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Stabilization of atoms in ultrastrong laser fields: A classical approach
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We study the classical theory of the response of atoms to ultrastrong 'asar pulses. We argue that
the stabilization of atoms in a strong laser field through bound states in a Kramers-Henneberger
potential has a classical interpretation. We present results of numerical simulations based on a phase-
space-averaging method for a one-dimensional smoothed potential, which agree very well with the
results of quantum theory. In a three-dimensional Coulomb potential, classical simulations hardly
allow for stabilization, in contrast to recently obtained quantum-mechd, nical results. We identify
physical reasons for this discrepancy with the efFect of smoothing ~he pot, ential singularity. We
stress the relevance of our studies in the context of the correspondence principle.
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I. INTRODUCTION

Relations between classical and quantum dynamics
and the role of the correspondence principle [1] have been
studied very widely over the years. The notion of dy-
namical chaos in classical systems warrants the question
of behavior of the underlying quantum systems (cf. [2]).
The most interesting experimental verification of the pre-
dictions of both theories in atomic physics is offered by
the interaction of atomic hydrogen in the Rydberg level
with a linearly polarized microwave field. Both analogies
and sharp differences are found (cf. [3—5]).

While nobody expects that the classical dynamics is
a qualitatively good description of the interaction of the
strong electromagnetic field with the atom in its ground
state, there are a number of papers which conduct such a
study [6—10]. Properties of the spectra of liberated elec-
trons, the so-called above-threshold ionization [11],con-
sisting of series of maxima separated by the single-photon
energy are not reproduced well by classical physics. On
the other hand, properties of the higher harmonics of
light generated in the interaction of a very intense pulse
with an atom are qualitatively similar to the correspond-
ing quantum results [12]. Of course, the former requires
the Planck constant to define the energy of a single pho-
ton, while the latter only the frequency of the light, a
purely classical concept.

Series of recent papers discuss an intriguing possibil-
ity of stabilization of atoms in a very intense laser Beld.
According to these papers [13, 14], in the limit of high
frequency, asymptotically stable levels of the atom dis-
torted by the field are formed. The ionization rate is not a
monotonically growing function of the light intensity, and
beyond a certain value, which is close to the characteristic
atomic intensity (3.51 x 10 s W jcm ) starts to decrease.
The early papers assumed that the strong field is a con-
tinuous wave. The reality, however, is very difI'erent and
the very strong field may only be produced in a form of
very short pulses. It is not obvious that one can introduce
the atom intact into this field. Hence, the response of the

atom to such a pulse, a truly time-dependent dynamical
problem, should be studied. The first demonstration that
the atom could survive the strong pulse [15] was done
with the help of a one-dimensional model. Other stud-
ies [16] confirmed this and stressed the usefulness of the
so-called, Kramers-Henneberger frame of reference [17].
However, the real atoms are three-dimensional (3D) and
the very different geometric properties of the phase space
call for the studies in 3D.

In our recent Letter [18] we stressed that the basic
mechanism of stabilization discovered by Gavrila and
Kaminski [14] is classical in nature. So the classical
dynamics, less demanding numerically, could in princi-
ple help to check if there is a substantial difference be-
tween one- and three-dimensional cases. After establish-
ing good correspondence between classical and quantum
results in 1D, we went on to simulate the response of the
3D hydrogen atom to a short laser pulse. We discovered
that finding stabilization requires much higher frequency
in this case. However, soon 3D quantum calculations
were published [19] with the conclusion that the stabi-
lization in 3D is even easier than in 1D. This conclusion
is in contrast with the new paper of You, Mostowski,
and Cooper [20]. This last paper studies one- and two-
dimensional models both classically and quantum me-

chanically. While quantum physics predicts stabilization
in both cases, the effect is weaker in the two-dimensional
potential and the ionization probabilities are higher. Cor-
responding classical simulations overestimate the ioniza-
tion probabilities substantially. The lack of quantum-
classical correspondence is in this case hardly surprising
as the authors study the short-range potential which sup-
ports only one bound state, i.e., the system which does
not have a classical analog.

The purpose of this paper is to investigate further
the classical dynamics of a strongly driven atom un-

der conditions that lead to stabilization in the quanturn-
mechanical case. We look closer into dynamical behavior
of the atom during interaction for 1D and 3D models.
For the 3D Coulomb potential we find that two com-
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pletely different regimes of dynamics may be identified:
the switching regime, when most of the energy is ab-
sorbed, and the plateau regime, when absorption rate is
very small. The dramatically higher classical ionization
probabilities are entirely due to this switching part of the
evolution. We further study the regularized Coulomb
potential and find strong stabilization there [21]. This
suggests that the principal quantum effect in the dy-
namics of 3D hydrogen consists in efFective smoothing
of the Coulomb singularity. We present angular distri-
butions of outgoing electrons and find signatures of sta-
bilization there. We comment on the relevance of our
classical simulations for the studies of Rydberg states.
Although results analogous to ours have been also dis-
cussed by other authors, who studied classical theory of
ionization [6, 7, 22, 4), our paper connects a traditional
view on this problem with the approach based on the
Kramers-Henneberger method.

The plan of the paper is the following: in Sec. II we dis-
cuss once more the effect of stabilization, and present its
classical interpretation. Section III contains a short re-
minder of various versions of the phase-averaging method
[6, 7]. In Sec. IV we present results for the 1D model,
stressing the role of the Kramers-Hennenberger potential
and the correspondence to the quantum-mechanical case.
We show also that in the classical case the signatures of
stabilization can be seen for much lower values of the Geld
than those corresponding to the splitting of the effective
potential into two wells. Section V contains 3D results
obtained for a pure Coulomb potential. Stabilization is
in general hardly observed for this case. In Sec. VI we
present results for a regularized Coulomb potential, and
find strong stabilization there. The paper ends with con-
clusions concerning possible interpretation of our results
in the context of quantum-classical correspondence.

II. STABILIZATION OF ATOMS IN VERY
INTENSE LASER FIELDS

In some situations, a forced fast oscillations may be
employed to turn the otherwise unstable configuration of
the system into the stable one [23]. Recently, Gavrila and
his co-workers suggested [14] that the effect of this kind
should also appear in the high-frequency strong-field ion-
ization. For the laser field frequency ur, sufficiently high,
its further increase should lead to a substantial suppres-
sion of the ionization, even for ultrastrong intensities.
Stabilization has quickly become a major topic of the
physics of intense laser-atom interactions, and there is al-
ready a topical meeting devoted only to this phenomenon
[24].

