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Analytic solution for inversion and intensity
of the Jaynes-Cummings model with cavity damping
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An analytic expression for the inversion and intensity of the Jaynes-Cummings model with cavity
damping is derived in the rotating-wave approximation for vanishing thermal photon numbers. Us-
ing the s-parametrized quasiprobability distributions of Cahill and Glauber [Phys. Rev. 1TV, 1882
(1969)], the equation of motion for the density operator is transformed into c-number equations for
the quasiprobability functions. By a suitable expansion into a Fourier series and into Laguerre func-
tions, we obtain ordinary tridiagonal coupled differential equations for the expansion coefficients.
By an appropriate choice of a scaling parameter and by a proper elimination procedure, it is shown
that the coefficients that determine the inversion and the mean intensity are only coupled to coeffi-
cients with the same index and to coefficients with the next upper index. Because of this coupling
the Laplace transform can be given analytically. Furthermore, it is shown that the eigenvalues and
eigenvectors can also be calculated, thus leading to an analytic solution for the inversion of the
Jaynes-Cummings model.

PACS number(s): 42.50.Md, 42.50.Dv, 05.30.—d

I. INTRODUCTION

One of the simplest models describing the interaction
of light and matter is the Jaynes-Cummings (JC) model
[1],where a single two-level atom interacts with one light
mode of the cavity. In the rotating-wave approximation
this model can be solved exactly in the absence of cavity
damping. Starting with a cavity field in a coherent state
[no) and with the atom in its upper state, it was found
that repeated decays and revivals of Rabi oscillations oc-
cur, see for instance Refs. [1—5]. The predicted collapses
and revivals of the inversion oscillations are in agreement
with the experiments done with Rydberg atoms in a mi-
crowave cavity, see Ref. [6—8].

In the experiments, the damping of the cavity mode
is not negligibly small. Thus for a detailed compari-
son with experiments, cavity damping must be included
in a treatment of the JC model. With cavity damping
one hss to solve an appropriate equation for the den-
sity operator which describes the system. This equation
of motion for the density operator is more difficult to
solve. As far as we know, no analytic solution for this
model has been published for general initial conditions.
For the initial state of the light 6eld being a vacuum
state, an analytic solution was given by Agarwal and
Puri [9]. An even simpler model, the so-called Raman
coupled model [10], was solved analytically with the in-
clusion of cavity damping by two of us [11]. In the JC
model damping was already included by some approx-
imate technique valid for small damping and vanishing
thermal quanta n&i, = 0 (dressed-atom approximation),
see Refs. [12—14], or numerically without any such ap-
proximation, see Refs. [15—18]. In Ref. [15] an initial
intensity of the coherent field of Io = [no[z = 2 has been
used. This number is too small to give pronounced re-

peated decays and revivals of the Rabi oscillations with-
out detuning. For an appreciable detuning, however, the
revivals can be seen even for this low initial intensity [15].
With the method presented in [16—18] initial intensities
up to Io = 30 could be handled. The cavity-damped
JC model with an additional Kerr medium has also been
calculated [19] using this technique.

In the present paper we show that for vanishing ther-
mal quanta n&i, = 0, an analytic expression of the inver-
sion and the mean intensity can be obtained within the
rotating-wave approximation. Here the damping con-
stant can have any arbitrary value within the approxi-
mations used in deriving the Markovian reduced density
operator equation of motion. In the limit of vanishing
damping the usual expressions are recovered. The main
steps for obtaining this analytical expression are the fol-
lowing. First we transform the equation of motion for the
density operator into c-number equations by using the s
parametrized quasiprobability distributions of Cahill and
Glauber [20, 21] as done in Refs. [16—19]. Next these dis-
tribution functions are expanded into a Fourier series and
into Laguerre functions. In this way we obtain ordinary
tridiagonal coupled difFerential equations for the expan-
sion coefficients. In Refs. [16—19] a similar expansion was
used. However, in the present work we do not employ the
six combinations of the matrix elements as done in the
previous work. As it was shown by one of us [22] the six
combinations used previously lead to some superfluous
additional variables, which give rise to unphysical posi-
tive eigenvalues. For physical initial conditions these un-
physical eigenvalues have zero weights and thus can only
show up because of numerical inaccuracies. By employ-
ing a more suitable expansion we remove the superfluous
variables; nevertheless, we have been able to decouple
the equations for the expansion coeKcients in the Fourier
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index as done previously. By a suitable choice of a seal-
ing parameter and by a proper elimination procedure,
it is shown next that the coefficients which determine
the inversion and the mean intensity are only coupled to
coefficients with the same Laguerre index and to coeffi-
cients with the next upper Laguerre index. Because of
this coupling the Laplace transform can be given analyti-
cally. Furthermore, it turns out that also the eigenvalues
and eigenvectors follow analytically, thus leading to an
analytic solution for the inversion and the mean intensity
of the Jaynes-Cummings model with cavity damping. It
should be mentioned that the same expansion procedure
can also be used if thermal quanta are taken into ac-
count [22]. In this case, however, we have not been able
to derive analytical results for the eigenvalues and their
weights.

