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Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model
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Within the context of the Maxwell Garnett model, we calculate the nonlinear susceptibility of a com-

posite optical material comprised of spherical inclusion particles contained within a host material. We
allow both constituents to respond nonlinearly and to exhibit linear absorption. Our treatment takes
complete account of the tensor nature of the nonlinear interaction, under the assumption that each con-
stituent is isotropic and that the composite is macroscopically isotropic. The theory predicts that there
are circumstances under which the composite material can possess a nonlinear susceptibility that is

larger than that of either of its constituents. It also predicts that, for the case in which the host material

responds nonlinearly, the tensor properties of the nonlinear susceptibility of the composite can be very

different from those of the host material.

PACS number(s): 42.65.An, 42.70.Nq

I. INTRODUCTION

Approaches to the development of optical systems with
desirable nonlinear optical properties, such as large non-
linearities and fast responses, generally follow one of
three routes. The first is that of malecular engineering,
where one attempts to find, or to design at the molecular
level, materials with intrinsic nonlinear optical properties
of interest. The second is that of propagation desi'gn,

where the geometry of the system results in light propa-
gation which enhances the effect of the nonlinearities.
Here the optical fiber is a prime example [1];diffraction-
free propagation over long distances leads to the dramat-
ic importance of nonlinear effects, despite the small in-
trinsic nonlinearities of optical glass. Quasi-phase-
matching in second-harmonic generation structures [2] is
another example.

A third approach is based on materials architecture.
Here different materials are combined to form a compos-
ite optical material [3]. Such a medium is comprised of a
mixture of two or more components that differ in general
with respect to both their linear and nonlinear optical
characteristics, yet is homogeneous on a distance scale of
the order of the optical wavelength. Hence the propaga-
tion of light can be described by means of suitably defined
effective linear and nonlinear optical susceptibilities.
Multiple quantum wells and superlattices fall into this
category, although these structures are small enough that
bulk properties cannot be ascribed to their components.
Other examples are the metal colloids [4] and
semiconductor-doped glasses [5] studied experimentally
and theoretically by, e.g. , Flytzanis and co-workers,
where large enhancements (up to 10 ) in the value of the
nonlinear susceptibility were reported [4], albeit with
concomitantly enhanced absorption. In such simpler-
and in principle easier to manufacture —composite rna-

terials, it is often a good first approximation to treat the
linear- and nonlinear-response coefficients of the constitu-
ent materials to be the bulk response coefficients, or to be
those coefficients modified slightly to describe, e.g., the
change in transport properties due to the small size of the
inclusion particles.

The earliest theory to deal with the linear optical prop-
erties of such composites is due to Maxwell Garnett. In
his work [6], the composite material is assumed to be
comprised of spherical inclusion particles embedded in a
host material, both of which are assumed to be isotropic
and to respond linearly to the incident light. Agarwal
and Dutta Gupta [7] and Haus et al. [8] have presented
theoretical studies of composite nonlinear optical materi-
als based on the Maxwell Garnett model with a nonlinear
response in the inclusion material, but curiously enough a
full generalization of the Maxwell Garnett model to pre-
dict the first nonlinear correction to the effective-medium
dielectric constant has not yet been developed. This we
do here. We allow either or both components to possess
a third-order nonlinear optical response, which for isotro-
pic materials can be characterized by two parameters
usually denoted A and B, and in terms of those parame-
ters and the dielectric constants of the constituent ma-
terials we derive expressions for the parameters A and B
of the effective medium. The results of our calculation
are completely consistent with previous studies [4,7,8]
but generalize those earlier results considerably in that
we allow the possibility of nonlinearity in both host and
inclusion, and that we explicitly treat the tensor nature of
the nonlinear susceptibility. The theory predicts that
there are circumstances under which the composite ma-
terial can possess a nonlinear susceptibility larger than
that of its constituents. And for a nonlinear host materi-
al, we find that the tensor properties of the nonlinear sus-
ceptibility of the composite can be considerably different
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than those of the pure host material.
The paper is organized as follows. In Sec. II we

present the model of the composite material topology and
the basic equations that govern the electromagnetic fields
in it. In Sec. III we give a heuristic derivation of the rela-
tion between the mesoscopic and macroscopic electric
fields, an argument that in essence goes back to Lorentz
[9];a more rigorous derivation of essentially the same re-
sult is presented in Appendix A. This relation is used in
Sec. IV to derive the well-known Maxwell Garnett result
for the effective-medium dielectric constant; in the course
of this determination some results crucial for later sec-
tions are presented. In Sec. V we consider the case of
nonlinearity in the inclusion material, and in Sec. VI that
of nonlinearity in the host material; some geometrical
formulas required in Sec. VI are derived in Appendix B.
Example results for composite nonlinear susceptibilities
are given in Secs. V and VI; we summarize our results
and consider the case of nonlinearity in both the host and
inclusion materials in Sec. VII.

Aside from any possible applications, investigations
such as ours are of interest because they begin to address
the fundamental question: How are the nonlinear optical
properties of a composite material related to those of its
constituents? The general answer to this question cer-
tainly depends on the topology of the composite. Here,
in generalizing the Maxwell Garnet model to nonlinear
response, we consider only the simplest possible topology.
The answer for a topology of a composite material con-
sisting of two or more interdispersed components, the to-
pology that in linear response is considered in the theory
of Bruggeman [10],can be expected to be rather different.
We plan to turn to that topology in a future publication.

II. THE MODEL AND BASIC EQUATIONS

We assume a composite topology where small particles,
which we call inclusions, are distributed in a host medi-
um. As an approximation, the inclusions are assumed to
be spheres of radius a. We define the characteristic dis-
tance between inclusion particles to be b, and we assume
that

FIG. 1. The composite topology.

We describe the dielectric response of the material sys-
tem by means of the relation

p(r) =y(r)e(r)+p L(r),

where

(2.4)

(y' —y")e(r) if r designates a point

p'(r) —= within an inclusion

0 if r designates a point within the host,
(2.6)

and combine Eqs. (2.2)—(2.6), the Maxwell equations (2.2)
become

V [e"e(r}]=—4m.V p'(r),

V b(r)=0,
V Xe(r) —icob(r) =0,
V Xb(r)+icos"e(r) = 4' top'(r)—,

(2.7)

with co:—co/c, where the inclusion and host linear dielec-
tric constants are given by

i, h 1+4&~I,h (2.g)

r

if r designates a point within an inclusion
y(r)= ' (2.5)g" if r designates a point within the host

is the spatially varying linear susceptibility, and where
p "(r) is the nonlinear polarization, to which we turn in
detail in Sec. V. If we define

a «b «k, (2.1)
and where we have introduced the "source" polarization

V Xe(r, t)+ ——b(r, t) =0,1 a
c Bt

V Xb(r, t) ——e(r, t) = —p(r, t—),1 a
c Bt ' c Bt

(2.2)

where A, is the wavelength of light in vacuum at frequen-
cies of interest (see Fig. 1). Denoting the electric- and
magnetic-field vectors by e(r, t) and b(r, t), respectively,
we write the Maxwell equations in the form

V e(r, t)= 4m.V p(r, t), —

V.b(r, t) =0,

p'(r)—=p'(r)+p "(r) . (2.9)

We have used lowercase letters (e, b, etc.) for the elec-
tromagnetic fields appearing in these equations because,
although we have adopted a macroscopic description of
each constituent of the composite, we next introduce a
"more macroscopic" description which we obtain by
averaging the fields over a volume that contains many in-
clusions. We perform this average through the use of a
smoothly varying weighting function b,(r)=h(r), where
r = ~r~. The volume integral of b (r) is normalized to uni-
ty,

where p(r, t} is the dipole moment per unit volume, and
where magnetic effects are assumed to be negligible. We
seek stationary solutions of these equations of the form

f b, (r—r')dr'=1,

and it has a range R satisfying the inequalities

(2.10)

e(r, t)=e(r)e ' '+c.c. (2.3) b «R «A, . (2.11)
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The averaged fields are then defined by

E(r) =fA(r —r')e(r')dr',

P(r) =f b, (r —r')p(r')dr',

P (r) =f b, (r —r')p (r')dr' .