The effect of stabilization was discovered by Gavrila
and his collaborators in the framework of quan-
tum mechanics, by means of the so-called Kramers-
Henneberger (KH) transformation [17] (the space-
translation method), which transfers the rapid oscilla-
tions of the external Geld to the atomic potential. Then,
by averaging over these oscillations, one Gnds an effec-
tive double-well potential, describing atoms in the high-
frequency laser Geld. Furthermore, it turns out that the
usual ground state of the atom undergoes "dressing" in

m —v = —VVc,„i+ eE'I, sin(uL, t), (2)

such a potential, and is stable against the ionization not
only when the laser frequency ur„but also when the laser
intensity, grows. Due to the double-well character of the
effective potential, wave function of the electron trapped
in the ground state becomes dychotomic.

Immediately, the above prediction has been criticized,
since the described approach ignores the effects con-
nected with introducing the atoms into the oscillating
Geld, and assumes the ideal plane-wave form of the Beld,
rather than a pulse form. Also, as pointed out by Lam-
bropoulos [25], any nonperturbative strong-field effects
can hardly be observed in ionization by typical laser
pulses. Pull ionization takes place in the initial growth
phase of the pulse, when the field is still in the perturba-
tive regime. No further absorption or emission processes
by the released electron are then possible in the devel-
oped intense plane-wave field. Obviously, such criticism
does not apply, if the turn-on time is sufficiently short.

To resolve the above controversy Eberly and co-
workers [15] investigated numerically Schrodinger equa-
tion describing the one-dimensional model atom under
the inQuence of a short laser pulse, controlling the turn-
on and turn-off times of the pulse. For sufficiently rapid
turnon they observed stabilization of the atom, i.e. , the
decrease of the ionization probability. This result shows
that a nondestroyed atom can indeed enter into the region
of strong field. The results of Su, Eberly, and Javanainen
[15] have been recently confirmed by Reed, Knight, and
Burnett [16],who performed a careful analysis of the 1D
model in the KH frame. They showed that the wave func-
tion of the trapped electrons have a potytornic, rather
than dychotornic character. That might indicate that
electrons are not trapped in the ground state of the KH
potential, but instead in a mixed combination of several
bound states [26]. Kulander, Schafer, and Krause [19],
using massive computing power, presented evidence for
stabilization in three-dimensional fully quantum calcula-
tions for a hydrogen atom. A similar conclusion has been
obtained in quantum calculations of You, Mostowski, and
Cooper [20], who studied a two-dimensional hydrogen
atom.

We have demonstrated [18] that the aforementioned
effect of atomic stabilization has a purely classical coun-
terpart, and that the degree of stabilization depends crit-
ically on the dimensionality of the phase space. We
showed that the significant stabilization is reproduced in
the classical version of the one-dimensional model atom
of Eberly and co-workers [27], interacting with short su-
perintense laser pulses. Then, we provided evidence that
according to classical mechanics such an effect should be
substantially reduced for true three-dimensional atoms.

In order to understand the stabilization of the atom in
classical terms, we consider an electron in the Coulomb
potential VC,~„Iin the Geld of a plane wave of frequency

The classical (nonrelativistic) equations of motion,
in the dipole approximation, are

d—X=V,
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where SL, is the amplitude of the electric field. The
classical Kramers-Henneberger transformation consists
in changing the laboratory frame to the one that follows
the classical motion of an electron in the plane-wave field,
x = y —(eC I, /rruur, ) sin(~l, t), mz, y = rr, so that

d ( ezL,

dt ( rriu&~ )
—n = —VVC,„)~ y+ ~ sin(~l. t) ~

. (3)

Note that Ves(y) is time independent, and has typi-
cally two attraction centers, at ke81, /rn~r We. de-
note in the following the classical excursion amplitude
n—:]e8g/rriu&~. The corrections to V,s(y) (the higher-
order Fourier components) are rapidly oscillating func-
tions of time. The effective potential can be easily calcu-
lated for the one-dimensional model atom, as discussed
in Refs. [16, 27]. Such a model corresponds to a regu-
larized Coulomb potential V«g(z) = —1/v'1 + xz. The
amplitude of the lowest-order correction to the potential
V,eg(z) decreases as a function of ur„and saturates as a
function of I. Therefore, the overall impact of the correc-
tion remains negligible. The same conclusion holds also
in three dimensions, D = 3.

The classical stabilization of an atom ean be explained
as follows. A classical phase-space distribution of elec-
trons that mimics the quantum ground state in the po-
tential Ves will be concentrated in configuration space
around the two minima of V,ir, and, hence, will be dy-
chotomic. After transforming it back to the laboratory
frame, such a distribution will oscillate with the fre-

quency ~L, . Its zeroth Fourier component describes the
effective distribution of particles (i.e., the distribution
that measures how often a given region of configuration
space is visited by particles from the sample). Obviously,
such an efFective distribution will have three peaks, with
symmetric maxima at x = +2e81,/mal, and a maxi-
mum around x = 0 that is roughly twice as large. Thus,
for such distribution nearly half of the population will be
frequently very close to the Coulomb force center, having
low momentum, and may remain trapped after the field
is rapidly turned ofF.

The above statements can be formulated also in the
quantum theory, provided that we apply them to the
wave functions rather than to the probability distribu-
tions in the configuration space. In this case, however,
the additional quantum interference effects are possible.
They can limit the validity of our classical argument.

We have verified the above heuristic arguments using
the classical simulation of the ionization process. Such an
approach was introduced by Leopold and Percival [6, 7],
and is widely known as a phase-space-averaging method.
Here, the quantum-mechanical initial state of an atom
is approximated by an initial data distribution (being,
for instance, a microcanonical ensemble, constructed us-

For large ii)g the potential in Eq. (3) may be replaced by
its average V,ir [17]

2m /~i,
vs(y) = dive i l y+ ~ sin(~~i)) .

2x p rri(dr

(4)

ing the reversion of the Einstein-Brillouin-Keller quan-
tization scheme). Various versions of this method used
by us are described in the next section. Here, we just
stress that our simulations in 1D not only showed that
stabilization in the KH frame can be explained classi-
cally. Moreover, they exhibited amazing agreement with
the quantum-mechanical results of Su, Eberly, and Ja-
vanainen [15]. In fact, recently Grobe and Law [28]
performed a very careful comparison between quantum
and classical results in 1D and confirmed our earlier ob-
servations. On the other hand, we have presented ev-
idence that the effect of stabilization will be substan-
tially reduced for true three-dimensional, but classical
atoms. For such atoms, the phase-space geometry allows
for much more complex motions of electrons. This prop-
erty of the phase space accompanied, for yet stronger
intensities, by relativistic effects, makes the significant
stabilization hardly possible. This classical result stands
in contrast to quantum-mechanical results of Kulander
and eo-workers [19]. In the next section we shall provide
more insight into the classical results in 1D and 3D, and
try to understand the reasons for a very good and a very
bad quantum-classical correspondence in these two cases,
respectively.