The present paper is organized as follows. In Sec. II
we introduce the equation of motion for the zero-
temperature reduced density operator for the Jaynes-
Cummings model. Four field operators are introduced
to take into account the atomic degree of freedom. In
Sec. III we introduce the s-parametrized quasiprobabil-
ity distributions which satisfy four coupled partial dif-
ferential equations. These distributions are expanded
over a complete set of functions in Sec. IV and lead to
a tridiagonal recurrence relation for the expansion coef-
ficients. In Sec. V we calculate the Laplace transform
of this recurrence relation. The poles of this Laplace
transform are the eigenvalues, the weights also follow
from this expression. In See. VI we calculate the Laplace
transform of the intensity I(t) and the inversion D(t) for
the damped Jaynes-Cummings model for arbitrary initial
conditions. By an inverse Laplace transform this result
yields the time dependence of the intensity and inversion.
In Sec. VII we derive the series representation for a spe-
cial initial state, which can be used to calculate the time
dependence of the intensity I(t) and inversion D(t) for
that particular initial condition. In Sec. VIII the limit of
a vanishing damping is demonstrated.

in the cavity, I;, is given by

L,(p) = 2apaf —pafa —asap. (2.3)

Transforming to the interaction picture in the usual way

-(ty eiat, (at a+a, /2)t (tq ic—u, (ata+a /2)t (2 4)

the equation of motion for p is of a similar form as equa-
tion (2.2), but with

H/5 = bo, /2+ g(afo + a o+), (2.5)

pi = (T IPI T&+ (l IPI l&, p2 =
&T IPI T&

—
&l IPI l&

(2.6)

ps =
&T IPI l& p4 = &l IPI T&.

They are still operators with respect to the light mode.
Their equations of motion follow from (2.2) as

pq = ig(psalm —af ps + p4a —ap4) + ttL;, (pq),

p2 = ig(psalm + af ps —p4a —ap4) + t4L;, (p2),

ps — i hps + ig(—p&a —ap) + p2a + ap2)/2

+ttL;, (ps),

p4 =iEp4+ ig(pilaf —afpq —p2af —afp2)/2

+ttL;, (p4) .

(2.7)

III. QUASIPROBABILITY DISTRIBUTIONS

where 6 = (da —u, is the detuning of the atomic fre-
quency (da from the cavity frequency (d, . The matrix
elements with respect to the atomic states are combined
to the four new operators

11. THE EQUATIONS OF MOTION

The Hamilton operator for the Jaynes-Cummings
model in the rotating-wave approximation reads

H/5 = ~, afa+ ~,o, /2+ g(afo y ao+), (2.1)

where ua and ur, are the frequencies of the atom and
cavity mode, respectively, a~ and a are the creation and
annihilation operators of the fieId mode, o.„cr+, and cr

are the Pauli spin matrices, and g is the atom-cavity cou-
pling constant. The equation of motion for the reduced
density operator p = p(t) of the Jaynes-Cummings model
with cavity damping takes the form

p = —(i/5) [H p] + rI (p). (2.2)

The damping is characterized by it, the decay rate of
the photon numbers in the cavity, and I;„which de-
scribes the irreversible motion of p caused by the envi-
ronment. Neglecting the influenee of the thermal photons