(2.12)

Ba(r r
Bx

etc. , where the integrals are to be performed over all
space. It is easily confirmed that this averaging pro-
cedure commutes with differentiation, e.g.,

BE(r) Bh(r —r')
e r' dr'

medium. In this section we present a simple physical ar-
gument that leads to essentially the same result as that
derived in Appendix A. This simple physical argument,
which follows the original argument of Lorentz [9], is
somewhat heuristic; but we give it here for the benefit of
the reader not interested in all the mathematical details,
and to show why the rigorous result derived in Appendix
A is physically reasonable.

We wish to relate e(r), which is given by the particular
solution of the mesoscopic Maxwell equations (2.7}plus a
homogeneous solution, to E(r), which is given by the par-
ticular solution of the macroscopic Maxwell equations
(2.14) plus a homogeneous solution of those equations.
We surround the point r by a sphere of radius R centered
at r (see Fig. 2), and we write

(2.13) e(r) =e (r)+e'"(r)+e'"'(r),

E(r)=E (r)+E'"(r)+E'"'(r),
(3.1)

where the third of Eqs. (2.13) follows from the second by
a partial integration and the assumption that
b,(r —r')~0 as ~r

—r'~~~. By performing an average
of the Maxwell equations (2.7), we thus find that

V [e"E(r})= —4~V.P'(r),

V B(r)=0,
V X E(r) —icoB(r)=0,
VXB(r)+ice@ E(r)= —4micoP'(r),

(2. 14}

where

P'(r)—:P'(r)+P (r) . (2.15)

Our goal is to find a constitutive relation between P'(r}
and E(r). Since the range R of b,(r) is very much larger
than the characteristic separation b of the inclusions, we
expect that the resulting linear and nonlinear susceptibili-
ties will be spatially uniform; however, since R «A. ,
these averaged fields can be used to describe the propaga-
tion of light through the medium. The resulting suscepti-
bilities thus characterize an effective medium" that de-
scribes the optical properties of the composite material,
and we refer to the averaged fields E(r), B(r), etc. as
"macroscopic fields. " We refer to the fields e(r) and b(r)
as "mesoscopic fields, "since they contain more spatial in-
formation than the macroscopic fields, but yet are them-
selves averages of the microscopic electric and magnetic
fields, which vary greatly over interatomic distances.

e(r) —E(r) =e'"(r)—E'"(r) . (3.2)

Next, since R «A, , we can use the laws of electrostat-
ics (the co—+0 limit of the Maxwell equations) in estimat-
ing both e'"(r) and E'"(r). For the latter, we can also as-
sume that P'(r) is eff'ectively uniform over the sphere,
and so Eqs. (2.14) in the electrostatic limit immediately
yield [11]

(3.3)

where e (r) and E (r) are the above-mentioned homo-
geneous solutions. We define e'"(r) to be the contribution
to e(r) from p'(r') taken at points r' within the sphere,
and e'"'(r) to be the contribution from points r' outside
the sphere Like. wise, E'"(r) and E'"'(r) contain, respec-
tively, the contributions to E(r) from P'(r') taken at
points r' inside and outside the sphere. Now, since Ec(r }
is the spatial average of e (r) over a distance of the order
of R, and e (r) varies only over distances of order A, ,
which is very much greater than R, we may take
e (r)=E (r). Further, since we have assumed that
R &&b, the precise locations of the inclusions outside the
sphere are unimportant in determining e'"'(r), and to
good approximation we may take e'"'(r) =E'"'(r). Then,
combining Eqs. (3.1), we have

III. MESOSCQPIC AND MACROSCOPIC FIELDS:
A SIMPLE PHYSICAL ARGUMENT

Since the mesoscopic polarization p(r) is a known
function of the mesoscopic electric field e(r) [see Eqs.
(2.4) —(2.6) and Sec. V], an important step in deriving a
constitutive relation between P(r) and E(r) is in relating
e(r) to E(r). For then p(r) can be related to E(r), and
the spatial average of p(r) will give P(r) in term of E(r).

It turns out that one can derive a relation between e(r)
and E(r} that is both rigorous and useful. That relation
is derived in Appendix A, and is used in Secs. IV, V, and
VI to derive the constitutive relation of the composite

FIG. 2. A sphere of radius R is centered on the point r,
which may lie either in an inclusion (as illustrated) or in the
host medium.
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We find e'"(r) by solving Eqs. (2.7) in the electrostatic
limit, and then restricting the source term p'(r') that ap-
pears in the solution to points r' within the sphere
( ~

r —r'
~

& R ). The result is [12]

e'"(r}=f T(r —r').p'(r'}dr' —
z p'(r},

Tj& ~r —r'~ &R 36

(3.4)

where the radius g of the region excluded from the in-
tegration is allowed to go to zero after the integral in Eq.
(3.4) is performed. This integral involves the static
dipole-dipole coupling tensor for a medium of dielectric
constant e", which is given by

T(r) —=
3rr —U

E' T
(3.5}

where r=r/r and U=xx+yy+zz. Defining

(3.6)

and a cutoff function

r&R
0, r)R, (3.7)

we can combine Eqs. (3.2), (3.3), and (3A) to give

4me(r) =E(r)+ P'(r)+ T (r—r')c'(r —r') p'(r')dr'
3&h

4m„p'(r).
3E'

(3.8)

This equation is the central result of this section. It
shows how the difference between e(r) and E(r) depends
only on p'(r') at points r' within a distance R «A. of r
[cf. Eq. (3.2)]. This result is crucial in deriving, to good
approximation, a local relation between P'(r) and E(r)
(Secs. IV —VI below). Our derivation of Eq. (3.8) is not
rigorous, but the essential physics of Eq. (3.8) is correct;
the rigorous derivation of a more exact relation is given
in Appendix A. In the next section we state that more
exact relation, and return to the formal development of
our theory.

IV. THE MAXWELL GARNETT EQUATIONS

In this section we derive the Maxwell Garnett equa-
tions, which provide a good approximate description of
the linear optical properties of a composite medium of
our assumed topology. This result is of course well
known [6], but we recover it here both to illustrate our
approach and to illustrate the nature of the approxima-
tions involved. In addition, we obtain some results that
are needed for the calculation of the nonlinear optical
response that is presented in the following sections.

In both this section and the next, we use the rigorous
forin of Eq. (3.8), as derived in Appendix A. There, using
only the mesoscopic Maxwell equations (2.7), the macro-
scopic Maxwell equations (2.14), and the definitions [see
Eq. (2.12)] of macroscopic fields in terms of mesoscopic

fields, we find an exact relation (A43) between e(r) and
E(r) for a b,(r) characterized by any range R. For
R « A, , that result reduces to

4m.
e(r) =E'(r) — p'(r)+ T'(r —r').p'(r')dr',

36

where

(4.1)

E'(r) =E(r)+ P'(r)
36

(4.2)

is the so-called "cavity field" [the E(r) —E'"(r) of Sec.
III]. Here

T'(r) =T (r)c (r) (4.3)

is the product of T (r) [Eq. (3.6)] and a cutoff function
c(r) [c(0)=1,c(r)—+0 as r —+~]. The function c(r) is
not the simple cutoff function c'(r) that appeared in Sec.
III [Eq. (3.7)], but is given by Eq. (A60); nonetheless, c (r)
has a range on the order of R.