III. PHASE-SPACE AVERAGING METHOD
AND ITS APPLICABILITY'

The phase-space-averaging method has been intro-
duced by Leopold and Percival [6, 7, 29] to describe the
response of highly excited atoms and molecules to low-

frequency laser or maser radiation. The motivation for
the method comes from the correspondence principle.
It is obvious that highly excited states of atoms and
molecules (such as Rydberg states of hydrogenlike atoms)
may form wave packets [30] that have to a great extent
classical character. The dynamics of such packets un-

der the inHuence of an external, low-frequency field may
also be described by means of classical mechanics. The
dominant effect of quantum Huctuations in such a pro-
cess enters through the fact that initial states in most of
the situations of interest are not a wave packet. Instead,
it is typically a state of well-defined energy, which is not
localized in the phase space. To describe this situation,
Leopold and Percival proposed to mimic the quanturn-
mechanical initial state by the statistical sample of ini-
tial points in the phase space. The results of quantum
measurements (quantum-mechanical averages) are then
identified with the averages over the sample of initial
data. For instance, the degree of ionization (after ter-
mination of the laser pulse), is determined as a fraction
of the sample with positive final energies (fraction of un-

bounded electrons).
The phase-space-averaging method has proved to be

very fruitful for a description of microwave ionization of
highly excited hydrogen atoms [6, 7, 3, 22, 4]. Mostowski

and Zyczkowski [8] proposed to extend it to describe
strong-field above-threshold ionization (ATI) of atoms
[11].Here typically the initial state corresponds rather to
a ground state, while the driving Beld may have optical
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r = a(1 —ecos(),
t = Va~(( —csin(),

(5)

(6)

where a = 1/2]E~ denotes half of the large axis of the
ellipse, whereas e = L//2]E[ is its eccentricity; (c) the
spatial distribution on that plane and the corresponding
distribution of momenta corresponds to a uniform dis-
tribution of times t on the interval equal to the period
of the motion, T = t(2vr) —t(0) = 2m tp/as. To perform
a Monte Carlo sampling one has in principle to invert
the transcendental relations (6). Note, however, that the
marginal radial distribution can be obtained analytically,

f(r) =
6 8 —T —6

~ Ensemble II. An alternative construction of the
microcanonical ensemble is performed as follows. We
consider spherical coordinates and canonical variables,
r, 8, $, and conjugated momenta p„,ps, py. The micro-
canonical ensemble corresponds to the fixed values of E,
L and z component of the angular momentum L„
p(r, 8, P, p„,pe, p~)

(1 1 ( p4, & 1= ÃS —p„'+—,i p', + . , i

—-+ ~E~
(2 " r' ( sin'8)

xS ps+ z
—L S(pp —I,,),

sin 8
(8)

where JV is a normalization constant. Integrating Eq. (8)

or even higher frequency. One expects, however, that for
very strong fields the role of quantum fluctuations will

again be essential only initially. The application of the
method in the context of ATI has led to a number of
valuable qualitative and quantitative results [9, 10, 12].

The construction of the sample of initial data may be
performed in various ways. We have used in our simula-
tion two methods:

~ Ensemble I. This is a microcanonical ensemble pro-
posed by Leopold and Percival and constructed as a re-
version of the Einstein-Brillouin-Kramers quantization
scheme (for details see also [10]). One introduces here
action-angle variables [23, 31] and constructs the sample
by fixing the actions and taking the conjugated angles to
be uniformly distributed. For hydrogen atom with fixed
energy E & 0 and angular momentum L, in practice.
this aim may be achieved by the following steps: (a) we
choose a random unit vector that determines the direc-
tion of angular momentum, i.e. , the plane of the motion;
(b) the motion on that plane follows an elliptical tra-
jectory and may be parametrized using the parameter (
[231:

over P, and all of the momenta, we obtain the marginal
distribution of r and 8,

f(r, 8) (x
r 1

Qr —(E~r —L /2 /Ls Ls/s;„sp
(9)

81,(t) = 81,f(t) sin(u)L, t + p). (10)

We have been working with various envelope functions,
such as a trapezoidal one,

It is elementary to check that the resulting marginal ra-
dial distribution is the same as the one given by ex-
pression (7). Note that 8 is statistically independent
of r, and its marginal distribution is given by the sec-
ond factor on the right-hand side of Eq. (9). The con-
struction of a spherically symmetric sample that corre-
sponds to a ground state of the hydrogen (E = —z)
can be performed in the following steps: (a) we choose
r 2 (r;„=Ls/2, r = 2 —L 2] in accordance with
the distribution (7). Note that L must be smaller than
—1/(2E), i.e., 0 & L & 1 for E = —

&, (b) we choose
a random L, = py, uniformly distributed in the in-

terval [ L, I]; —(c) we calculate p„=2(E + i) —~~,
(d) we choose 8 E [arcsin(L, /L), z —arcsin(L, /L)], in
accordance with the distribution (9); (e) we calculate

pg L Lz sin; fina y, we c oose a ran om

uniformly distributed in the interval [0, 2z]. A nice fea-
ture of this construction is its applicability to any central
potential.

In the following we have used both equivalent construc-
tions alternatively, and assumed various values of the an-
gular momentum L. In 1D both constructions become
the same. In all simulations we have used samples of be-
tween 500 to several thousand trajectories, depending on
the required accuracy of the averaging procedures.

The phase-space-averaging method, as we mentioned,
was primarily designed to describe microwave excitation
of Rydberg atoms. This is a situation when driving pulses
are very long and adiabatically turned on and off. The
classical dynamics in such a case is determined by asymp-
totic (long-time) properties of the phase space (periodic
and/or chaotic orbits [6, 7, 22]). Such classical descrip-
tion remains valid provided there is not enough time for
quantum-interference effects to exhibit themselves [3, 4].
This may happen only if the initial states are sufficiently
"classical" in character, i.e., are highly excited Rydberg
states.

The situation is drastically different in the regime of
strong-field optical excitation. Here, we deal with very
short pulses, and for very intense fields the relevant dy-
namics takes part sometimes during a couple of optical
cycles. For the pulse, the electric field in Eq. (1) has to
be taken in the form

' t/T. „

for 0 & 4 & Ton

f(t)=g 1 for T „&t & TD —T ff
1 —(t —T~ + T g)/T fr for TD —T fr & t & Tr)
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T T ff describe here the turn-on and turn-off times of the pulse, respectively, and P is the phase. Pulse duration is
of course denoted as TD. Alternatively, we have used sinusoidal pulses,

'sin (crt/2T „) for0&t&T„
f forT„&t&TD Tff

, sin [x(t —TD+2T,g)/2T, s] for T~ —T g & t & TD.
(12)

E ~ (1/n )E,
srL, ~ (1/n )(ug,

zL, ~ (1/n')zL, .