We use the s-parametrized quasiprobability distribu-
tions W(n, a', s, t) introduced by Cahill and Glauber [21]
to get a c-number representation of the operator equation
(2.7). We define the characteristic functions g, ((,(', s, t)
for each operator p, , i c (1, . . . , 4), by

)(,((,('.s. t) = T 8"-~*.+ j~'~/2p, (t), (3.1)

which yields the quasiprobability distribution W~ by a
Fourier transformation

tt 2

W( , *t,eeet) =ef tt;((, t, e, t)e t t . (3.2)

Inserting this relation into the operator equation (2.7)
and applying the relations in Table I of Ref. [23], we ar-
rive at the following system of partial diKerential equa-
tions for the distributions Wq —W4.
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with the shorthand notation 2;„ for the damping opera-
tor:

W(I P, s t)= ) ) c~ l (t)F„, (I P),
n= —oo m=o

W2(I, P, s, t) = ) ) c~ l (t)F„, (I, P),

Ws(I, P, s, t) = ) ) c~ i, (t)F„, (I, P),
n= —oo m=0

W4(I, P, s, t) = ) ) c„+i (t)F„, (I, P),

over the complete set of functions

~~4 (I/I) l~llzI, I~I (I/I) e rl~-

(4.2)

(4.3)
8 ~ 8n+, n'+ (1 —s)n n n

(3.4) Here the L~~"l(x) are the following generalized Laguerre
polynomials:

The Hermiticity of the density operator p is refiected by
the following constraints:

m m+ n x"
L!"l(x)=) (-1)"

l

pm —k) k! ' (4.4)

w, =w,*, (3.5)

Ws=W4, W4= Ws', (3.6)

(/(a')"a"). ) = (n')" n W(n, n', s) d n. (3.7)

for the distribution functions W, .
To obtain expectation values of s-ordered products

((a!) a },one simply has to integrate the quasiprob-
abilities W(n, n', s) over the complex n-plane according
to

and I is an arbitrary scaling parameter. We have chosen

the indices of the expansion coefficients c„',~ so that the
resulting recurrence relation will decouple in the index n.

After inserting the above expansion (4.2) into the par-
tial difFerential equation (3.3) and by using the orthogo-
nality properties of the generalized Laguerre polynomials

L~ [24) we can derive a system of tridiagonal recurrence

relations for the coefficients ~', of the expansion (4.2).
This recurrence relation can be simplified by choosing the
positive scaling factor I according to

Therefore the intensity I(t) can be expressed by I = (1 —s)/2. (4.5)

I(t) = (ata) = n"nWi(n, n', s) d n —2(1 —s),

(3 8)

Because in this paper we are only interested in the dy-
namics of the inversion D(t) and intensity I(t) we can
focus on the resulting equations for n = 0. Introducing
the real quantities

while the inversion D(t) of the atom, after taking the
trace over the atomic states, is given by

D(t) = Tr~~(~.C') = T ~(C'2)

x (t) = c(~)'~ (t), u (t) = 2gI '~ Im[co (t)],
y (t) =c(~) (t), v (t) =2gI '~2 Re[c~~! (t)],

one finally obtains the system of equations

(4 6)

W2 (n, n*, s, t) d n . (3 &) m = —2mKxm mum-]. &

2mzy —2I(m —+ 1)u + mu~

IV. EXPANSION OF THE QUASIPROBABILITY
DISTRIBUTIONS

To handle the set of partial differential equations (3.3)
we expand the various distributions R'q —R4 in a com-
plete set of functions F„~(I,P) over the complex n plane
with appropriate decay behavior. For convenience we will
use the radial variables I (intensity) and angle P (phase)
instead of o. and n', i.e. ,

u = —Ev —(2m+ 1)~u

+(9 /I)(x +y ) —29 y~+i,
v = Au —(2m + 1)~v

(4.7)

«T (~') = lsyTI'+2lsi11'+ 1&111' &1 (4.8)

It is worth noticing that because the density matrix p
obeys the boundness condition

n = VVe'~, n* = vIe

Let us start with the expansions

(4.1)
where

l pl = g TrF (pt p) is the Hilbert-Schmidt norm
[20], one may check that each of the expansion coeffi-
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oo 27K

I(t) = zi IWi(I, (((), s, t) dgdI
0 0

= —~Izx, (t), (4.9)

Oo 2X

D(&) =
z Wg(I, g, s, t) dgdI

0 0

cients cIt'I~ must vanish for m ~ oo. Since the intensity
I(t) and the inversion D(t) can be expressed by (3.8) and
(3.9), we can derive the following relation to the coeffi-
cients xi(t), y()(t):

lation where only the quantity H~ = x~ + y~ occurs,

H +i(z) = [Q (z)]
' H (z) + P (z) . (5.5)

The solution of these equations determines the Laplace-
transformed expansion coefficients x, g~ via equation
(5.4).

