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Coupled-mode analysis of the self-induced-transparency soliton switch
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The dynamics of a nonlinear resonant tapered coupler is analyzed by using coupled-mode equations.
The constituent waveguides are made of a linear host material doped with resonant impurities. Such a

system allows a mechanism for all-optical switching. It is shown that nonlinear exchange between cou-

pled waveguides originates from the group-velocity dependence on the propagating pulse power and/or
area. The transmitted signal is always a multiple of the self-induced-transparency fundamental soliton.
The dynamics of the pulse tuned or detuned from the resonance and with the inclusion of the material
relaxation terms is discussed. In the last section the problem of soliton collision in the coupling region is

considered; in this case an initial interpulse phase difference may determine a power-dependent outport
switching.

PACS number(s): 42.50.Rh, 42.65.Pc, 42.79.Gn

I. INTRODUCTION

Accomplishment of extremely high-speed transmission
and all-optical signal processing are main goals in
integrated-optics research. Nonlinear phenomena are of
great potential in this context, since they give rise to
intensity-dependent propagation features. Effects of non-
resonant nonlinearities on pulse propagation and direc-
tional couplers, such as those due to the intensity depen-
dence of the refractive index in Kerr-type media, have
been extensively investigated [1]. Once the nonlinearity
counterbalances exactly the pulse temporal broadening
due to group-velocity dispersion, the ultrashort pulse
propagating through a Kerr-type medium is transformed
into a soliton [2]. By exploiting the particlelike nature of
solitons, it has been demonstrated that power-dependent
nonlinear switching in bidirectional devices shows an ex-
tinction ratio equal to 1 [3,4]. Despite this improvement,
the power threshold for soliton switching is still high. In
contrast to Kerr-type nonlinear media, there are resonant
systems that provide large nonlinearities, but these media
are saturation limited and slow in the thermalization pro-
cess. The switching performance of a nonlinear direc-
tional coupler (NLDC) incorporating a medium with a
two-level saturable nonlinearity has already been ana-
lyzed [5]. Coherent pulse propagation through resonant
media is known to have a soliton propagation regime, a

phenomenon that is called self-induced transparency
(SIT) [6]. This phenomenon increased interest in switch-
ing applications because of the combined effect of absence
of absorption loss and maximum nonlinear efficiency at-
tainable from a two-level system. Analogous to Kerr-
type soliton switching, it has been demonstrated [7] that,
with the coupled-mode approach, the SIT soliton switch-
ing in NLDC is possible. In this case the extinction ratio
of the NLDC is equal to 1 as for the case of Kerr soliton
switching, while the power requirement to reach the

switching threshold decreases as the dipole moment of
the two-level transition increases. The theory of SIT soli-
ton propagation holds only for plane and spatially uni-
form waves; in fact, experiments performed with Gauss-
ian beams in two-level system materials have shown that
the soliton propagation is unstable [8]. Conversely, when
the pulse is confined in a guiding structure, the diffraction
is compensated [9,10] and the scalar approach adopted
previously either for the single-channel waveguide or for
the NLDC [7] is shown to be valid. The possibility of in-

ducing self-transparency has been recently proposed for
excitons in semiconductors. Zero-dimensional bound ex-
citons trapped by impurities, as well as two-dimensional
excitons in quantum wells, can be considered as static
"two-level atoms" with large dipole moments and long
decay times [11]. As an alternative to the saturable or
Kerr-type nonlinear coupler, here we analyze in detail
the switching properties of pulses propagating in a
coherent regime through a nonlinear resonant coupler,
whose constituent waveguides are made of a linear host
material doped with resonant impurities. As an example,
we consider the above-mentioned bound excitons in semi-
conductors as resonant impurities. For the sake of sim-