(13)
(14)
(15)

When the excitation is induced by a pulse we may hope
that dynamical quantum-interference and quantum-
diffusion effects may remain negligible, even if we start
from the ground state; quantum aspects may be fully ac-
counted for via phase-space averaging. This belief finds
additional support if we take into account the fact that
short excitation pulses themselves exhibit fluctuations
(i.e. , intensity or phase fluctuations) that may smooth
out quantum effects completely [10]. We will present
some results that correspond to such averaging, but we
shall also focus on the response of atoms to pulses that
have fixed phase P and fixed intensity. This will allow us
to discuss specific aspects of the atomic response, such
as a role of pulse area and thus induced drift forces. We
stress, however, that in any case the classical problem
that we study is a transient one. The response of atoms
in such a case will therefore be determined not only by
asymptotic properties of the phase space, but also by
transient phenomena, such as unstable orbits and tran-
sient chaos.

On the other hand, it is well known that classical dy-
namics of the hydrogen atom in the plane wave exhibits
scaling. Namely, if we introduce a scaling parameter n
(an analog of the principal quantum number) the equa-
tions of motion are invariant with respect to the trans-
formation

nitely is not suKcient. There have been attempts, there-
fore, to replace the phase-space-averaging method by a
more accurate one. One way consists in the use of a
quasiprobability approach [32, 33]. Such an approach is,
in principle, equivalent to a full quantum-mechanical the-
ory, but has the following drawbacks:

~ Most of the quasiprobabilities, such as Wigner func-
tion [34], or Glauber's P representation [35], are not pos-
itively defined. If one tries to overcome this difBculty
by taking an absolute value or using positively defined
functions such as a Q representation [35] or a Husimi
function [36] another problem arises. Typically, such a
representation of the ground state or other bound states
of an atom contains, from the very beginning, a fraction
of electrons that are ionized in the classical sense (i.e. ,

have positive energy) [37]. This fraction ranges typically
from 10 to 20Fo. Such a representation cannot therefore
allow for a description of ionization at a low level. On
the other hand, when ionization probability is between
0.5 and 1 (which is typical in the problems of stabiliza-
tion), we think that the quasiprobability method might
prove useful.

~ Quasiprobability functions undergo much more com-
plex dynamics than classical phase-space densities (con-
sidered in the phase-space-averaging method). Roughly
speaking, quantum fluctuation and interference eKects
are present not only in the description of the initial state,
but also during the evolution. It is not clear how one
could easily incorporate these eKects.

The scaling means that the results that correspond to
ionization from the ground state may easily be trans-
lated into results that correspond to the ionization from
the nth Rydberg state. In particular, the scaling (15)
may be extended to the case of pulse excitation, pro-
vided we keep constant the ratio of TD, T,„,and T,g to
the optical period. The additional scaling relations are
therefore (each of the T's scales as inverse of ~L,),

T~~n TD)
3

Ton ~ n Ton~

TOff n TOff .3

(16)
(»)
(»)

This fact has very important experimental consequences,
since it is much more easier to achieve the required inten-
sities for the light sources working in infrared and optical
regimes, rather than those working in the ultraviolet do-
main. It suggests also that our results have a very broad
domain of applications.

The doubts about applicability of phase-space-
averaging methods come from the fact that although it
does mimic some quantal aspects of the motion, it defi-

IV. STABILIZATION IN 1D REGULARIZED
POTENTIAL

In this section we present results obtained from classi-
cal simulation of the one-dimensional model. We use the
same potential as the one introduced by Su, Eberly, and
Javanainen [15]

V(z) = —1/Qx~+ e2. (19)

As pointed out by Javanainen, Eberly, and Su [27], this
potential has a lot in common with the 3D Coulomb po-
tential; it has Rydberg series, it has an additional, besides
principal, discrete quantum number, i.e., parity. The po-
tential is regularized at x = 0. The necessity of regular-
ization follows in the first place from the requirement of
mathematical consistency. The radius of regularization
has been chosen by the authors to be 1. This has a nice
physical explanation, since this choice leads to a ground-
state energy of the 1D model roughly equal to that of the
3D hydrogen atom, F = —0.668 —0.5. We think that
in fact the regularization procedure of Su, Eberly, and
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FIG. 1. Trajectory of an electron (x coordinate) ionized
in the regularized 1D potential as a function of time. The
laser pulse has a sinusoidal shape with E'I, ——5, ~1. = —2E,
ll/L, To /2m = 5, ugTrp/2m = 105, and ur, T,g/2vr = 5. The ini-
tial phase of the pulse has been chosen randomly. All quan-
tities are in atomic units.
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FIG. 3. Trajectory of an electron (x coordinate) trapped
in the regularized 1D potential as a function of time. Param-
eters are the same as in Fig. 1.

Javanainen has an even deeper physical meaning. Our
classical analysis indicates that regularization is essen-
tial for stabilization. One-dimensional models that are
designed in order to mimic three-dimensional quantum
physics have to be regularized [38]. If they were not,
they would not lead to stabilization, which is observed in
3D quantum models [19].

The results that we present in this section concern
the character of stabilization in 1D and the relevance
of the Gavrila mechanism. Our results may be consid-
ered as complementary to those of Grobe and Law [28],
who have recently performed a careful analysis of the
quantum-classical correspondence in the 1D models with
the potential (19).

As has been shown in our Letter [18], classical simu-
lations lead to stabilization in 1D for sufficiently strong
fields and sufficiently high laser frequencies. Let us start
our discussion with the presentation of typical trajecto-
ries from the statistical sample. In Figs. 1 and 2 we
present such trajectories that correspond to ionized elec-
trons. Laser frequency corresponds here to "half-photon"
ionization, i.e. , ~1, = 2E = 1.34 (a.—u. ). The pulse shape
is the same as the one used by Kulander, Schafer, and
Krause [19]. Pulse duration is 105 optical periods, and
turn-on and turn-off times are 5 periods. The field is
chosen to be 5 a.u. , so that the parameter n is 2.55. In

these conditions ionization probability is about 0.5. Af-
ter short transient the electron leaves the atom with the
constant mean velocity. The second part of the motion is
practically a motion of a free electron in the field. Elec-
trons oscillate with the amplitude a, but acquire also a
constant mean velocity which is determined by the pulse
area acquired in the moment of detachment. Note that
this velocity is not determined by a total area of the
pulse, which is a unique function determined by the pulse
shape. It is rather a random result of the initial part of
the motion when interaction is still present.

In Figs. 3 and 4 we present analogous results for
trapped electrons. Here the evidence for the Gavrila
mechanism is clear. The electron undergoes two superim-
posed oscillations, one in the laser wave with amplitude n
and period 2z/cuL„and a much slower oscillation between
the two minima of the KH potential, located at kn. In
another words, the electron trajectory averaged over the
optical period oscillates slowly in the KH potential. The
period of slow oscillation ranges between 20 (Fig. 3) and
10 (Fig. 4) optical periods.