We next note three useful results that follow from the
properties of the static dipole tensor:

fT'(r —r')dr'=0, (4.4a)

f To(r —r')dr'=0,
sphere,

rG sphere

f T (r —r')dr= a T(ro —r') . (4.4c)
sphere, 3r' 6 sphere

In the first equation, the range of integration is over all
space and the result follows from the fact that c(r) de-
pends only on r = ~r~, and that the integral of T (r) over
solid angle, for fixed r, vanishes. In the second two equa-
tions, the range of integration is the interior of a sphere
of radius a; in Eq. (4.4b) r is any point within the sphere,
while in Eq. (4.4c) r is a point outside the sphere and ro
the position of the center of the sphere. Equations (4.4b)
and (4.4c) may be derived, e.g., by using the fact that
T(r) =ei, 'V Vr ', and using Gauss's theorem.

We now return to a consideration of the polarization of
the medium. From Eq. (2.6) we have

(4.4b)

4~'(r") =(e' —e")8'(r")e(r"), (4.5)

4~'(r") =(E e }8'(r") E'(r")— p (r")4m

3

+ fT'(r" —r').p'(r')dr'

=3@"P8'(r") E'(r")+fT'(r" —r').p'(r')dr'

(4.6)

where we have put

where we have used Eq. (2.8) and where we define
8'(r")= 1 if the point r" is in an inclusion and 8'(r")=0
if r" is in the host. Next, we use Eq. (4.1) and neglect any
nonlinear behavior [p "(r)=0]; then p'(r)=p'(r) [Eq.
(2.9}],and Eq. (4.S}yields
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E' E

E +2E
(4.7)

p(r) =y"e(r)+p'(r),

P(r) =y"E(r)+P'(r),
(4.14}

We now wish to use Eq. (4.6) in the expression for P' [see
Eq. (2.12)],

P'(r)= Jb, (r —r")p'(r")dr", (4.8)

for which we need p'(r") at points r" within approxi-
mately R of r. We next introduce the standard approxi-
mations that are made in deriving the Maxwell Garnett
equation. The crucial ansatz is that, at points r" within
R of r, p'(r") within the inclusions can be approximated
in Eq. (4.8) by a uniform value that we call+(r). That is,
p'(r") in Eq. (4.8) can be replaced by+(r)e'(r"), and we
find

P'(r) =fp(r),
where

f= f b, (r —r")8'(r")dr"

(4.9)

(4.10)

is the macroscopic fill fraction of inclusions, here for sim-

plicity assumed to be essentially uniform throughout the
medium. To find an expression for+(r), we return to Eq.
(4.6).

Look first at the term involving T': For a point r" in a
given inclusion, the integral over points r in the same in-

clusion will give zero by virtue of Eq. (4.4b), the assump-
tion of a mesoscopically uniform&(r), and the fact that
c(r"—r') is essentially uniform over an inclusion. Now
consider the integral over points r' in different inclusions.
Since the range R of c(r"—r') satisfies R ))b, there are
many neighboring inclusions involved. If these inclusions
are randomly distributed with respect to the first in-

clusion, we expect on average no contribution from the
integral, by virtue of the assumption of a mesoscopically
uniform p(r) and Eq. (4.4a). Neglecting the corrections
that could result from any correlations in the positions of
the inclusions, we set the total contribution from the in-

tegral involving T' equal to zero.
Next, note that in Eq. (4.6) E'(r") is already a macro-

scopic field, obtained from the spatial average over a
range R of the mesoscopic field e(r)+4m.p'(r)/3e". Thus,
its variation over distances of order R can be expected to
be small, and we can set E'(r")=E'(r) in Eq. (4.6) for
points r" within R of r. It is then clear that the mesos-
copically uniform polarizationp(r) appearing in Eq. (4.9)
should be taken as

E
h

E+2E
(4.16)

which is the usual Maxwell Garnett result.
We close this section by deducing some relations that

will prove useful in the following section. Using Eqs.
(4.13) and (4.16) in Eq. (4.12) we find that

h

E'(r)= E(r) .
3E

(4.17)

Next, we combine Eqs. (4.5), (4.11), and (4.17) to deter-
mine the mesoscopic electric field e(r) inside an inclusion;
the result is

E+2Eh
E'+ 2E"

(4.18)

if r lies in an inclusion. The mesoscopic field e(r) at
points outside an inclusion is given below in Eq. (6.4). Fi-
nally, the dipole moment IM of an inclusion associated
with the polarizationp(r) of Eq. (4.11) is given by

p—: a g(r) =a~e"PE'(r) .4a
3

(4.19)

V. NONLINEARITY IN THE INCLUSIONS

We now turn to the nonlinear problem, where

p (r)%0. Combining Eqs. (2.4) and (2.6), we find that
the total mesoscopic polarization can be expressed as

p(r) =g"e(r)+p'(r)+p (r)

[cf. Eq. (4.14)]. Spatial averaging of this result gives

P(r) =y"E(r)+P'(r)+P (r),
and introducing the definition of D(r) we have

D(r) =E(r)+4irP(r)

(5.1)

(5.2)

where the second of Eqs. (4.14) comes from spatial
averaging the first. The total displacement D(r) is thus
given by

D(r) =E(r)+47rP(r) =e"E(r)+4irP'(r)—:eE(r), (4.15)

where the last of Eqs. (4.15) defines the effective-medium
dielectric constant e. Using Eq. (4.13), we find that e
satisfies

4~p(r) =3e"PE'(r) . (4.11) =E"E(r)+4~P'(r)+4mp "(r) . (5.3)

Using Eq. (4.11) in (4.9), and recalling that here

E'(r) =E(r)+ P'(r)4m

3 h
(4.12)

For a medium that is weakly nonlinear, we expect that,
when P'(r) and P "(r) are written to third order in the
electric-field strength E(r), we will have a relation of the
form

[Eq. (4.2) with P "=0],we find that

4~P'(r) =3e"Pf(1 Pf) 'E(r) . —(4.13)

D(r)= eE(r)+4m. A [E(r).E"(r)]E(r)

+2vrB [E(r) E(r)]E"(r), (5.4)

Finally, using Eq. (2.6) in Eq. (2.4) we have, neglecting
nonlinear effects,

where the tensor nature of the third-order terms in Eq.
(5.4} follows from symmetry arguments if we assume that,
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at the macroscopic level, the medium is isotropic [13].
We neglect nonlinear processes such as third-harmonic
generation, and concern ourselves only with the non-
linear modification of the propagation of light at its in-
cident frequency. The two parameters A and B are in
general independent, although for electronic nonlineari-
ties we must have A —B~0 as co~0. The determina-
tion of A and B in terms of the corresponding nonlinear
coefficients of the host and inclusions is the problem to
which we now turn.

In the present section, we treat the problem in which
only the inclusion material responds nonlinearly to the
optical field. Assuming for simplicity that the inclusion
material is itself isotropic and uniform, we then have a
nonlinear polarization of the form

pNL, i(r)
he+2e" e+2e"

e'+ 2e" e'+ 2e"

X [ A'[E(r) E*(r)]E(r)

+ —,'B '[E(r).E(r) ]E*(r}} . (5.7)

6+2E 6+26
r =f

E'+ 26 E'+ 2E

X [ A'[E(r) E'(r)]E(r)

Next, we average Eq. (5.5} [cf. Eqs. (2.12) and (5.7)] to
find P (r). Using the fact that E(r) can be assumed to
vary little over a range R, and using expression (4.10) for

f, we find that

(5.5) + —,'8'[E(r) E(r)]E'(r)} . (5.8)

where

p '(r)= A'[e(r) e*(r)]e(r)+—,'8'[e(r) e(r}]e"(r),

(5.6)

and where A ' and B' are the nonlinear coefficients of the
inclusion material. Since we are looking only for the
lowest-order macroscopic nonlinearity [Eq. (5.4}], it
suffices to estimate e(r) in Eq. (5.6) from the results of a
calculation that neglects the nonlinearity itself. That is,
we use Eq. (4.18) in Eq. (5.6) to obtain