plicity, they are modeled as homogeneously broadened
two-level systems with energy levels on and off resonance
with the guided light frequency. The total medium polar-
ization also includes a nonresonant contribution originat-
ing from the host material which determines the guiding
properties of the waveguide. We apply the technique of
coupled-mode expansion, including the resonant polar-
ization as source term of a generalized set of Maxwell-
Bloch equations. The theory of self-induced transparen-
cy assumes a frozen two-level system and therefore dis-
cards all terms containing relaxation times. In this work,
the influence of relaxation times on the output channel
discrimination of the NLDC has been evaluated. This
permits us to establish the upper limit of pulse duration
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chosen for the switching process. In addition to single-
pulse self-switching, gating a signal pulse with another
pulse traveling on the cross channel of the bidirectional
device may be useful for optical logic operations. Gating
a pulse with another pulse, applied to the case of
coherent propagation and therefore to SIT soliton in-
teraction in the coupling region of the NLDC, has pro-
vided further insights to the mechanism of SIT soliton
switching. In Sec. IV it is shown that two SIT solitons
independently launched into the two inputs ports of the
NLDC join into one of the two channels if there exists an
interpulse phase difference different from a multiple of ~.
The amount of phase difference determines the threshold
of gating and the sign of the difference, the output chan-
nel.

II. COUPLED-MODE FIELD EQUATIONS
WITH A RESONANT POLARIZATION

A dual-channel directional coupler consists of two
dielectric waveguides placed close enough together to be
coupled through the evanescent fields. We consider here
a type of nonlinear resonant coupler whose constituent
waveguides contain impurities which can be described as
a two-level system. Propagation of light pulses through
the coupler is described by the wave equation

2 = a' a'
V E(r, t)=pso E(r, t)+p 2P'(r, t),'at' ' at'

where E(r, t) is the pulse electric field and P'(r, t) is the
total medium polarization which includes host as well as
contributions:

propagation regime. In the uniform plane-wave case and
assuming a homogeneous medium, Eq. (3) may be solved
without the diffractive terms and a possible solution con-
cerns the case of solitary-wave propagation [6]. This ap-
proach lacks validity in real situations where the light
beams are transversally limited [8]; in fact, the diffractive
spreading of the pulse inhibits any stationary behavior of
the traveling soliton. The confinement of the radiation in
a guiding structure may compensate for the longitudinal
instability caused by diffraction; it has been shown [10]
that a pulse with an amplitude and a duration satisfying
the uniform plane-wave case may propagate, in the re-
gime of self-induced transparency, in waveguides as well.
The only assumption required to obtain the equivalency
of the two cases is that the impurity doping profile has to
match the index profile of the waveguide. By applying
the same considerations to the problem of the directional
coupler, it has been found that the equivalency between
the solution obtained in the coupled-mode approach [7]
and the exact one [10] deduced from Eq. (3), still exists.
In the course of the discussion, in order to go through the
physical nature of the switching process, we will adopt
the coupled-mode approach. To develop a coupled-mode
theory, we expand the total field in terms of the modes of
the isolated constituent waveguides. For the sake of sim-
plicity we consider single-mode waveguides with the field
propagating along the z axis and we ignore coupling to
the continuum of radiation modes; the expression of the
electric field is

2

E(r, t)= —,
' g [e E& (z, t)PJ.(x,y)exp[i(PJz cut)]+—c.c. ] .
j=1

P'(r, t ) =P 0(r, t )+P,' ~(r, t) . (2) (4)

Since we are dealing with the nonlinearity caused by the
impurities alone, the waveguide acts only as a supporting
medium and

Po(r, t ) = [e(r)—ec(r) ]E(r, t)

is the waveguide polarization matrix induced by E(r, t ),
e(r) is the dielectric constant of the directional coupler,
and P (r, t) stands for the induced resonant impurity
polarization. The equation for the slowly varying ap-
proximation of the field E(r, t) and the polarization P(r, t)
reads

2P +P'—E(r, t)a, a
az at

In Eq. (4), the index j labels the waveguides, e are unit
vectors indicating the light polarization, P are propaga-
tion constants, and co is the frequency of the carrier wave.
Eo (z, t) are slowly varying complex amplitudes of the
fields and P (x,y) are normalized mode functions that
determine the transverse distribution of the electric field
in the waveguides. They are obtained by solving the cor-
responding boundary-value problem for each specific
waveguide structure, and satisfy

a a
2

+
z

+ n~ (r) Pj. P~(x, y—) =0,
2 a 2 2 J j J

where e&(r) =n (r)eo is the dielectric constant of the iso-
lated j waveguide. The induced resonant polarization
can also be expanded in terms of its slowly varying com-
plex amplitudes Po (r, t) namely,