For our purpose it is very useful to get the explicit val-
ues of the poles of Q~(z). To achieve this we had to find
the roots of a fourth-order polynomial in z. Using this
result we can express Q~(z) and P~(z) in the following
way:

= mIy()(t) . (4.1o) 4gzI (m + 1)(z + 2rni(; + 2z) (z + 2mr + rr)

(z- ~'")(z- ~g})(z-~~")(z- ~"}) '

V. THE LAPLACE TRANSFORM
OF THE SOLUTION

x (O) = x' , u (0) = u'„,
y (0) = ya , v (0) = vc . (5.2)

In this section we calculate the eigenvalues of the equa-
tion of motion (4.7). We will use them to reexpress the
Laplace transform of the intensity I(t) and the inversion
D(t) as a partial fraction decomposition over its poles. In
order to keep track of the initial conditions let us apply a
Laplace transformation to the recurrence relation (4.7),
i.e.,

X(t) X(z) = f e "X(t)ttt,

where we use a hat to denote the Laplace-transformed
quantities. Furthermore, let us denote the initial values

H'
~(a,2)

p(3,4}
m

0=Xm+ ym)

= —(2m+ 1)~ + i(;h/cu

= —(2m+ l)~ +i~
4 +4~2 2+

+4g (m+1) —it;z.

x +, —H /(2I)
z + 2mlc+ 2K

1 z+2mr+ ~+ Az/(z+2mi(;+ r) ()

2g'(m+ 1)
b,v u

2g2(z+ 2m'(;+ ~) 2g2

with the various abbreviations

(5.6)

(5 7)

x~~i = [Q* (z)) (x +g )+P~,
+i=[Q (z)] (x +g )+P".

(5.4)

Adding the last two equations one gets a recurrence re-

Therefore the Laplace transform of (4.7) yields the set of
recurrence equations

0 h ee

ZZm —Xm = —2mezm —mum y,

zg —ya = 2m, rg ——2I(m+ l)u + mu

(5.3)
zu —ua = —b,v —(2m, + l)~u

+(g /I)(x +g~) —2g )~+i,
zv~ —v = 6u —(2m + 1)~v

It should be mentioned here that the special case 6 = 0
could be treated separately to simplify the further calcu-
lations. In that case the last equation of (5.3) decouples
from the first three equations and can be solved imme-
diately. Therefore only the first three equations need to
be handled further on in the case of vanishing detuning.

As one may check, it is possible to eliminate the vari-
ables u~, v~ in (5.3), leading to the set of equations

0ZX0 = X0)

Because H~(z) should tend to zero for m -+ oo and fixed
z as mentioned in Sec. IV, the eigenvalues must be the
poles of Q (z), i.e. , the eigenvalues of Eq. (5.4) are A~~'},

i C (1,2, 3, 4j, rn & G. From the first equation of (5.4)
one obtains the additional eigenvalue

A =0, 5.8

~I zH, (z)+2Ix; - H,o

2 z+2~
D(z) = n.IHa(z) —1/z.

Although the Laplace-transformed intensity I(z) seems
to have a pole at z = —2z, one can show that the limit

lim ]I(z)] ( oo (5.11)

(5.10)

is still bounded. Now it remains to work out the explicit
solution for H()(z), therefore let us rewrite (5.5) as

( )
which describes the stationary solution. It should be
mentioned that the eigenvalues for m = 0 follow from
(2.12) of the work of Agarwal and Puri [9].