4~'(r")=(e' ~")8'(r")e(r"), (5.9)

but we must now use the full set of Eqs. (4.1) and (4.2),
with p'(r") =p'(r)+p "(r), P'(r) =P'(r)+P "(r).
Equation (5.9) thereby becomes

Referring back to Eqs. (5.2) —(5.4), we see that, in order
to determine D(r) and subsequently to find expressions
for A and 8, our remaining task is to find P'(r). This re-
sult cannot be taken simply from the linear calculation of
Sec. IV, because p (r) makes a contribution to e(r) and
thus to p'(r) to lowest nonvanishing order in the non-
linearity. From Eq. (4.5), we have

4~'(r") =(6 6 )8'(r") E'(r")— p'(r") — „p"'(r")+fT'(r" —r') [p'(r')+ "(r')]dr'
3E' 3E

=3m"Pe'(r") E'(r")— „pNL'(r")+fT'(r" —r') [p'(r')+p (r')]dr'
3E'

(5.10)

where P is given by Eq. (4.7), and where the cavity field
now contains a nonlinear contribution and is given by

E'(r) =E(r)+ P'(r)+ P (r) .
3E' 3E'

(5.11)

Note that, from Eq. (5.7) and the fact that E(r) varies lit-
tle over a range of R, p "'(r") has also been taken to be
uniform in this sense, pN"'(r") =6'(r")g (r). Follow-
ing the arguments given after Eq. (4.8},we see that again
we may neglect contributions from the integral involving
T', and we find [instead of Eqs. (4.11) and (4.12)] that

However, we can still argue, much as we did after Eq.
(4.8), that p'(r") can be approximated within the in-
clusion by a mesoscopically uniform value, to be denoted
by+(r), at points r" within R of r; then, as in Sec. IV,

(5.12)

where E'(r) is given by Eq. (5.11). Combining Eqs. (5.7)
and (5.8) and (5.11)—(5.13), we can solve for P'(r); in fact,
it is clear from Eq. (5.3) that we need the sum of P'(r)
and P (r), for which we find

h @+2'
~'+26"

(5.14)

where P (r) is given by Eq. (5.8) and e is given by Eq.
(4.16) [14]. Using Eqs. (5.8) and (5.14) in Eq. (5.3) and
comparing with Eq. (5.4), we identify

h
2

h
'2

E+2G 6+26
E +2E E +2E'

(5.15)
h hE+2E E+2E

E +2E E'+2E

4m'(r) =3E P E'(r) — g (r)c 4~ NL

3 h
(5.13) as the nonlinear coefficients of the effective medium.

Note that the "local-field correction factor, " in this case
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(e+2e")/(e'+2@"), appears in fourth order [15] in Eqs.
(5.15); three powers enter because the nonlinearity is cu-
bic in the field [Eqs. (5.6) and (5.8)], while the fourth ap-
pears because the material also responds linearly to the
field generated by the nonlinear polarization [Eqs. (5.13)
and (5.14)] [16].

The results given by Eqs. (5.15) are illustrated graphi-
cally in Fig. 3. Here the vertical axis can be taken to
represent either the nonlinear coefficient A of the com-
posite normalized to the nonlinear coefficient A ' of the
inclusion material or the value of B for the composite
normalized to the nonlinear coefficient B' of the inclusion
material. The horizontal axis gives the fill fraction f of
the nonlinear material. For illustrative purposes we have
plotted these curves over the entire range 0(f ( 1, even
though interinclusion correlations not included in this
theory can in general be expected to modify significantly
the results if we do not have f «1. For the case in
which the linear dielectric constants of the host and in-
clusion materials are equal, we see that the nonlinear
coefficients of the composite are simply equal to those of
the inclusion multiplied by the fill fraction f. More gen-
erally, we see that the nonlinearity of the composite ma-
terial increases with f at a rate that is either more or less
rapid than linear, depending upon the ratio of the linear
dielectric constants. This result makes sense in that for
an inhomogeneous material of our assumed topology the
electric field will tend to become concentrated in regions
of lower dielectric constant. For e'& e", the electric field
within the nonlinear component (the inclusion material)
will be larger than the spatially averaged electric field,
thus enhancing the efFective nonlinearity of the composite
material.

Note also that Eqs. (5.15) predict that, for the case in
which only the inclusion material is nonlinear, the'ratio
of nonlinear coefficient A /B for the composite is equal to
the ratio A'/B' of the inclusion material. In the next
section, we shall see that in the opposite limiting case in
which only the host is nonlinear, the ratio A/B for the
composite is not necessarily equal to the ratio A "/B" for
the host.

VI. NONLINEARITY IN THE HOST

We now consider the more complicated situation in
which the host material is nonlinear with response
coefficients A" and B", but the inclusion material is
linear. Equations (S.l) —(5.4) are then still valid, but in-
stead of Eqs. (5.5) and (5.6) we have

p (r) =e"(r)p '"(r), (6.1)

As in Sec. V, it suffices to estimate e(r) in Eq. (6.2) from
the results of a calculation (Sec. IV) performed neglecting
the nonlinearity itself. In the linear limit p'(r)=p'(r),
where p'(r) vanishes within the host material, so for use
in Eq. (6.2) the field e(r) of Eq. (4.1) reduces to

e(r)=E'(r)+ fT'(r —r') p'(r')dr' . (6.3)

Now consider a particular inclusion, centered for simpli-
city at the origin. In its neighborhood a nonlinear polar-
ization will be induced according to Eqs. (6.1)—(6.3). In
evaluating the contribution from the T' term in Eq. (6.3),
we may neglect the contributions from all the other in-
clusions except the one at the origin, following the argu-
ments given in the paragraph following Eq. (4.10). So
outside our particular inclusion we have

e(r) = [U+a }rim"T(r)] E', (6.4)

where we have used Eq. (4.19) for the (linear) dipole mo-
ment of the inclusion, and Eq. (4.4c) for the integral over
the inclusion. We have assumed we are at distances
r & b &&R from our particular inclusion, so T' has been
approximated as T; we shall see shortly that it is only at
such distances that we get a significant contribution from
the T term in Eq. (6.4) to Eq. (6.2). The fact that r ((R
has allowed us to treat E'(r) as essentially uniform,
E'—:E'(r =0).

Writing the Cartesian components of Eq. (6.4) as

where e"(r)=1 if the point r is in the host material and 0
if r is in an inclusion, and where

p "(r)= 3 "[e(r) e*(r)]e(r)+—,'B"[e(r) e(r)]e'(r) .

(6.2)

e, (r)=(5,"+r a Pt; )E', (6.5)

I

1.0

Z4

o 0.5

where repeated indices are to be summed over, and where

t;—:(3n;n, —
5;~ ), (6.6)

with n = r lr, we can use Eqs. (6.2) and (6.5) in Eq. (6.1) to
determine p (r) in the neighborhood of our particular
inclusion. We find

0.0
I

0.0
I

0.5
fill fraction f

I

1.0

pNL( r ) pNLu( r ) +pNLd( r )

where

pNLu( r ) g h( Ec Ec }Ec+i Bh( Ec.Ec)Ec

and

(6.7}

(6.8)

FIG. 3. Variation of the nonlinear coefficients A and B of a
composite optical material with the fill fraction f for several

different values of the ratios of linear perrneabilities.

p NLd( r ) g hD tittle
( r }EcE E

+ ,'B"Dfg~(r)E' E'E'— (6.9)
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where Dg~&~& and Dgtf~are specified by Eq. (Bl1) of Ap-
pendix B, and the discussion following Eq. (B12). Note
that p "(r) is uniform in the neighborhood of our par-
ticular inclusion, while p "(r) is a nonlinear polarization
that "dresses" the inclusion, and is nonzero only close to
it. Of course, there are terms in p (r) that cancel
p ""(r) when r is inside the inclusion [see Eq. (Bl 1) of
Appendix B], since p "(r) is zero there. Now we put Eq.
(6.7) into the third of Eq. (2.12) to determine P "(r). We
treat E' as uniform over the range R of h(r) [recall the
discussion preceding Eq. (4.11)];adding up the contribu-
tions from the D terms inclusion by inclusion, and
neglecting the variation of 6 over the range of the D's, we
find that

pNL g h(Ec Ec )gc + i g h(Ec.Ec)Ec
m m

+ 2 "A' fDgf~z (r')dr' E'E'E'