+i V TE(r, t) +iboa) P '(r, t) . (3)

Here P is the linear propagation constant of the
waveguide mode, 1 IP' = (c In )(Plk ) is the mode group
velocity, and n (r) is the linear index of refraction and
contains the index profile of the coupler. Equation (3),
together with the equations governing the evolution of
the two-level system, which will be shown later, represent
a complete set which is able to describe the coherent

2

P ~(r, t ) = ,'pN; g e[.P 0(r—,t )exp[i(g, z cot)]-
j=1

+c.c.j,
where X; „ is the impurity concentration and
p = (a~p-e~b ) is the dipole matrix element. Substitution
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of Eqs. (2), (4), and (6) into the wave equation (3), togeth-
er with Eq. (5), leads to first-order partial differential
equations for the slowly varying field amplitudes. If the
linear dispersion spreading caused by the waveguide ma-

trix in the short distance traveled by the fields through
the directional coupler is negligible, the slowly varying
approximation can be applied for both Ep (z, t) and

Pp, (r, t) to obtain

as„,as„
+PJ + — [n (r) —n (r)]Epq P.exp[i13Jz cot]+—c.c.

Bz ' Bt 2 g'
2

=ippN;~~co g IPpi(r, t)exp[i(P z cpt —)]+c.c. ] . (7)

Coupled-mode field equations are derived from Eq. (7)
by multiplying both sides by P(x,y) and integrating over
the coupler cross section. For simplicity we consider a
symmetric coupler consisting of two identical wave-
guides, where phase mismatch effects are avoided, and we
assume the same polarization for the guided fields.
Therefore, we omit the waveguide subindex wherever it is
not required, obtaining

BE k BEO

az J' Pc at J' 2Pj =1

(Pp) )t, 1=1,2 (8)
Pe,

where k =co/c. In the left-hand side we have introduced
the matrices

S I
=—f dx f dy P, (x,y)Pt(x, y) f dx f dy PJ(x,y),

N I
=—f dx f dy n (r)p (x,y)p&(x, y ) f dx f dy p, (x y)

(9)

K t
=—f dx f dy [n (r) —n (r)]P~(x,y)

X/I(x, y) f dx f dye~(x, y),

where again n (r)=e(r)/ep is the nonresonant index of
refraction of the directional coupler. S is a normalized
mode overlap matrix whose diagonal elements are equal
to 1. The diagonal elements of N represent the average
(n (r)) over the waveguide cross section. The value of
the K matrix elements depends on the penetration of the
evanescent wave of one guide into the other, and is re-
sponsible for the waveguide coupling, as wi11 be shown
below. The source term at the right-hand side of Eq. (8)
is a cross-section-averaged resonant polarization
(Pp (x,y, t)) defined as

(Pp (x,y, t))(
= f dx f dy Pp (x,y, t)P, (x,y) f dx f dyPI(x, y) .

(10}

Further simplification of Eq. (8} is obtained by assuming
weak coupling and neglecting terms of the normalized

overlap matrix element S&z which are small compared to
1.

BE .
1 BE . ikPN, .

+— —imEp itcEp—t = (Pp )
c)z U c}t 2 Ep

j =1,2 l&j .

The constants 1/U=k(n (r))/(Pc), which is (P'),
and Ic=k K,z/(2P) in Eq. (11) represent an effective
group velocity and the evanescent coupling strength be-
tween the two waveguides. The field term multiplied by
the constant m =k EJ /(2P) introduces a phase which
can be easily transformed out and will not be considered
further. In our model, the sources of the resonant polar-
ization are wave guide impurities, which behave like
homogeneously broadened two-level systems driven by
the guided field. The corresponding density-matrix equa-
tions in the interaction picture read [7]

Ppj = (l z i 6 )Ppj +i $~Ep~ Wpj.
Bt ' ' 2R

(12)
B—

W(), = —y ) ( Wp,
—

Wp, ) +i P, (Ep, Pp, Ep, P p, ), —

where A=coo —m is the field frequency detuning from res-
onance; Acoo=s, —Eb is the resonant transition energy
between the atomic eigenstates ~ct ) and ~b ); pEp~(z, t)/l
is the Rabi frequency; and y &

and yz are, respectively, the
longitudinal and transverse relaxation rates of the two-
level systems. The induced resonant polarization ex-
pressed in Eq. (2) is related to the density matrix through
P (r, t)=N, Tr(Pp), where P is the complete density
matrix containing Po, 8'o, and the difference of popula-
tion at the equilibrium, Wz =1. Then, the source term
in the field equation (11) is given by

