where X is a lower triangular matrix whose
diagonal entries are all unity, whereas 'M is an upper tri-
angular matrix. One can readily argue that %=2)X',
where 2) is purely diagonal. We will assume that the dth
diagonal entry of At& is nonzero, Ai, z &%0; otherwise, one
could take C; =5; z to be a cutting vector. The d + 1 sub-
matrix can be represented as

0 V/ V
Jkg+]= R & 0 (A1)

where the boldface quantities are either rom or column
vectors of dimension d. The above representation exists
because one can solve for V, R, and u,
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and

d

(X )'' V' =At
j=1

d

( M) .tR . :Atd+)
j=l

for 1~i ~d,

for 1~i ~d,
(A2)

(R~V)+u =Atd+) d+, .

The second relation may be rewritten as

, (2)X'),R =At;d+i, or R =VX) ', for each j.
Clearly, the latter assumes that none of the diagonal en-
tries is zero. The matrix representation in Eq. (Al) be-
comes the updated (d +1)-dimensional X'tl decomposi-
tion with ('M)d+) d+, =u =2)d+).

As noted, the above procedure continues until either
the original matrix is completely resolved into X'M form,
or one of the diagonal entries becomes nonpositive,

0 (actually, as long as 2)d &0 one can completely
decompose At). If the latter occurs, then one can stop
and solve for the cutting vector, satisfying

d

g X,;CJ =5, d for 1&i &d
j=l

where Cd=1, C =0 for j)d .

Such a C'"' vector will yield a nonpositive expectation
value with respect to the full A, matrix. A simple renor-
malization will yield a normalized vector,
C(d) y( ( C(d)

~

C(d) ) )) /2

Having obtained a normalized ((C~C)=1) cutting
vector, one may produce another one with smaller Jk-
expectation value by repeating the above with respects to
the properly modified matrix At(C~A, —t~C)1. If this
matrix has a (normalized) cutting vector C' then
(C'~At~C') (C~At~C) 0. From the cutting method
perspective, such iterations can produce "deeper" cutting
vectors.

I lj j

if k & I (83)
or

I k

g V'"'At V'"=0 if k &I .
j=k i =1

The last relation follows from g," ) V "'At;J

,At; V "'=0 ifj &k! Upon solving for Vk" (recall
that Vt"= I), we get

I k
V(l) y y V(k)At V(l)

j=k+1 i =1

K

g V,'"'At,
k

vector can be spanned by the orthogonal set Od ..
, c,V". The corresponding expectation value is

i c, N (i). Unless one of the N is nonpositive, the sub-
matrix will be positive definite, a contradiction. Thus the
realization of an JM-orthogonal set of vectors is intimately
connected with the generation of cutting vectors.

We can generate Od inductively. Assume that such a
set exists. Any basis vector e' (with components et =5,

~

for 1 & i,j & d) can be expressed as a superposition of the
form e"=g"

) c,V"', with ck=1. It then follows that
the relation in (Bl) is equivalent to

(e"~At~V" ) =N(l)5k t if k & I only! . (82)

Alternatively, g' )Atk V'"=0 or N(1), depending on
whether k ~l —1 or k =l, respectively. One may use
these relations to directly invert and solve for [ V'"[:

', At )„V,
' ' =

IN&&
—Ho, w. ever, we can recursively

generate the V,
'" component in terms of the higher-order

components [ V~ "~j ~i+1I and the vectors [V'"'~k &I I.
Specifically, expanding (Bl) and making use of (82) yields
(recall that in general VI"= I and V("

t
=0)

I

y V,(k)At„v,'"= y
i,j j=l i =1

AFFENDIX B:
GENERALIZED ORTHOGONAL VECTORS or

for k =I —1, 1 —2, . . . , 1 (84)

Given a symmetric matrix At, we want to determine
the family of orthogonal vectors relative to At, satisfying

(V")~At ~V'") = N(k)5„, , (81)

where Vk =1, and V' '=0 if j &k. Assume that such a
set of At-orthogonal vectors Od ——[V("~1& 1 &d

) exists,
for some d (not necessarily the full dimension). If the
submatrix Atd (as defined in Appendix A) is not positive
definite (that is, there exists a cutting vector
(C~Atd ~C) &0), then one of the N(k) must be nonposi-
tive. The proof is immediate. Clearly, any d-dimensional

I k

V" = —
~ g g V'"At V'" N(k)
j =k+1 [i =1

for k = I —1, I —2, . . . , 1 . (85)

Equation (85) may be used to generate all the orthogonal
vectors or until, for some I, one generates N(l)=0. As
indicated, if any N(k) is nonpositive, its corresponding
orthogonal vector is a cutting vector.

Both formalisms in Appendixes A and B are
equivalent. The simplest way to see this is to note that
the C'"' vectors in (A3) satisfy ( C'"'~At

~

C' ') =Sk5),. ).
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