+—'8"JV' fD &h
(r')dr' E' E'E' (6.10)

where JV=fl(4mal3. ) is the number of inclusions per
unit volume. The integrals in Eq. (6.10) receive contribu-
tions only from terms in the D's that drop off as r and
r for r )a; the integrals are evaluated in Appendix B
and are given by Eqs. (B14). Substituting those expres-
sions into Eq. (6.10), and using Eq. (4.17) for E', we find
that

P =(E E")E[2 (1 f)+f&—( —"Ipl'+ ,'p'+ '-plpI )—+f&"( "Ipl'+—',plpl')-]
3E' 36

+(E E)E'[ & "(1 f)+f&"—(2p' ',
I
pl' ,'—pl p-l')+—f—~"( ', p'+ ,

' Ip-l'+ —,', pl-pl'}]
3E' 3E'

(6.11)

(6.12)

where we have used Eqs. (2.6), (2.8), and (4.1), as well as
the fact that p "(r}=Q inside the inclusion; E' of course
is given by [see Eq. (4.2)]

Ec—E+ P + PNL
h 3~h

(6.13)

where we again neglect the variation of E' over our par-
ticular inclusion. The integral in Eq. (6.12) involves
p'(r) =p (r)+p'(r}. Following the arguments given
after Eq. (4.10), the contribution from p'(r) is negligible
and, arguing similarly with p (r) we can neglect the
contributions from the dressings of nonlinear polariza-
tions [see the discussion after Eq. (6.11)] surrounding all
inclusions other than the particular one under considera-
tion. That is, the p'(r') in Eq. (6.12) can be replaced by
the p "(r') given by Eq. (6.7). Doing this, and integrat-
ing Eq. (6.12) over our particular inclusion, we find

where P is given by Eq. (4.7) and e by Eq. (4.16}. The
terms 2 "(1 f) and B—(1 f) descri—be the nonlinear po-
larization that would result if all of the host material [fill
fraction (1—f)] responded nonlinearly only to the cavity
field; the other terms result from the "dressings of non-
linear polarization" induced above and beyond this in the
neighborhood of each inclusion by its own dipole field.

To complete our expression (5.3) for the displacement
field D(r), and subsequently to identify the effective-
medium nonlinear-response coefficients A and 8
[Eq.(5.4)], we must now find P'(r). Since p'(r) is nonzero
only in the inclusions [see Eq.(2.6)], we return to the con-
sideration of one particular inclusion as discussed at the
start of this section. For points r at r & a we have

h

p'(r) = E'— p'(r)+ fT'(r —r') p'(r')dr'
4~ 3h

Q
l

p'= (e' —e") E'— +8
3 h

(6.14)

E+2C E+2E
36h 3&h

+-'ah afi,*k» r' dr' E,*E,E„
E'+ 2E E +2E

3Eh 3~h

where the definitions of the integrals appearing in Eq.
(6.17) are given in Appendix B; the values of the integrals
are also worked out there [Eq. (B13)]. With these results,
we find

where

p'= f p'(r)dr (6.15)
sphere

is the dipole moment associated with the p'(r) of our par-
ticular inclusion, and where

g—= fT(r') p "(r')dr', (6.16)

with p "(r') given by Eq. (6.7). In arriving at Eqs. (6.14)
and (6.16}we have omitted the cutoff function c (r) from
T'. For p

" it is not needed, as long as we integrate Eq.
(6.16) over solid angle first, since p

"" is uniform; and

p
""is cpnfined tp the neighbprhpod pf the inclusipn, sp

a cutoff function of range R &&b is not required. In ar-
riving at the form of Eq. (6.16) we have also been able to
use Eq. (4.4c), since p (r') vanishes for points r' in the
inclusion; note also that T( —r')=T(r'). As usual, we
have neglected the variation of macroscopic fields over
distances on the order of a «R. Putting Eqs. (3.5) and
(6.7) in Eq. (6.16) we may evaluate 8; we find

e"8 /4m= A" fB~pp (r')dr' EIE Eh
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e 8/47r=(E E")E[ A "[—', p+ ,', —(p+p*)+—,
' (p +2lpl )+,', plpl ]

+-,'B'[-;p+-,'(p'+2lpl')+ —,', plpl']]
'

3E 3E

+(E E)E*[ A [ —,'«+P*)+ —,'„(P'+2IPI')+—,', PIPI']

+-,'B "[-',p* —
—;,p —

—,', (p'+2lpl')+-', plpl']]
'

3E 3E'
(6.18)

We now determine P'(r) by averaging p'(r). Neglect-
ing the variation of b (r) over distances on the order a, we
find that the integral (2.12) reduces to essentially a sum of
the dipole moments p'. Using Eq. (6.14) and neglecting
as usual the variation of macroscopic fields over distances
of the order of R, we find

D(r)=eE(r}+D (r}, (6.21)

where e is given by Eq. (4.16), and we have used Eq. (4.7)
for p; using Eq. (6.20) in Eq. (5.3) we can then write

4irP'(r) =3e"Pf[E'(r)+ g(r) ] where6.19

+2E+ Pf@(r),
4m

(6.20)

[contrast with Eq. (4.11)], where now C(r) is given as a
function of r by Eq. (6.18). Putting Eq. (6.13) into Eq.
(6.19) we find that we may write

E+2 '
P'(r)+P (r)= E(r)+ P (r)

4~ 3h

D (r) = [4irP "(r}]+(e+2e)Pf C(r) .
E+2E"

3Eh
(6.22)

Substituting Eqs. (6.11) and (6.18) into (6.22) and compar-
ing with Eq. (5.4), we may identify the nonlinear-response
coefficients of the effective medium. We find

hE+2E
3E

h

[ ( 1 f ) A +f (—', p I p I

'+
,', p—I p I

'+
,', p—'+"

, I p I

'—+", p'—)A "—

+f ( 2p~lpl~+ 9plpl + 3p + ~

Ipl + —p )—B ]
(6.23)

h +2 h

[ (1 f)B"+f( ', p'I—pl' ,'pl pl' — ,'p'+-—-',
I
pl'+—l—p')B"

+f( ,
' p'lpl'+ ,', plpl'+ -,', p—'+ ', Ipl'+—', p'}2-A "] . -

As in the results of Sec. V, there are four "local-field
correction factors" which appear in the expressions
above. They are different here than in Sec. V, of course,
because they apply to the local field in the host [see Eq.
(4.17)] rather than in the inclusion [see Eq. (4.18)].
Beyond that, the results for the nonlinearity in the host
are much more complicated because, as is clear from
comparing the derivations in Secs. V and VI, the mesos-

copic fields are much more complicated in the host. In
particular, while if the nonlinearity is in the inclusions we
have A/B = A'/B', we do not have A/B = A "/B if
the nonlinearity is in the host. Some of the predictions of
Eqs. (6.23) are shown in Figs. 4 and 5.