(Pp (x,y, t)),
= f dx f dy Pp (x,y, t)P (x,y) f dx f dye (x,y),

(13)

where again the spatial average of the density-matrix ele-
ments over the coupler cross section is involved. Since
our coupled-mode theory is based on the assumption that
the transverse structure of the fields in the waveguides is
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Poi(r, t)=P; (xo,yo, z, t}gj(x,y),
Wo„(r, t) —Wojl(r, t)

= [ W;(xo,yo, z, t) W' (—xo,yo, z, t )]P;(x,y),

(14)

j =1,2.

determined by the guiding properties of the host material
and is not affected by the nonlinear interaction with the
resonant impurities, the density-matrix elements are as-
sumed to have the same transverse structure [10] of the
guided mode when averaging them in Eqs. (12) and (13).
The first assumption is valid only for low doping concen-
trations since, in principle, the density-matrix elements in
Eqs. (12) are nonlinear functions of the field and therefore
their transverse and temporal dependence cannot be
separated. Our averaging procedure imposes the linear
waveguide structure over the nonlinear dynamics. For
large impurity densities the mode structure would be
affected and results of the coupled-mode approach would
be invalid. To perform the spatial average, we integrate
Eqs. (12) over the coupler cross section, and there, as well
as in Eq. (13), we do the replacement

E is the normalized linear coupling constant of the direc-
tional coupler. In the absence of the nonlinear resonant
polarization, E determines the normalized coupling
length 1 =n(2K) ' for which complete power transfer
between the waveguides takes place. The system of equa-
tions (15) was solved numerically in a moving reference
frame defined by the coordinate g=(z' —Vt') by assum-
ing swept excitation of the resonant impurities.

III. RESONANT SOLITON SWITCHING

From the self-induced-transparency equations (15) in
the zero detuning case (5=0) and for pulse durations
much shorter than relaxation times (y, =y2=0), one can
obtain two coupled sine-Gordon equations that read

(a)
The pair (xo,yo) represents the transverse coordinates of
the maximum of the function P(x,y). It can be easily
seen from Eqs. (13) and (14) that P (xo,yo, z, r) is propor-
tional to the average source polarization i Poj )i
=N; pP . The qua. ntity W (xo,yo, z, t) instead is the
population inversion between levels Ib) and ~a ) at the
peak of the distribution P(x,y). The averaged equations
(12) represent the motion equations for the variables P
and 8', which together with the coupled-mode field

equations (11)constitute the following generalized system
of Maxwell-Bloch equations for the nonlinear directional
coupler:8, , lP = —(y' ib, ')P +—U W—

CD

trl

0

P 2-I
C

I
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I

5
I
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(15)

aU, l aU,
, +—,iKU&=iP—, j,l =1,2, 1%j .Bz' V Bt'

a
, W = —y', (W —W'q)+i(U'P P"U ), —

0
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I
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The set of equations (15) has been reduced to a dimen-
sionless form through the following substitutions:
U~. =VproEoJA', which is the field in area units, with ro
an arbitrary pulse width; the quantities t' = t(ro)
z'=a'roz, yt yiro y2 y2ro, 6'=noh, V=a'vro
K =Vk(a'ro) ', and

a'=VN; „k p (2fiPeo)

2
0)

Q)

6)
V)

1-

(c)

0-—
0 1are also expressed in dimensionless units. The form fac-

tor V derives from the average integrals and is defined as

V= f dx f dy P.(x,y) f dx f dy P (x,y),
which depends on the specific mode structure of the
waveguide. This is of the order of 1 for the TE mode of a
planar waveguide. The coefficient a' is proportional to
the absorption coefficient of the resonant impurities [12];