Finally, using Eqs. (4.9), (4.10), and the first two equa
tions of (5.4), we obtain the Laplace transformation of
the intensity I(z) and the inversion D(z) in the following
form:
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H (z) = Q~(z) H~+i(z) —P~(z) . (5.12)

Iterating this equation leads to the following expression,
since H~(z) must vanish for m —+ oo as mentioned in
Sec. IV:

OO P

Ho(z) = —) P„(z) Qt(z)
p,=O L=O

(5.13)

H,'",'= h ( —X())H,().
g( )

(5.15)

After some calculations one obtains the explicit expres-
sion for the weights of Ho(z)

I()
O, v v

v —1

q(~)
h

qL ~
L=O

OO k

) (~) (u)
k, qL

fg=v L=V+1

(5.16)

with the various coefficients defined by

(, 3) 2Ig (v+1)(r+ KE/u)„)
QB4 + 4~363

(3 4) 2Ig (v + 1)(r 6 iu„)
QA4 + 4~362

q~~~ —q, (),(~))

(u) p„(p)

(5.17)

(5.18)

(5.19)

(5.20)

let us write Ho(z) as a partial fraction decomposition
over its poles as

~(v)
Ho(z) = ) (5.14)

vp Z Av

The weights Ht)"„can now be extracted by taking the
limit

D(z) ~D(t) = —1+) D(") e"- ', (6 2)

this will give us the time dependence of the quantities
of interest. One arrives at the following results for the
weights I " of the intensity

(~)
( ) 7CI Av (p)

2 A(p)+2K 0 (6.3)

and in a similar way the expression for the weights D(P)

of the inversion

D(~) = ~IH(".'.
t

(6.4)

To get explicit numeric values for inversion and intensity
a computer must be used to evaluate the above formulas.
The calculation of the eigenvalues and weights with the
presented formula is about 20 times faster than the cal-
culation using a numerical method. Once the eigenvalues
and weights are calculated, the computation time is pro-
portional to the number of points of time the inversion
and intensity has to be calculated. Using a Runge-Kutta
method [18] for the integration of the system of differen-
tial equations (4.7), the computation time is proportional
to the maximum time up to which one wants to calcu-
late the inversion and intensity. Thus for larger times the
analytic method is faster whereas for short enough times
the Runge-Kutta method is faster. For example, to cal-
culate data of the inversion from gt = 0 up to gt = 500
with at least 1000 points and a Runge-Kutta step width
of gdt = 0.025 the analytic way is more than 40 times
faster whereas for obtaining these data from gt = 0 up to
only gt = 5 the Runge-Kutta method is about two times
faster.

In the special case 6 = 0 the eigenvalues A and A
(&) (~)

are identical and one can remove the common factor z+
2lK+ K from the numerator and denominator of the Q~,
which expresses the fact that the last equation of (5.3) is
decoupled from the first three equations of (5.3). To get
the correct formula for the p&"„one has to set 6 = 0 in

the PI, (z) first and then insert the A("). In the following
section we derive the explicit dependence of the weights
of the poles of the intensity I(z) and the inversion D(z)
on the initial conditions.

VII. INITIAL VALUES

In this section we derive the series representation of a
special initial state, which can be used to calculate the
time dependence of the intensity I(t) and inversion D(t)
for that particular initial condition. Let us assume that
the atom is in the upper state and the Beld mode is in
a coherent state lno) at t = 0, therefore the operators
pq

—p4 take the form

pi(o) = pz(o) = lno)(nol,

VI. DYNAMICS OF THE INVERSION
AND INTENSITY p3 (0) = p4 (0) = 0.

(7.1)

In order to get the time dependence of the inversion
and the intensity, we have to use the solution (5.13) for

Hp(z) with the given initial condition xo~, y~o, uo, vo .
Similar as in the preceding section, we perform a par-
tial fraction decomposition for the intensity I(z) and the
inversion D(z) Transforming t. hese expressions back to
the time domain according to

The initial conditions for the distributions W, (a, n*, s, t)
may be obtained by inserting (7.1) in (3.1) and perform-
ing the Fourier transformation (3.2)

Wi (n, a.*,s) = W2 (a. , n*, s)

2 2 2exp — ln —nol
vr(s —1) 1 —s

I(z) ~ I(t) = ) I„" e"- ', (6 1)
Ws(n)n, s) = W4(n, n*, s) = 0.