In Fig. 4 we plot the enhancement in the quantity
A + ,'B [i.e., we plot (A—+,~B)j( A + ,'B")] as a func-—
tion of the fill fraction f of inclusion material for several
values of the ratio E'/Eh of linear dielectric constants. We
have chosen to plot the quantity A +—,'B because it is

proportional to the nonlinear refractive index "experi-
enced" by linear polarized light; as mentioned above, in

10.0

+

C

5.0

V

0.0
I

0.0
I

0.5

fill fraction f
1.0

FIG. 4. Enhancement in A + 'B vs the fill fract—ion f of in-

clusion material for several values of the ratio e'/e of linear

susceptibilities, for the case in which the host material responds

nonlinearly and the inclusion material responds linearly.
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1.0

0.5

0.0—
I

0.0
I

0.5

fill fraction f

I

1.0

general the enhancement in A is different from the
enhancement in 8. Moreover, as can be verified by care-
ful examination of Eqs. (6.23), the enhancement in
A + —,'8 for a given value of f does not depend upon the
ratio 8"/A" of nonlinear coefficients of the host rnateri-
al; conversely, the enhancement in A or 8 separately does
depend on the ratio 8"/A". For the case in which the
inclusion and host have the same value of the dielectric
constant, we see that A +—,'8 decreases linearly to zero as

f increases from zero to one. The origin of this behavior
is simply that the amount of nonlinear material decreases
as the fraction of inclusion material increases. Nonethe-

less, for e'/e" greater than approximately 2 we find that
the quantity A+ —,'8 increases as the fill fraction of
(linear) inclusion material increases. This effect occurs
because the presence of the inclusion material modifies
the electric-field distribution within the composite ma-
terial in such a manner that the spatially averaged cube
of the electric field within the host material is
significantly increased.

Some of the tensor properties of the nonlinear response
of the composite material are shown in Fig. 5. In each
graph, the ratio 8/A for the composite is plotted as a
function of the fill fraction f for several values of the ra-
tio e'/e" of linear dielectric constants. Parts (a), (b), and
(c) of the figure refer, respectively, to the cases 8"=0,
8"/A"=1, and 8"/A"=6, and correspond physically to
a nonlinear response dominated by electrostriction
(8"=0), electronic response in the low-frequency limit
(8"/A"=1), and molecular orientation (8"/A"=6).
From part (a) we see that, even when 8" vanishes, the
composite can possess nonlinear coefficients A and 8 that
are comparable in size. From part (b) we see that, for the
special case 8"/A "=1,the ratio of nonlinear coefficients
of the composite is equal to that of the host for any value
off.

VII. SUMMARY

I

2.0

(b) Bh Ah

any 8 /8'

0.0
I

0.0
l

0.5
I

1.0

fill fraction f
I

6.0—

3.0—

(c) B" = 6A"
0.0

I

0.0
I

0.5
I

1.0

fill fraction f
FIG. 5. Ratio 8/A of nonlinear coefficients of the composite

material vs the fill fraction f of inclusion material for several
values of the ratio e'/e" of linear susceptibilities, for the case in
which the inclusion material responds linearly and in which the
host material responds nonlinearly with (a) B"=0, (b) B"=A",
and (c) g"=6/".

In summary, we have generalized the Maxwell Garnett
theory of the optical response of composite materials by
allowing either or both constituents of the material to
possess a third-order nonlinear susceptibility. Equations
(5.15) and (6.23), respectively, give the key results of our
calculation for cases in which only the inclusion material
and in which only the host material is nonlinear. It is
easy to show that, if both components respond nonlinear-
ly, the effective values of A and 8 are obtained by sum-
ming the two contributions given by Eqs. (5.15) and
(6.23). In these equations, A and 8 are defined by Eq.
(5.4), A ' and 8' by Eq. (5.6), A and 8"by Eq. (6.2), e by
Eq. (4.16), and P by Eq. (4.7). Our treatment takes full
account of the tensor nature of the nonlinear interaction
under the assumptions that each component is optically
isotropic and that the composite is macroscopically iso-
tropic. For the case in which only the inclusion material
is nonlinear, our results are consistent with those of pre-
vious workers [4,7,8]. For the case in which the host ma-
terial is nonlinear, the nonlinear susceptibilities A and 8
for the composite can be considerably larger than those
of the host material itself; moreover, the ratio B/A for
the composite can be very different from that of the host.
We note that in all of the examples presented we have as-
sumed that both constituents are lossless and thus that
the parameters e', e", A', 8', A", and 8 are all real.
Nonetheless, the formulas presented here are correct
even in the more general case where those parameters are
complex.
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APPENDIX A

V.[ee(r)]= —4mV p(r),
V.b(r) =0,
V X e(r) —i9b(r) =0,
V X b(r)+ irate(r) = 4—nicop(r),

(A 1)

In this appendix we derive a relation between the elec-
tric field e(r) satisfying the Maxwell equations

p. . . 4m.e(r)= F (r —r') p(r')dr' — p(r),
3F

(A7)

where

tegration, and then at the end of the calculation the ra-
dius g of the excluded sphere is to be allowed to ap-
proach zero. This "excluded sphere" is necessary to
make Eq. (A4) unambiguous [19], since F(r) diverges (as
r ) as r~0 .A convenient shorthand is to rewrite Eq.
(A4) as

and its macroscopic average E(r),

E(r)= fA(r —r')e(r')dr' . (A2)

F(r}, r ) ri
F (r)= '(} (O, r(g,

V [ee(r)]= —4m. V p(r),
V [&eb(r}]=0,
VX [ee(r)] ik [+eb—(r)]=0,
V X [&eb(r ) ]+ik [ee(r) ] = 4n ikp(r)—,

(A3)

where k=—v'EB is taken to have Imk)0, Rek )0 if
Imk =0. Thus the solutions for ee(r), v'eb(r) may be
recovered, upon replacement of co by k, from the solu-
tions in the @=1 limit. The latter solutions are well
known [18], and so we identify from the solution to Eq.
(Al) for e(r) as

4m
e( r ) = lim F( r —r' ) .p( r')d r' — p( r),

g~0 vg(r) 3c

with

(A4)

Equations (Al) are identical to Eqs. (2.7), with e" and
p'(r) replaced by e and p(r), respectively, to simplify the
notation; e is taken to be uniform and, as before, co

—=co/c.
For most of this appendix [up to and including Eq. (A43)]
we need assume only that b, (r) is a spherically symmetric
function, b(r)=b(r), where r =~r~, which vanishes
sufficiently rapidly as r ~ ~.

A relation similar to the one we find here was con-
sidered earlier [14],where we took e= 1 and assumed that
p(r) was a sum of Dirac 6 functions. Here we are in-
terested in @%1, and in a p(r) that is continuous except
for stepwise discontinuities at the surfaces of our in-
clusions; in the usual way p(r) is assumed to vanish as
r ~ ~, and we are interested in solutions of Eqs. (Al) for
which the particular component satisfies the usual outgo-
ing radiation condition [17].

We begin with two forms of the solution to Eqs. (A 1).
The first is obtained by noting that those equations can be
written as

g~O after evaluating the integral . (AS)

(V +k }e(r)=—4mq(r),

where

q(r)=re p(r)+e 'V[V p(r)] .

(A9}

(A10)

The particular solution to Eq. (A9) is well known [20],

e ik Ir —r'I

e(r)=f, q(r')dr'.
/r —r'/

(Al 1)

Strictly speaking, an excluded sphere centered at r'=r
should be specified in Eq. (Al 1), since the Green function
~r

—r'~ 'exp(ik~r —r'~) is undefined as r'~r [16]. But
because the divergence is in practice masked by the
volume element dr', the omission of the excluded volume
here usually does not lead to difficulties. We proceed
now by using Eq. (Al 1) to find an expression for E(r).

Using Eq. (Al 1) in Eq. (A2), we find

E(r)= f I(k;r —r')q(r')dr', (A12)

where

The expression (A4) or (A7) is valid at all points r except
those (a set of measure zero) where p(r) is changing
discontinuously; at such points e(r) is itself varying
discontinuously in a steplike manner, as described by Eq.
(A4) or (A7) as r moves from one side of the surface to
the other. Finally, we note that we have omitted any
homogeneous solution of Eqs. (Al) in writing down Eq.
(A4). We continue to omit such homogeneous solutions
until later in this appendix [see Eq. (A44)].