2 3 4
Distance

I
' ' ' ' I

5 6 7

FIG. l. Energy evolution vs distance g of three different 2~
solitons: (a) A =0.25, ~'=4; (b) A =0.5, ~ =2; and (c) A =1,
~'=1, through the dual-channel directional coupler whose pa-
rameters are K =2, d = l, g =3, $,„,=7. The solid and dashed
curves correspond respectively to the bar (1) and cross (2) chan-
nels of the NLDC. The curve relative to the cross channel in (a)
coincides with the abscissa.
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a'q, a@,
, =sing& —K

a'@, ay,
, =sin/2 —K

where

p, (t') = I U, (r")dr"

(16)

where g and d are coupling parameters, with d =u'z+,
where D is the tapering width in real units. Before the
coupling starts acting, input pulses of arbitrary area
evolve towards their nearest steady-state solution as
exp( g) [6]. Excitation of the NLDC is done by injec-
tion of pulses

U, (t') = 3 sech[(t' —
to )/r']

is, in the limit of t'= ~, the definition of the pulse area.
Without the evanescent field coupling term (K =0), the
two equations become independent and both show
steady-state solutions in the form of kinks [6] whose pulse
areas are equal to an integer multiple of 2m. The same
happens to the asymptotic solutions for transmitted
pulses in the NLDC if the evanescent coupling is local-
ized, say, tapered couplers. Therefore, we assume a
Gaussian function for the coupling coefficient (Ref. [13])
K in Eqs. (15) and (16), namely,

K =Koexp[ —(g —
g ) /2d ],

into one waveguide. In the region of coupling the evolu-
tion of the injected pulse is governed by the balance of
the terms in the right-hand sides of Eqs. (16). As an ex-
ample, in the case of a 2m pulse the field is proportional
to the inverse of the pulse duration; therefore, the second
term in the right-hand side of Eqs. (16) is linearly propor-
tional to the ratio K/7. ' and gives rise to an eff'ective cou-
pling coefficient dependent on ~' of the corresponding in-
jected pulse. This property allows different pulses to have
different evolutions since in any case the sine term is lim-
ited in the range (

—1, +1) while the linear one may as-
sume any value (this is done by varying r'). This means

+20 +20

(b)

E 0
I—
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E p
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FIG. 2. Space-time maps representing the cases depicted in Fig. 1. The solitons travel with different envelope velocities; the faster

they are, the greater is the coupling. In (a) and in (b) the evolution in the input channel is reported; in (c) the injected soliton velocity

is closer than previously to the speed of the light, and the energy injected into the input channel is completely transferred into the

cross channel (d). The horizontal axis is the distance g, and the vertical axis is the time t'
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solitons. In analogy, a threefold splitting is obtained
when a 6m. pulse is formed, but a pair of 2m pulses
emerges from the coupled channel, while a single 2m

pulse emerges from the input channel. For comparison,
in Fig. 5 the transmission of the pulse area from the two
arms of the NLDC is shown. It is worthwhile to note
that when a 2~ pulse propagates in the input channel
without exchanging energy with the other, the area asso-
ciated to the pulse is positive (0.3 & A &0.6), while in
case of coupling the areas change sign (0.6 & A & 1.2), as
expected from the linear theory of coupling. For 3 ) 1.2
even the pulse area emerging from the input waveguide is
reversed in sign; this may suggest a double energy ex-
change in the coupling region. In any case, even though
a higher-order soliton breaks up, the transmission of the
coupler arms is always in multiples of fundamental soli-
tons; in other words, the peculiarity of a SIT switch con-
sists of digital transmission characteristics. Figures 3 and
5 should show, if evaluated at larger output distance g,„„
better defined transmission regions with much steeper
transitions as a function of A. Asymptotically, they
should reflect the quantized switching properties of this
NLDC, whereas either no intensity is transmitted or a
definite number of solitons goes through. As an example
for SIT soliton switching in a NLDC, we assume the
bound excitons in CdS as resonant impurities [7,11]. In
this case the relevant parameters in real units are
X; =10' m, u'=10 cm 'ps ', «=10 cm ' (in the
center of the tapered coupler), z,„,=7 mm, D = 1 mm,
and ~=2 ps; to obtain a 2m soliton, we further assume a
mode diameter of 2 pm. The resulting peak power is
therefore 50 mW (an energy of 0.1 pJ), which demon-
strates the potential of this mechanism for ultrafast
switching. For comparison, the peak power requirement
in the case of Kerr soliton switching [4] ranges from 1 to
7 kW depending on the choice of coupler length
(1.8-0.45 m).