(7.2)
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(a)

10 20 30 40 50 g) 60

(b)

10 20 30 40 50 g) 60

D(&)
(c)

p-I

10 20 30 40 50 g) 60

FIG. 1. The inversion D(t) as a function of gt for (a) e/g = 0.001, 6/g = 0, (b) ~/g = 0.003, 6/g = 0, (c) ~/g = 0.003,
6/g = 5 and for Io = 8.

The expansion coefficients zo, . . . , vP may be calculated
by using the orthogonality relations of the generalized

Laguerre polynomials L" (x), which then yields the ex-
plicit form, see Ref. [18],

p p 1 1 ( Ip)=u
7rIrn' ( I P

(7.3)
u' =v' =O.tn m

Inserting these initial conditions into (5.6) we obtain
the weights of the eigenvalue expansions (6.1) and (6.2) .
As one can easily check these weights do not depend on
the scaling intensity I, or, because of (4.5), they do not
depend on the parameter s of the quasiprobability distri-
bution. The eigenvalues (5.7) do not depend on s either
and therefore the inversion and the mean intensity are
independent of s. This is physically obvious, since these
quantities cannot depend on the representation used for
the density operator.

Figure 1 shows the inHuence of damping and detuning
on the inversion using the above initial condition. It is
seen that the height of the revival oscillations decreases
with increasing damping or detuning and with increasing
time. Further on the detuning leads to clearly separated
revivals and the value of the inversion in between the Erst
collapse and the Brst revival increases for increasing de-
tuning. Figure 2 shows the inversion for various trunca-
tions of the in6nite set of eigenfunctions. The long-time
behavior can be described using only a few real eigenval-
ues whereas many more eigenvalues must be taken into

A. Short- and long-time behavior of the intensity

For Ip )) 1 the short-time behavior is determined by
the asymptotic decay rate of I(z) = 1/(z+ 2z) (5.9) for
large values of z leading approximately to the exp( —2zt)
decay of the empty cavity.

For Ip )) 1 the long-time behavior is determined by the
lowest nonvanishing real eigenvalue. [The contribution

12

0 lE

200 400 600 g)

FIG. 2. The inversion D(t) for K/g = 0.005, E/g = 0,
Io ——10 using 2, 3, 6, 12, 43 diferent eigenvalues including
the stationary one. For the contributions 2, 3, 6, 12 only the
real eigenvalues need to be taken into account.

account in order to obtain the collapse and revival of
the Rabi oscillations. Figure 3 shows the collapses and
revivals as well as the decay of the intensity.
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10—

10'—

10 2-

100 200 gt 300
I

1000
1

2000 3000 gt 4000

FIG. 3. The mean intensity I(t) ss a function of gt for
various damping constants (a) ~/g = 0.001, (b) z/g = 0.002,
(c) ~/g = 0.005, {d) r/g = 0.01 and for b, /g = 0 and Ip = 10.

FIG. 5. Same as Fig. 4 but with 6/g = 3.

R(oo) = lim [1+D(t)]/[2I(t)] = (2 —r)/r . (7 7)

from the complex eigenvalue with the lowest real part is
of the order exp( —Ip).] Thus the long-time decay has the
form

I(t) oc exp( —r~t),

with

(7.4)

r = 1 —[A~/~p, (7.5)

where up is defined by the fourth equation of (5.7) for
rn = 0. For small ~ this relation simplifies to

r =1 —(A~/QA2+4gs. (7.6)

In Fig. 4 we have plotted the intensity in a logarithmic
scale without detuning. The behavior of the short-time
decay exp( —2zt) and the long-time decay exp( —Kt) is
clearly seen. In order to understand this effect it is very
useful to look at the ratio R(t) of the energy in photon
numbers of the atomic state, i.e., [1+D(t)]/2, to the
field, i.e., I(t). For large t this ratio takes the form

For vanishing detuning this ratio R(oo) is equal to 1. The
small decay of the intensity for large times may thus be
interpreted in the following way. The photon probability
in the two-level atom and in the field mode is the same.
Because the two-level atom is not damped, no decay is
possible of the photon energy stored in the atom. There-
fore the decay rate is half of the decay rate of the empty
cavity. A similar effect of this line narrowing has been
discussed by Carmichael et aL [25]. In that reference,
however, only the atomic system was damped. For ap-
preciable detuning R(oo) is much larger leading even to
a much smaller decay of the intensity which is demon-
strated in Fig. 5.