A second form of the particular solution to Eq. (Al}
may be obtained by taking the curl of the third of those
equations, using the identity curl curl=grad div —V', and
the first of Eqs. (A 1) to find

ikr
F(r)=e '(VV+Uk ) (A5}

ik}r—r'/

I(k;r)= f b,(r'), dr' .
/r —r'/

(A13)

where U is the unit dyadic; in component form,

ikr

F, (r)=e ' +5,"k
Bx, Bx, ' r

where the subscripts label Cartesian components. The
notation in Eq. (A4) indicates that a small sphere of ra-
dius g, centered at r' = r, is to be excluded from the r' in-

Using the Green's-function expansion [21]
ik] r —r'/

/r —r'/
=4rrik gj &(kr )hI '(kr ) YI (O', P') Y~ (B,P),

I, m

(A14)

where r & and r & are, respectively, the lesser and greater
of r and r', the YI are the spherical harmonics, and jI
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and hi" are, respectively, the lth-order spherical Bessel
and Hankel functions of the first kind, we find

I(k;r)=4mik hp '(kr) f b(r')jp(kr')(r') dr'
r'=0

+4mik jp(kr) f b,(r')hz" (kr')(r') dr',

(A15)

and likewise for q (r'), e (r), and E (r); here
V'—:8/Br'. Note that q (r') and q (r') are both singular
at ~r —r'~=g, although their sum is not. Nonetheless,
since p (r'} vanishes at r'=r, we may insert the first of
Eqs. (A23) into the first integral in the third of Eqs. (A23)
and perform two partial integrations. The result is

E (r)= Z(k) fF(r —r') p (r')dr'+E"'(r)+E' '(r),

ikr
I(k;r)=Z(k) +I(k;r), (A16)

which shows that I(k;r) depends only on k and r = ~r~.

Writing the first integral as the difference between an in-
tegral over all r' and one between r and 00, we use
h p" =(ikr) 'exp(ikr) to find

where

E'"(r)=e ' f I(k;r —r')V'[V' p (r')]dr',

E' '(r)=co f I(k;r —r')p (r')dr',

(A24)

(A25)

where

Z(k) =4m f r h(r)j p(kr)dr =fA(r)e'""dr,
0

with n a unit vector in an arbitrary direction, and

I(k;r)= 4mikj p(kr) f b(r'}hz '(kr')(r'} dr'

4nik —hp" (kr}f b(r')jp(kr'}(r') dr'

=k [np(kr)h, (k;r) —jp(kr)bz(k;r)],

where

(A17)

(A18)

(A26)

using V'I(k;r —r')= VI(k;r——r'). From Eq. (A18} we
find

VI(k;r)=r ' =r f(k;r)=—V(k;r),BI(k;r)
T

(A27)

and the F in Eq. (A24) is given by Eq. (A5). We next par-
tially integrate the expression for E'"(r) twice, again us-

ing the fact that p (r'), and V' p (r'), vanish at r'=r.
The first partial integration yields

E'"(r)=e ' fVI(k;r —r')[V' p (r')]dr',

b, ,(k; r) =4mfh(r'. )J'p(kr')(r') dr',
T =I'

b (k2; r) =4@f6.(r')np(kr')(r') dr' .
P =I'

(A19)
where

f (k;r)=k [np(kr)b, ,(kr) —jp(kr)b2(kr)], (A28)

The second form of Eq. (A18) is obtained by using
hp" (x)=j p(x)+inp(x}, where np(x) is the zeroth-order
spherical Bessel function of the second kind; it demon-
strates that I(k; r) is purely real.

Inserting Eq. (A16) into Eq. (A12), we find that

e ik/r —r'/

E(r)= Z(k)f, q(r')dr'+ f I(k;r r')q(r')dr' .—
/r —r'/

(A20)

It is now convenient, for a given field point r, to write

p(r') =p (r')+p (r'),

Bb, ,(k;r)
4~r b(rj)—p(kr),

Br

Bb,2(k; r)
4~r h(r)np(k—r)

Br

(A29)

[see Eqs. (A19)]. The second partial integration gives

E"'(r)=e ' f [p (r') V]V(k;r —r')dr' . (A30)

To evaluate this expression we need the components

with np(x): dnp(—x)/dx and jp—:djp(x)/dx, and where
we have used

where

p(r') if ~r —r'I & ri

0 if ~r —r'~(ri, (A22)

BV;(k;r)
BXJ.

X; f (k;r)
BXJ T

5(jx/xjxlxipf (kr)f (k;r)+
T y p' Br

and where for the moment g is an arbitrary positive num-
ber. We then put We find

(A31)

q (r')=co p (r')+e 'V'[V'. p (r')],
e iklr —r'~

e (r)=f, q (r')dr',
/r —r'/

ik/r —r'/

E (r)= h(k)f, q (r')dr'
/r —r'/

+ I k r —r'q r'dr',

(A23)

df(k;r) =g (k;r) 4m'(r), — .
Br

(A32}

g(k;r)=k [np'(kr)b &(k;r) jp'(kr)62(k;r)], —(A33)

with np'(x)=dnp(x)/dx, etc.; we have used Eq. (A28)
and the Wronskian relation jp(x)n p(x}—jp(x}np(x}
=x ~. Using Eq. (A32) in Eq. (A31) we write
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BV, (k;r)
BXJ.

where

+ g(k;r) —' —4~6(r)
X;X. f (k ~ p)

r2 r

(A34)
done with some care. For example, it is not true that
e (r)~0 as g~O, because the field inside a polarized
sphere centered at r will not vanish even as the radius of
that sphere becomes vanishingly small. However, it is
true that E (r)~0 as g~O, since the fraction due to the
sphere of the volume over which e (r) is integrated to
yield E (r) vanishes as q~O, and of course the field out-
side the small sphere of polarization, but due to it, van-
ishes as q~O; thus as q~O we have E (r)~E(r). We
also have P (r)~P(r) as g~O, and

and so

(A35)
lim Fr —r' p r'dr'=er + p r
q~O 3E'

(A42)

E i'(r)= — P (r)+e-' fK(k;r —r') p (r')dr',
3E

(A36)

where

P (r)= f A(r —r')p (r')dr' . (A37)

Using Eq. (A35) in Eq. (A24) along with the second of
Eqs. (A25), we find

which follows from Eq. (A4). So in the limit g~O, Eq.
(A38) yields

E(r)+ P(r)= b(k) e(r)+ p(r)
4n 4~
36 3E'

—fN (k;r —r') p(r')dr', (A43)

where, following the convention of Eqs. (A7) and (A8),
we have put

E (r) = b, (k) f F(r —r') p (r')dr' — P (r)
36

—fN(k;r —r') p'(r')dr', (A38)

N(k;r), r )g
N (k;r)= '0

0, r(g,
g~O after evaluating the integral . (A44)

where

N(k;r)= —e 'K(k;r) co UI(k;r) . — (A39)

Finally using Eqs. (A18) and (A35) in Eq. (A39) we can
write (V +k )e (r)=0 (A45)

Now recall that in writing Eqs. (A4), (A7), and (Al 1) we
have neglected a homogeneous solution of Eqs. (Al).
Such a homogeneous solution e (r) satisfies

N(k;r)=N" I(k;r)+N' '(k;r),
where

k no(kr)b, , (k;r) 4~NI' (k;r) = —e 'U + b,(r)
r 3

(A40) [cf. Eq. (A9)], and will lead to a contribution E (r),

E (r) = f b, (r —r')e (r')dr', (A46)

to the macroscopic field. From Eq. (A45) we see that
e (r) will be a sum (or integral) of fields of the form
exp(ikn r), where n is an arbitrary unit vector; so from
Eqs. (A17) and (A46) we see that

+k no(kr)b, , (k;r)
E (r)=b(k)e (r) . (A47)

k no(kr)A, (k;r)
+e 'rr +4vrb, (r)

kn 0'(kr)A, (k; r)—
(A41)

k j 0(kr)h, (k;r)
N' '(k;r)=e 'U +k j ( 0rk)Az( kr)

r

k j o(kr)62(k;r)—e 'rr

—k jo'(kr)Az(k;r)

We now return to Eq. (A22) and consider the eff'ect of
taking the limit g~0. For certain fields this must be h, (k;r)-b, ,(r) —

—,'(kR) bI'(r)+. . . , (A48)

Thus, even if the total E(r) includes E (r), and the total
e(r) includes e (r), Eq. (A43) will still hold.