IV. OFF-RESONANCE SOLITON SWITCHING
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If the source is detuned from resonance, the set of
equations (15) is fully involved; the term concerning the
real part of the polarization generates a change of phase
all along the propagating pulse. In this sense even
though it has no meaning to consider further the evolu-
tion of the pulse area and indeed Eq. (16), most of the
considerations discussed in the resonant case still apply.
The polarization field originating from the light-rnatter
interaction is reduced because of the off-resonance value
of the susceptibility; therefore, the linear coupling term
of the propagation in Eq. (15) may strongly affect the evo-
lution of the injected pulse. In the following the same
value for the coupling parameter (K =2) will always be
used and, since the absorption depends on the detuning
6, the value of the absorption may always be maintained
the same by compensating the decrease in absorption due
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FIG. 5. Output pulse area vs input pulse amplitude for exci-
tation of the NLDC on channel (1). The pulse was launched in

channel (1) and the duration was ~'=2. The vertical axis is

scaled in multiples of ~. The area transmission exhibits a digital
behavior. The coupler parameters are the same as those report-
ed in Fig. 1.

FIG. 6. Energy transmission normalized to the input energy

as a function of the input amplitude A for the off-resonant case.
Three different detunings are considered: (a) b =1, (b) 5=0.5,
and (c) 6=0.1; for small detunings only the system acts as a SIT
soliton switch, while for large detunings the device behaves

linearly. The input pulse duration was z'=2 and the coupler
parameters are the same as those of Fig. 1.
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to detuning with an increase of the impurity doping. In
order to avoid overlapping with the problem of relaxation
times, the material is assumed homogeneously broadened
and the sharp line approximation is applied [14]. In par-
ticular, for ~' comparable with the shortest relaxation
time, the same approximation applies, but large detun-
ings are required. In any case, independently of the real
value of the linewidth or of the relaxation times, the
relevant factor for the discussion is h~'. In Fig. 6 the
NLDC power transmission at g,„,=8 is reported. In Fig.
6(a), b,r'=I; the device shows a fiat dependence on the
amplitude of the injected pulse. About 60% of the power
emerges from the input channel and about 30go from the
coupled channel. At this value of detuning the coupler is
linear; the outcoming pulses are shaped similarly to those
at the input because of the weak interaction through the
off-resonance two-level system. In Fig. 6(b) the term
h~'=0. 5; the SIT soliton evolution through the coupler
as a function of the injected amplitude starts becoming
closer to the resonant case. The low-amplitude side of
the transmission shows an increase of energy exchange,
even though the contrast between the transmitted powers
is low, while the high-amplitude side of the curves looks
like that of Fig. 6(a) because the velocity of the pulse en-

velopes of higher-order SIT solitons grows progressively
larger and hence the linear coupling prevails. In Fig.
6(c), b,r'=0. 1; the switching behavior resembles that of
the resonant propagation case. For A )0.4, a 2m. soliton
starts growing; at A =0.5 the transmission of the input
waveguide is close to 1. By increasing the injected power,
0.6( A (0.7, the transmission of the input waveguide
goes to zero, while most of the power emerges from the
coupled guide and a 2~ soliton is formed. For higher am-
plitudes the contrast between the channels becomes
weaker. It is noteworthy that the envelope velocity con-
tains a scaling factor due to the detuning [12]. As an ex-
ample, for the 2~ pulse,
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sumed to be slow compared to the pulse duration and this
is done in order to have an adiabatic evolution of the
propagating soliton pulse throughout the NLDC. The
slow thermalization assumption arises from the con-
sideration that we are interested in the investigation of
coherent propagation and its limit of validity. Anyway,
as far as the soliton area is in the stable region ( ) vr), the
area theorem guarantees a temporal reshaping that will
reproduce a steady state, i.e., temporal broadening. A
temporal change involves also the propagation velocity
that in our case is critical for the efficiency of the ex-
change; therefore, fast relaxations compared to the time
scale of the pulses may produce a pure depletion of the
soliton structure. In the following we are going to show