VIII. LIMIT OF VANISHING DAMPING

Using the initial condition from Sec. VIII it is shown
in this section that the usual expressions for the intensity
and for the inversion are obtained for vanishing damping.
For e = 0 the eigenvalues in (5.7) and (5.8) take the form

a'=o,
(8.1)

10'—
with

= Qhs + 4gs(m + 1) . (8.2)

10 2- Because Kp(z) is an analytical function of K it is suffi-

cient to ca1culate Ho„' . The contribution of the zero
eigenvalues is just a constant which is fixed by the initial
condition. Evaluating Eq. (5.16) leads to

1000 2000 3000 gt 4000
(3 4) 1 2g~(v + 1) (Ip)"

~I Es + 4gs(v + 1) v!
(8.3)

FIG. 4. The intensity in logarithmic scale as a function of
time. The short- and long-time contributions are shown by
dashed lines for various damping constants {a) ~/g = 0.001,
{b) ~/g = 0.002, {c) r/g = 0.005 and for b, /g = 0 and Ip ——

10.

.(Ip)" I 4 +4g2(v+1)cos~ t
v! 62 + 4g~(v+ 1)v=o

(8 4)

thus the inversion is given by the well-known expression
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From (6.3) and (6.4) it follows that

1(3 4) 1D(3 4)
0)v 2 Oq&

and from (6.1) and (6.2) we obtain

I(t) + —,'D(t) = Ie+ —,', (8.6)

IX. SUMMARY

We have found an analytic expression for the inver-
sion and the intensity of the Jaynes-Cummings model,

where we have used the initial condition I(0) = Io and
D(0) = 1.

Comparing our result with the approximation of Bar-
nett and Knight, i.e., Eqs. (11) and (12) of [12], one can
see that their expression for the inversion is similar to
our expression for the special case of vanishing detuning
(b, = 0). The real eigenvalues and the real parts of the
complex eigenvalues are the same. Their imaginary parts
of the complex eigenvalues do not depend on z whereas
our exact ones depend on z according to

(6 = 0) = /4g (m+1) —z, (8.7)

see (5.7) for 6 = 0. (To be precise this is only true for
lt ( 2g; for z & 2g some of the former complex eigenval-
ues even become real. ) Thus only for vanishing damping
(z = 0) we obtain their frequencies of the Rabi oscills
tions, which are identical to (8.2) for 6 = 0. Further-
more, their weights of both the real and the complex
eigenvalues are only identical to our weights in the limit
z -+ 0. Thus their result is an extension of (8.4) for small
damping constants for the special case of vanishing de-
tuning. In their expressions some terms appear as in our
exact expressions whereas others, as the frequency shift
of the Rabi oscillations induced by ~, are not taken into
account.

including cavity damping for vanishing thermal quanta.
In solving the Markovian reduced density operator equa-
tion of motion for the system no further approximations
besides the usual rotating-wave approximation have been
made.

The essential steps have been the following ones: In-
stead of using the density operator of the full system,
we introduced the four atomic matrix elements of the
density operator. These matrix elements are still opera-
tors with respect to the field. The equations of motions
of these four operators are transformed into a c-number
representation using the quasiprobability distributions of
Cahill and Glauber. By expanding the four quasiprob-
ability distributions into Laguerre polynomials and into
a Fourier series we obtained a system of ordinary dif-

ferential equations for the expansion coefficients ~~'Im, .
This system has the advantage that it is decoupled in
the Fourier index n and it is only tridiagonal coupled in
the other index rn. In order to express the inversion and
the intensity only the system with the index n = 0 needs
to be taken into account. By a suitable choice of the scal-
ing parameter I and by a proper elimination procedure
we could express the Laplace transform of the solution in
terms of a quantity Hm, which is only coupled to H~+q.
This coupling makes it possible to get an analytic ex-
pression for the Laplace transform of the inversion and
intensity. Performing a partial fraction decomposition of
He all the eigenvalues and their weights could be deter-
mined analytically leading finally to an analytic solution
for inversion and intensity.
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