Obviously, these properties of the trajectories exhibit
themselves in the results averaged over the whole sam-
ple. In Fig. 5 we present spatial distributions of trapped
and ionized electrons right after the turn on of the pulse.
Here, we used a shorter (20-optical-pulse) trapezoidal
pulse. Dotted lines correspond to moderate turnon and
turnoff (5 periods), solid lines to a fast turnon and -off
(1 period). Trapped electrons form a structure centered
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FIG. 2. Another example of a trajectory of an electron
(x coordinate) ionized in the regularized 1D potential as a
function of time. Parameters are the same as in Fig. 1.

FIG. 4. Another example of a trajectory of an electron
(x coordinate) trapped in the regularized 1D potential as a
function of time. Parameters are the same as in Fig. 1.
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FIG. 5. (a) Spatial distributions of trapped electrons after the turn on of the laser pulse obtained with the help of a phase-
space-averaging method. The laser pulse has a trapezoidal shape with E'1. = 2.5, cur, = 2F, ~r, T~—/27r = 20. The dotted line
corresponds to err, T,„/2vr = ~r, Top/2vr = 5, whereas the solid line to col.T,„/2vr = err. T,g/2m = 1. The results were averaged
over the random initial phase of the laser pulse; (b) same as (a) but for Fl = 5; (c) spatial distributions of ionized electrons
after the turn on of the laser pulse obtained with the help of a phase-space-averaging method. The parameters are the same
as in (a); (d) same as (c), but for fi. = 5.

at z = 0 of width n. For smaller fields [Fig. 5(a)]
this structure consists of two peaks. With an increase
of the field [Fig. 5(b)] this structure becomes a single,
well-defined peak. Ionized electrons form two symmet-
ric peaks far away from the nucleus. The length scale in
this case is determined by the electron drift due to the
acquired pulse area and pulse length. At these moder-
ate values of Zl„the three-peak structure predicted in

Sec. II is not yet well developed. To observe it one has to
increase the field to the values for which n becomes com-
parable to the typical distances that an electron passes
due to drift effects. This is illustrated in Fig. 6, which
presents distributions obtained for ZL, = 50, i.e. , n = 28.
Trapped electrons form a central peak of width n,
whereas ionized electrons form two peaks located at +2+,
and longer tails of the distribution. These results were
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FIG. 6. (a) Spatial distributions of electrons after the turnon of the laser pulse obtained with the help of a phase-space-
averaging method. The parameters are the same as in Fig 5 (a), except that Fl, = 50, and u)r, T /2m = u)L, T,s/2m = 5.
The solid line represents the total distribution, the dotted line the distribution of trapped electrons, and the dashed line the
distribution of ionized electrons; (b) same as (a), but for ~I.T „/2m = ~I.Toff/27r = l.
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obtained after performing averaging over the uniformly
distributed initial phase of the pulse.

In Figs. 7 and 8 we present results concerning total
ionization probability, and its dependence on the laser
frequency. The pulse shape is the same as in Figs. 5 and
6. Figure 7 was obtained for uq = 2E. The evidence for
stabilization is clear since ionization probability goes to
roughly 55% as the field increases. For small field, ion-
ization probability increases with the field in accordance
with perturbation theory. Note that ionization probabil-
ity has a minimum in the region when nonperturbative
effects start to play a role. Here the minimum is at-
tained already for 8p = 5, i.e. , for o. 2.5. This suggests
that in classical simulation counterplay of weak-field and
strong-field effects leads to optimal stabilization even be-
fore the KH potential starts to split into a developed
double-well shape. We shall show in the following that
it is also the case for a 3D Coulomb potential. This is a
novel and unexpected feature of the classical dynamics,
and we could not find any other explanation of this effect
apart from the complexity of the dynamics in this region
of parameters. 1D results are extremely sensitive to fre-
quency increase. The structure shown in Fig. 7 can still
be seen in Fig. 8 obtained for ur, = 2.8E, but the total
ionization is here strongly suppressed. This suppression

is connected with the fact that the increase of the fre-
quency means practically that we enter the weak-field
regime. Nevertheless, the optimal stabilization (minimal
ionization probability) shifts towards smaller values of n.
For even larger values of ~L, & 3E the ionization prob-
ability is practically zero for n & 1 and becomes finite

50%%uo when o. becomes larger than 1. The interesting
structure discussed above cannot be well resolved in this
case T.his is, however, in accordance with our Fig. 3 from
Ref. [18],which shows that a rapid decrease of ionization
probability with the increase of the "efFective" photon
number.

Our results indicate that for ionized electrons the ac-
quired drift plays an essential role. Such drift may be
acquired already in the initial part of the motion pro-
vided the turn-on time To„is very short. We observed
indeed the dependence of ionization probability on To„.
For smaller values of ug & 3, there is an optimal turnon
time being equal to several optical periods. Adiabatic
turn-on leads to rather efFective weak-field ionization.
For ~1, = 2E the stabilization mechanism is still quite ef-
fective for T,„equ lato 1 period, but it apparently breaks
down for T~„=0. In the latter case one could expect that
the pulse tr, 8(t) sinur, t should lead to a stronger ion-
ization than 8'L, 8(t) cosur, t where 8(t) is the Heaviside
function. The reason is that for free electrons the first
one leads to maximal drift, whereas the second does not
introduce any drift effects at all. In reality, the situation
is more complex, since the interaction with the potential
plays a role in the initial part of the motion and the total
resulting drift is a combined effect of free-electron motion
and the action of the potential forces. For ~L, = 2E, —
ZL, = 5, and T~„=0 we have observed practically 100%
ionization, but we have also seen very strong correlations
between the final energies of the electrons and the initial
phase of the laser pulse. There are optimal choices of this
phase that lead to minimal ionization probability, or at
least to very small positive values of the final electronic
energy. The value of such an optimal phase cannot be
guessed easily as it results from complex interaction in
the initial part of the dynamics.

We stress again that the above results agree very well
with the results of the exact quantum-mechanical anal-
ysis (see also [28]). For the smoothed one-dimensional
potentials this fact has been for the first time observed
by Dando and Richards [21]. We turn now to the dis-
cussion of the 3D result, and show essentially different
features of the classical dynamics in that case.
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FIG. 8. Same as Fig. 7, but for cuI. ———2.8E.