U '=nc '+a'r I2n.[1+(br) ]]
which introduces an increase of velocity U determining a
shift of the threshold for switching towards the low-
power side of Fig. 6(c); see for comparison the position of
the threshold for the resonant case illustrated in Fig. 3.
In general, the detuning from resonance reduces the non-
linear propagation to a power-dependent phase shifting
which resembles more closely the Kerr instead of the
coherent propagation; this shows that, in the cases re-
ported here, the mechanism based on the change of group
velocity is more efficient with respect to that based on the
phase-velocity change.
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V. RELAXATION TIMES

Up to now, only the range of pulse durations much
shorter than any damping effect has been considered.
The presence of these terms introduces a certain degree
of incoherent loss that decreases the amplitude of the
traveling envelope. Although the whole set of equations
(15) is involved, the effect of the relaxation to the steady-
state values of both the polarization and difference of
population [P(t=ao)=0 and W(t =co)=W' ] is as-

FIG. 7. Energy transmission normalized to the input energy
as a function of the input amplitude A for the resonant case
where dampings terms are included: (a) y'~' =0. 1, (b)
y'v'=0. 05, and (c) y'~'=0. 01; the high extinction ratio is ob-
tained only in the case of injected pulses much shorter than any
relaxation time. This corresponds to the case (c) where the
switching threshold is shifted towards smaller amplitudes com-
pared to the threshold shown in Fig. 3. The pulse duration of
the injected pulse is ~'=2 and the coupler parameters are the
same as those in Fig. l.
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the limits imposed by this phenomenon. By taking as an
example the case of SIT propagation in bound excitons
[11], the damping terms in the set of Maxwell-Bloch
equations (15) are y, '=135 ps, yz '=40 —270 ps, which
are of the same order of magnitude, and the total
broadening term is

y, '=(2y, +y~) '=25 —54 ps .

The pulse duration used in Sec. IV is ~ =2, which in the
case of bound excitons in CdS corresponds to ~=2 ps and
a product 0.04&y, «0.08. In this frame the effect of
coherent loss is discussed. First, in Figs. 7 and 8, the en-
ergy transmission and the area curves concerning the
case y'~'=0. 1 are shown, the injected pulse is a 2~ soli-
ton whose amplitude ranges from zero to A =1.5, and
the pulse duration is ~'=2. For amplitudes of the inject-
ed pulse in the range 0.6& A &0.85, the propagation
through the region of coupling determines complete

switching, the energy left in the input waveguide is
insufficient for another soliton formation, while in a cou-
pled waveguide, a 2m. soliton (with negative area) evolves
keeping the area constant but not the amplitude. The
latter decreases due to the incoherent processes and con-
sequently a temporal adjustment of the pulse is required
in order to keep the area constant. In fact, by numerical-
ly simulating the process, the output pulse is still a funda-
mental SIT soliton but is temporally broadened. In the
range 0.9 & A & 1.4, both channels support a 2m soliton
and the associated energy transmission is about the same.
Above A =1.4, again there is no contrast between the
two channels, but the areas tend to switch to the 4~ solu-
tion. For y'~'=0. 05, behavior is quite different; the
transmission curves are reported in Figs. 7(b) and 8(b).
From A =0 up to A =0.9, the input guide is lossy; the
transmitted area associated to the propagating pulse is
zero and the system behaves purely as an absorber. In
the coupled waveguide, for A & 0.5, no power is
transmitted; beyond A =0.5, a fundamental SIT soliton
is built and the correspondent energy transmission is
about 40%%uo'. for A )0.9, the power injected in the input
channel is sufBcient for a 2~ soliton formation that above
A =1.2 is equally as intense as that in the coupled chan-
nel. In the case of y'~'=0. 01, the transition between the
purely coherent propagation and the incoherent one is il-
lustrated; the curves for the area and energy transmission
evaluated at (,„,=8 are reported in Figs. 7(c) and 8(c).
The energy transmission resembles that described in Fig.
3 for the resonant case, but the sharp power switching
obtained at A =0.5 states a better performance of the de-
vice. The condition of y'v'=0. 01 states therefore an
upper limit for coherent propagation without depletion.
Whenever this condition is not satisfied, the initial pulse
duration must be suitably reduced along with all the
values of the parameters concerning coupler and doping.