The result (A43) of our manipulation is an exact result.
It follows directly from the Maxwell Eqs. (Al), the condi-
tion of outgoing radiation implicit in the solutions (A4)
and (All), and the fact that the averaging function b, (r)
has spherical symmetry, b, (r) =h(r) We now . approxi-
mate Eq. (A43) using the assumption that the range R of
A(r) satisfies kR «1. Since h, (k;r) and Az(k;r) will

also have a range on the order of R, N(k;r) will as well
[see Eqs. (A40) and (A41)]. We can recover an approxi-
mation for N(k;r) in the limit kR «1 by expanding
jo(kr)=(kr) 'sin(kr) and no(kr)= —(kr) 'cos(kr) in

powers of kr to obtain asymptotic series approximations
for 6, ( k; r ) and then using those in Eq. (A41). For
b, &(k;r) we find
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where

b, 1(r)=4m f (r') b, (r')dr',
'2 (A49)

3rr —U r)g
T (r)= er

0, r(g,
g —+0 after evaluating the integral (A59)

and, putting b 3(k; r) =

kryo,

z(k; r), we find

b3(k;r) b—3(r) ,—'(k—R) b3 (r)+. . . ,

where

b, 3(r)= 4n —f "(r') A(r') —, dr',
r

2

(A50)

(A51)

c(r)=b, ,(r)+ r b(r)4~ (A60)

is a function that cuts off at large r, c(0)=1, c(r)~0, as
r ~ ao, with a range on the order of R.

is the static dipole-dipole coupling tensor in a back-
ground medium of dielectric constant e, cut off for r & g
at the origin, and

N'"(k;r)-N "(r)+(kR) N""'(r}+.. . , (A52)

Using Eqs. (A48) and (A50) in Eqs. (A41), and expanding
the spherical Bessel functions and their derivatives for
small kr, we find

APPENDIX B

In this appendix we state some geometrical formulas
that are useful in calculating the nonlinear response of
the host material in the neighborhood of an inclusion (see
Sec. VI). Defining

where r =xx+yy+zz,
n =r/r =x sin8 cosP+ y sin8 sing+ z cos8,

(B1)

'2
(A53)

where r = ~r~ and (8,$) are the usual angular spherical
coordinates, we denote the Cartesian components of n by

Nl 1)II(r)— rr 1 r 1
b, , (r) ——b, , (r)

pr3 2 R ' 2

'2

+ —— b, ,(r)+ —b, , (r)U 1 r 1

gr3 2 R ' 6

n, =sin8cosg, nz=sin8sing, n3=cos8 .

For any quantity q =q (8,P), we define

q= f q( 8$)dQ,

(B2)

(B3)

and

N (k r}-N' '(r)+(kR) N' "'(r}+.. . (A54)

where dQ=sin8d 8dg is an element of solid angle. It is
then easy to verify that

where

N' '(r) =0,
2

N (r) = —— h3 (r)(2)ir U 2 r rr

gr3 3 R

(A55)

n;=0,
n nJ 35J

n nJnk 0

n;n nknl= —,', (5; 5kl+5k5 I+515 k),

(B4)

e(r)=E'(r) — p(r)+ fT'(r~r') p(r')dr',
3c

(A56)

We are interested only in the lowest order in kR, so we
take N(k;r)~N"'(r). Consistent with this we take
(now assuming that h(r) is normalized to unity [Eq.
(2.10)]), 6(k)~1. Our exact result (A43) then simplifies
to the approximate expression

ij = i j ~ij

J ik kj / J iJ

(B5)

where 5; is the Kronecker 5 (5; = 1 if i =j, 5;I =0 other-
wise). All of the results of this appendix are based on
Eqs. (B4). For example, putting [cf. Eq. (6.6)]

where

E'(r) =—E(r)+ P(r)4~
36

(A57)

where throughout this appendix repeated indices are
summed over, we easily find

t; =0,
is the "cavity field" that is introduced immediately in
more heuristic derivations (see Sec. II), and s,- =25,-

(B6)
T'(r) =T (r)c (r),

where

(A58) ltjk —
rmls

.
k
—

z (5ml 5lk +5mk51I. ) —
& 5ml5Ik

SmlSjk g 5ml5jk +
g (5mj5lk +5mk 5lj )



1628 J. E. SIPE AND ROBERT W. BOYD

which are used in deriving the results below.
We first define some auxiliary quantities that are useful

in intermediate steps of the calculations:

are independent of r, 0, and tb; a is also a constant. Fur-
ther, we define

C f(j,
—=(5 i+cr t t)(5,J+cr~t, )(5";k+ort,k),

a—=rao. ,
(B7)

aPy —3 aPy
AplJk

7' tp~ Cml jk

Ftytlj k Cl77ljk ~ml ~jk

(B8)

where the Greek indices label a set of parameters u that
I

We can then easily determine that

f "~P,",dr = 5,t5,k[ 3~ —
,
', (P—+—y)

,
', (~—P—+~y+Py)+',~Py]

Q

+(5„5tk+5,k5t, )I: ,'(P+ —y)+ ,', (&P+—&y+Py)+ ,', tzPy —], (B9)

and

f r' tj'k«= la'5 t5,k[2Py ,'(~P+~-—y),'~Py]
Q

j5!k+5 k5I')
B ~~dr= r A ~J'dr

pljk ml jk
a (B12)

where 8(x ) =0 and 1 for x (0 and x )0, respectively. In
particular, we seek

X [ ,'(ap+ct—y )+ —,
' tzpy] .

Now our quantities of interest are

3 atr8(r —a)l
pljk = ~ pljk4'

D I',r„= 5.,5,„+C—.t,',r„8(r a)—
515 k8(a— r)+F ~(fq8—(r —a),

(B10)

(Bl 1)

fD~&f„dr=— a 5 t5jk+4tr f r F if&dr,
3 m J a

where as usual dr =r dr dQ. Using the results [(B9) and
(B10)],the integrals of B and D in Eq. (B12) can be easily
found. We require two particular cases for the choices of
a, p, and y. In the first we want a=p, y=p'; these
terms we denote by B~~g and Dg~&~~& . In the second we

want y=p, a=p*; these terms we denote by B~~j p and

D IJk . Collecting contributions, we find

fB~/p dr= 5 t5 k[ —', p —
—,', (p+p*) —

—,', (p +2lpl )+—', plpl ]+(5~,5tk+5~k5)~)[ ,'(p+p*)+ —,—',(p +2lpl )+ —,', plpl ]

(B13)

f&p'(Jp~«= 5,t5)k [ ', p'
,', p ,',

-(p'—+2—Ipl—')—+', pl pl']+(5p -5tk+5pk5tt )[ ,'p+
,', (p'+2-I pl')—+ ,', pl pl'], —

and

D~~~*dr =
ml jk

a'5 t5&k[ 1+21pl' ', —(p'+ Ipl') ——
—,'-pip ']+ a'(5, 5tk+5 k5t))[-,'(p'+ Ipl')+ —,', plpl'],

(B14)

fDgtp~dr= a 5 t5&k[
—1+2p' ——', lpl' —

—,'plpl']+ a'(5 J5tk+5 k5t, )[-', Ipl'+ —,', plpl'] .

These results are used in Sec. VI.
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