V. LACK OF STABILIZATION IN THE 3D
COULOMB POTENTIAL

In this section we present results concerning classical
simulations for the 3D Coulomb potential. Generally
speaking, in this case stabilization can hardly be seen, un-
less one uses unrealistically high values of laser frequen-
cies [18]. For realistic frequencies (say "half-photon" ion-
ization) ionization probability very quickly attains values
close to 1 when the field increases and a becomes of the
order of one. The physical reason is the following: elec-
trons are strongly bounded initially and may be subject
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to very strong Coulomb forces in the initial part of the
motion. They absorb then a large portion of energy and
angular momentum, and due to the fact that the phase
space is larger in 3D than in 1D they immediately leave
the vicinity of the nucleus. Even if some electrons re-
main trapped after the pulse turnoE, the mechanism of
trapping has nothing to do with the Gavrila mechanism.
After initial transient, electrons may land on highly ex-
cited Rydberg orbits, which are well separated from the
potential center. Electrons on such orbits feel very weak
Coulomb forces, and practically do not absorb energy
in the field on average, just like free electrons in the
field. These statements are very general in nature, and
do not depend practically on the pulse parameters (pulse
shape, Beld strength, frequency, duration times, turnon
and turnoff, drift effects, etc.) They also depend very
weakly on the properties of the initial state (form of an
ensemble, initial energy and angular momentum, etc. ').

We illustrate these results below.
Let us first discuss the dependence on the pulse shape.

In our Letter we discussed results for short trapezoidal
pulses (T~ equal to 20 optical periods). Figure 9 con-
tains results for an adiabatically turned on sinusoidal and
longer (105 optical pulses) pulse. Here again ur, = 2E, —
but E = —

~ for 3D hydrogen. Ionization probability is
close to 98%. Note the small structure for ZL, 5 (i.e. ,
n = 5). This is the same structure as observed in 1D. It
results from the interplay of perturbative and nonpertur-
bative character of the motion, and as we shall see below
is not directly connected to the Gavrila mechanism. We
have also made simulations for rapidly turned on pulses,
as well as checked the sensitivity of the results with re-
spect to the initial pulse phase. Figure 9 was obtained
after performing an average over this phase, but the re-

sults obtained with fixed phase are quite analogous. No
significant correlation between the initial phase and ion-
ization probability has been observed.

A similar conclusion follows from Fig. 10, which
presents the dependence of the .'onization probability on
initial angular momentum. In the simulations we have
used various initial ensembles corresponding to different
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values of the angular momentum. For Z = —2, L may
range between 0 and 1, corresponding to a difFerent ec-
centricity of electrons. In Fig. 10 we show the results
for limiting cases L = 0 and L = 1, and short laser pulse
with Tri equal to 20 optical periods. All the other results
for intermediate L lie between the two displayed curves.
The ionization probability for moderate field (Zl. = 2)
can be quite reduced for ensembles with large L. This
can be understood in classical terms, since for L = 1 the
ensemble consists. of electrons on circular orbits. Such
electrons feel weaker potential forces and have less chance
to absorb energy in the field. Quantum mechanically this
corresponds to the fact that corresponding dipole transi-
tion matrix elements are larger for L = 0 than for L = 1.
In Fig. 10(a) we show that with decreasing efFective pho-
ton number (nph = E/~I,—) or, in other words, with in-
creasing laser frequency ionization probability falls down
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FIG. 9. Ionization probability as a function of field
strength for the 3D Coulomb potential. The laser pulse has
a sinusoidal shape with uL, = 2E, err, T~/27r =—105, and
~I,T „/2m=err, T,rr/2vr = 30. R.esults are averaged over the
initial pulse phase.

FIG. 10. (a) Ionization probability as a function of effec-

tive photon number, n~i, = E/~r. , for the 3D —Coulomb
potential. The laser pulse has a trapezoidal shape with
u)r, = 2E, urs. To/2m = 20, —and u)I, T,„/2vr = url. T,rr/2vr = 5.
Results are averaged over the initial pulse phase. The dotted
line corresponds to initial angular momentum L = 1, the solid
line to L = 0. (b) Same as (a), but displayed as a function of
the field strength for the fixed ~g ———2E.
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to zero for ~L, 5 for I = 1, and for cuL, 40—50 for
L = 0. Note, however, that for "half-photon" ioniza-
tion (cuL, = 1), both curves practically coincide. This is
even more evident in Fig. 10(b) where we display ion-
ization probability as function of the field strength for
iver, = 2E =—1. Although for weak field the ionization
degree for L = 1 is smaller, both curves very quickly
saturate on the level close to 1 for field strengths larger
than 2 a.u. Even more, our results suggest that ioniza-
tion probability for L = 1 becomes systematically larger
than that for L = 0 for such strong fields. This can be
understood, since for strong fields the forces induced by
the laser can easily push electrons toward the potential
center where Coulomb forces are extremely large. Elec-
trons acquire then both energy and angular momentum.
Those that initially had already momentum may acquire
even more, and therefore may more easily explore large
regions of the phase space in order to escape.

Gavrila and Burnett [26] suggested recently that the
best initial state for achieving stabilization would be a
state of maximal angular momentum, with maximal pro-
jection of this momentum on the polarization axis, z. In
classical terms such a state corresponds to a circular orbit
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FIG. 12. Trajectory of an electron (s and y coordinates)
trapped in the 3D Coulomb potential. Parameters are the
same as in Fig. 11.

FIG. 13. Another example of a trajectory of an electron
(z and y coordinates) trapped in the 3D Coulomb potential.
Parameters are the same as in Fig. 11.

t
v~„;„(t)= E'I,f(t) cos((uL, t + P).

tq
(21)

Such a definition assures that absorption of reduced en-

in the y-z plane . We have checked that the ionization is
not suppressed when such initial state is used in classical
simulations.

The lack of stabilization in the discussed regime of pa-
rameters in the 3D Coulomb potential suggests that the
Gavrila mechanism does not work here at all. Indeed, a
closer look on typical trajectories shows this directly. In
Figs. 11—13we present typical trajectories for ionized and
bound electrons. In both cases the electron gains energy
on the mean during the very initial part of its motion
(first, or couple of first periods). It ends up then in an
ionized state that corresponds to an escape with constant
velocity (Fig. 11), or in a highly excited Rydberg state
(Fig. 12). For such a state the electron is mostly far from
the nucleus and in the mean sense does not practically
absorb energy anymore. Generic trajectories of trapped
electrons have this one-step character. Figure 13 shows
a rare example of a two-step process. The electron lands
in a first step in a moderately high Rydberg state, enters
the vicinity of nucleus, absorbs energy once more, and
finally ends up in an even higher Rydberg state. Ob-
viously, the final spatial distribution is determined by
length scales that do not have anything in common with
n. Distribution of ionized electrons is characterized by
typical acquired drift (which depends on the energy gain
in the initial phase and on the duration of the remaining
part of the pulse). Distribution of trapped electrons is
characterized by a typical size of final Rydberg states.

The fact that electrons typically absorb energy during
the first couple of periods can be expressed in statistical
terms. To this aim we calculate reduced absorbed energy
(see also Richards [22]), as

(2o)

where () denotes both the sample average and the time
average over one optical cycle [ti, t i+2m/ul, ]. The second
term on the right-hand side has a physical meaning of the
quiver energy during this cycle, with velocity defined as
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FIG. 16. Ionization probability as a function of the field
strength for cur, = 4E. O—ther parameters of the laser pulse
are the same as in Fig. 10(a).

1 6(E„d(t))
(22)

is a decreasing function of the field strength (Fig. 15).
This expresses the fact that with the increase of Z~ both
ionized and trapped electrons are further from the nu-
cleus. The weaker the interaction, the smaller is the ab-
sorption rate. Note, however, that the rates in Fig. 15
are an order of magnitude smaller from those calculated
in the quantum theory of Kulander, Schafer, and Krause
[19).

ergy follows a smooth curve. In Fig. 14 we present
(E„~(t))for indicated values of the field strength. Ab-
sorption, as we see, takes place for t ( 35, i.e., t & 5
optical periods. After, the transient electron enters a
plateau region, where energy increases very slowly. Note
that the level of the plateau increases with increasing E'I, .

There are, however, signatures of stabilization, i.e., re-
duction of ionization probability or photoabsorption rate
in our data. Although they do not correspond directly
to the Gavrila mechanism, they are worth mentioning.
First of all, the mean rate of energy absorption in the
plateau region,

Other signatures of stabilization are shown in Figs. 16
and 17. We show here ionization probability as a function
of the field strength for different values of ioL, . Although
ionization very quickly becomes total, we observe a char-
acteristic minimum in the curves that reflects complex
interplay between weak- and strong-field effects. Note
that as in 1D case the minimum occurs for n ( 1 for
large enough ioL, (i.e., o. 0.3 in Fig. 17). This indi-
cates that the physical origins of this effect cannot be
explained by the Gavrila mechanism. Recently, Shake-
shaft [39] introduced another criterion for stabilization.
According to this argument, stabilization should occur
when the quiver energy is comparable to the energy of a
single photon. Note that the characteristic field strength
in this case is typically smaller than if oi & 1.

Summarizing, we would like to stress the distinction
between the two discussed mechanisms of ionization sup-
pression. The first one (A) employs the fact that a
free electron on average does not absorb energy. A
bounded electron, thus, can only gain energy from a laser
pulse close to the nucleus, i.e., during scattering on the
Coulomb potentiaL The second one (8) is the mecha-
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FIG. 15. Mean rate of energy absorption in the plateau
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rameters of the laser pulse are the same as in Fig. 11.
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FIG. 17. Same as in Fig. 16, but for col. = —20E.
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nism of Gavrila and co-workers, described in our recent
Letter [18] and in this paper. According to this mech-
anism, an electron is caught in the effective double-well
potential in the Kramers-Henneberger (KH) frame of ref-
erence. Of course in reality both mechanisms contribute
to the complex dynamics of electrons.

Mechanism A explains very well the suppression of ion-
ization with increasing frequency of the laser, when both
pulse intensity and the number of cycles are kept con-.

stant (compare Fig. 3 in Ref. [18]). It predicts suppres-
sion of ionization for less-eccentric orbits. In particular,
it suggests weaker ionization in 3D (where fewer orbits
are eccentric) than in 1D (where all orbits are eccentric).
This mechanism does not explain well the main feature of
the so-called stabilization of atoms, i.e. , decreasing ion-
ization probability with increasing laser intensity. This
mechanism works well in the regime of small a.

Our recent Letter and this paper are mainly devoted
to the study of mechanism B, i.e., the Gavrila mecha-
nism. In the KH frame the electron moves in an effective
potential V,ir. For large cr this potential has two minima.
If the electron has negative energy in the KH frame, with
probability z it will remain bounded in the lab frame.
This mechanism works well for high frequencies, since
only then are the corrections to Veer small.

Contrary to mechanism A, mechanism B works better
for larger n Mechan. ism B, as well as the notion of V,ff,
is more efficient for more eccentric orbits, provided the
forces that the electron fell close to the potential center
are not too large. In particular, it works strongly in 1D
regularized potentials. For a given initial configuration
it is sensitive to the switch-on of the pulse.

In Ref. [18] we considered short and rapidly switched-
on pulses that are accessible in experiments. We at-
tempted to answer a fundamental question: Is it possible
to introduce the electron into the negative energy orbit
in the KH frame? Our simulations show that it is hardly
possible in the 3D Coulomb potential. For such short
pulses the electron rapidly changes its energy and angu-
lar momentum during the switch-on, when it remains
close to the nucleus. Our simulations show that sec-
ond encounters with the nucleus are very rare. After the
switch-on the electron is practically free, and its energy
gain is very slow. In this phase, mechanism A plays a
role, and the energy gain rate is the decreasing function
of the laser intensity.

In the 1D smoothed potential the electron passes the
nucleus in every cycle and may equally well gain or loose
energy. These energy changes, however, are bounded,
since such are the forces acting on the electron in the
regularized potential (see also [21]). In the KH frame a
large fraction of electrons might have negative energies,
and the electronic distribution in the lab frame has in-
deed a characteristic three-peaked shape. We stress the
following:

(1) There is a very good quantitative agreement [28]
for small principal quantum numbers n between quantum
and classical dynamics of the 1D model of Eberly and co-
workers [27].

(2) Those results and experience with the 1D model

VI. STABILIZATION IN THE 3D
REGULARIZED POTENTIAL

As we have shown, the lack of stabilization in the SD
Coulomb potential is due to a large energy gain in the
initial phase of the motion. In this transient the electron
feels large Coulomb forces that cannot be overcome by
the laser field. It is natural to expect that the situation is
different, when we impose bounds on the potential forces
by regularizing the potential.

We have performed simulations in the SD regularized
potential of the form

V(r) = 1/(r+e). (23)

Our results show that indeed, independently of the form
of regularization (23) (and to great extent independently
of the initial energy and angular momentum, etc.) stabi-
lization according to mechanism B will occur and will
dominate laser-atom interactions, provided regulariza-
tion length e is of the order of 1. The results ob-
tained with such e compare much better to the quantum-
mechanical results obtained for the pure Coulomb case.
One may say that the principal effect of quantum me-
chanics is regularization of Coulomb singularity due to
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FIG. 18. Trajectory of an electron (2: and y coordinates)
trapped in the 3D regularized potential with e = 2. The
laser pulse has a sinusoidal shape with SL, ——6, ~1. ———2E,
~r, To /2vr = 5, err. T~/2n = 105, and err, T s/2n = 5. The
initial phase of the pulse has been chosen randomly.

suggest that for large n )) 1 and small l, and in the
regime of large n, the quantum and classical systems will
behave similarly in 3D.

(3) On the other hand, the results of quantum calcu-
lations in 3D from the ground state predict much weaker
ionization [19] than the classical theory. We attribute
this discrepancy to the differences accumulated during
the switch-on of the laser pulse, when the electric field
grows from weak to strong values.

The following question arises: What is the physical
reason of the above-mentioned discrepancy? To answer
this we looked for conditions under which stabilization
according to mechanism B can be observed in the SD
system.
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FIG. 19. Another trajectory of an electron (z and y co-
ordinates) trapped in the 3D regularized potential for e = 2.
Parameters are the same as in Fig. 18.

FIG. 21. Trajectory of an electron (z and y coordinates)
trapped in the 3D regularized potential with e = 1. Other
parameters are the same as in Fig. 18.

quantum uncertainty. In Figs. 18 and 19 we show typical
trajectories obtained for e = 2. For such cases most elec-
trons remain trapped. Figure 18 shows clear evidence for
mechanism B of Gavrila. Electronic motion consists of
three superimposed oscillations:

~ "free" oscillations of the z coordinate in the field with
amplitude n;

~ slower oscillations of the z coordinate between the
minima of the KH potential located at +2o, ;

~ item oscillations in the transverse direction (y or z)
characterized by a much smaller amplitude.

Note that the latter has a quasichaotic character
(Fig. 18). Sometimes (but very rarely) the motion of
the trapped electron has a very regular character leading
to I issajou-like curves. Such periodic orbits extend from
—n to a in the x direction. They occur more frequently
for other smoothed potentials, i.e. , for potentials with a
repulsive core at r = 0.

In Figs. 20—22 we present results for the intermediate
case e = 1. Here the ionization degree is roughly 50%%uo and
compares well with the quantum-mechanical results of

Kulander. Ionized trajectories display similar character
as in the Coulomb case (Fig. 20). After some transient,
electrons leave the nucleus with constant mean velocity.
Trapping of electrons occurs as a joint result of two mech-
anisms (A and B). They may bounce for some time in the
KH potential (mechanism B). Since in this motion they
pass sometimes close to the nucleus, they may sometimes
absorb enough energy to jump to a highly excited Ryd-
berg state. There the electrons are typically far from the
nucleus and are stabilized according to the mechanism A.
The trapping may have a one-step character (from KH
potential to Rydberg orbit; see Fig. 21) or a multistep
character (KH —+ Rydberg —+ KH —+ Rydberg ~ etc. ;

see Fig. 22).
In Fig. 23 we show ionization probability as a function

of the field strength. The evidence of stabilization is
obvious. Note that this result compares much better with
quantum-mechanical results of Kulander than any of the
curves obtained for the pure Coulomb potential.

Prom the analysis of trajectories it follows that an elec-
tron trapped in the KH potential will have a tendency to
escape in the transverse direction (both in order to ion-
ize, as well as in order to become trapped in one of the
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FIG. 20. Trajectory of an electron (z and y coordinates)
ionized in the 3D regularized potential with e = 1. Other
parameters are the same as in Fig. 18.

FIG. 22. Another trajectory of an electron (z and y coor-
dinates) trapped in the 3D regularized potential with e = l.
Other parameters are the same as in Fig. 18.
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strength for the SD regularized potential with e = 1. Other
parameters are the same as in Fig. 18.

FIG. 25. Angular distribution of ionized electrons for the
case of a regularized potential with ~ = 1. The parameters of
the pulse are the same as in Fig. 18, except 8'1. ——2.

Rydberg states). Angular distribution of electrons should
therefore be more concentrated for angles 8 = 7r/2, where
8 denotes the angle between the final electron velocity
and polarization axis z.

This should be in contrast with: (a) the results for
weak fields, where escape should rather take place in
the direction of polarization; (b) the results for the pure
Coulomb case. We illustrate this point in Figs. 24—26.
Indeed, angular distributions for regularized potential
are more pronounced for 8 = vr/2 for large fields. For
weak fields (Fig. 25) and for the pure Coulomb case
(Fig. 26) ionization occurs mainly along the polarization
axis. Note that contrary to Fig. 24, the distribution in
Fig. 26 is not symmetric and is in fact sensitive to the
initial phase of the laser pulse.

VII. CONCLUSIONS

We have presented a detailed classical theory of sta-
bilization of atoms in very strong laser fields. We have
shown that two mechanism of ionization suppression are

100

relevant for the dynamics: (A) lack of absorption for
quasi-free-electrons; (B) trapping in the KH potential.
Our main results may be summarized as follows:

~ For pure Coulomb potential trapping in the KH po-
tential in the statistical sense is hardly possible. If, how-
ever, electrons are trapped, this occurs due to mechanism
A. They land on highly excited Rydberg orbits.

~ For regularized potentials (both in SD and 1D) stabi-
lization according to mechanism B is very efficient. Mo-
tion of trapped electrons is quasi-one-dimensional.

~ Classical dynamics predicts minima of ionization pro-
bability for n ( 1 for both Coulomb and regularized
potentials. This is a novel efFect, and it is not clear how
to relate it to mechanism A or B.

~ The results for regularized potentials in SD agree
with quantum-mechanical results obtained for the
Coulomb potential [19). We speculate that the major
quantum-mechanical effect in the process of ionization
by ultrastrong, high-frequency pulses consists in smooth-
ing of the Coulomb singularity. On the other hand, one
should stress that the results of quantum-mechanical cal-
culations of Kulander, Schafer, and Krause [19] corre-
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FIG. 24. Angular distribution of ionized electrons for the
case of regularized potential with c = 1. We present the num-
ber of electrons as a function of the cosine of the angle between
the final velocity and polarization axis. The parameters of the
pulse are the same as in Fig. 18.
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FIG. 26. Angular distribution of ionized electrons for the
case of Coulomb potential. The parameters of the pulse are
the same as in Fig. 18.
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spond e8ectively to a smoothed potential. This is due to
a finite grid of the order of 0.15 a.u. used in the numerical
method (see [40]). From this point of view the results of
Kulander, Schafer, and Krause should be compared with
the results of classical analysis for regularized potentials.

We stress that we do not claim that the results of Ku-
lander, Schafer, and Krause are due to a finite grid, and
that the existence of stabilization is questionable. We
would like only to point out the importance of potential
smoothing. In our opinion it would be very interesting to
compare quantum-mechanical results for pure Coulomb
and smoothed potentials in the discussed regime of pa-
rameters.

Note that the situation that we discuss cannot be di-

rectly compared with that described in Gavrila's calcu-
lations that lead to trapping. The reason is that we fully
account for the eKects of the pulse turnon and turnoE.
According to classical theory, it is exactly during the
turnon, when the electron attains very large accelerations
and ionize in the Coulomb potential.
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