VI. SOLITON COLLISION

An interesting situation is determined when two soli-
tons travel separately along the two arms of the direc-
tional coupler. Hereafter, for the sake of simplicity, we
will consider again the radiation in resonance with the
two-level systems and pulses short enough to discard any
relaxation time in the generalized Maxwell-Bloch equa-
tions (15). In this configuration we can distinguish two
cases: one regards two equal input pulses shifted in phase
by an arbitrary amount and another where the pulses
differ in amplitude and duration but the initial phase and
area are the same. In the following we discuss in more
detail the former case. Starting from the particular
configuration of two injected 2~ pulses with the same am-
plitude, duration and phase, the last of the set of equa-
tions (15) reduces to

-5
0 0.3 0.6 0.9 1.2 1.5

Input pulse amplitude
dU,
d

= —ImP ),
FIG. 8. Pulse area transmission as a function of the input

amplitude A for the resonant case where dampings terms are in-
cluded: (a) y'~'=0. 1, (b) y'~'=0. 05, and (c) y'~'=0. 01. The
vertical axis is scaled in multiples of 77..

dU2 = —ImP~,

where U, = U2 are the envelopes of the fields relative to
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the two channels. This set represents the propagation of
two independent pulses with no possibility of reciprocal
interaction. The same consideration holds for any phase
difference multiple of m", in general, if the initial condi-
tions are symmetric or antisymmetric, the overall evolu-
tion remains unaffected by the coupling. On the con-
trary, when the input pulses have opposite quadratures,
any symmetry consideration breaks up and coupling is al-
lowed; in fact, Eqs. 15(b) become

ReU, = —ImP, +E ImU2,

Im U2 = —RePz +E Re U~ .d

spond to two equal pulses whose duration ~'=2; since the
pulses are equal, the envelope velocities are equal too and
therefore the coupling region may be located in any point
of the device. In Fig. 9(a), we compare the plots of ener-

gy (N) versus distance of the two traveling pulses; the
amplitudes of the identical pulses are chosen in order to
have two areas of 1.8' (N=0. 81) each. In the simula-
tion, the phase-shifted pulse propagating through the
coupler switches to the crossed waveguide, adding its en-
ergy to the unshifted pulse (if the relative phase difference
were reversed, the effect would be the opposite); these re-
sults suggest that the linear part is predominant. In Fig.

The signs in front of the coupling constant E refer to a
+m/2 relative phase shift between the input fields. But,
as already discussed in Sec. III, for having a substantial
energy exchange the injected fields or areas must be large
enough or the pulse has to be short in duration in order
to overcome the pure soliton propagation originating
from the polarization source terms ImU& and ReU2. In
any case, if the linear coupling prevails, the system de-
scribes a case of directional coupling with two fields as in-
itial condition, and its solution is a superposition of solu-
tions of the case of a single input field [12] having oppo-
site quadratures. The resulting expressions read

Re U, (z) =Re U, (0)[ —sin(E() + cos(E()],
Im U2(z) = Im U2(0) [+sin(E()+ cos(Eg) ) .

For the power transmission we obtain

P, ( g) =P, (0)[ I+sin(2Eg) ]

and
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the opposite order for the signs in the two expressions al-
ways refers to the sign of the initial phase shift. The
power evolutions indicate that after a coupling distance
g=m/(2E), the total power is recovered into one of the
two waveguides constituting the device and the choice of
the output port depends on the sign of the initial phase
difference between the fields. In general, it is worthwhile
to note that either for integer or semi-integer rnultiples of
~, only one of the two quadratures of each field has been
used; this means that fields traveling in the two
waveguides do not suffer further phase shifts besides the
initial one. This description constitutes only a simple
qualitative approach to the problem. On the contrary,
when the initial phase shift is an arbitrary angle, the four
quadratures contained in Eqs. (15) are involved; in this
configuration it is possible to have a case in which there
exists a competition between the pure SIT soliton propa-
gation (as the two waveguides were separated) and the
linear coupling effect that produces a transfer of energy
from one of the two arms to the other (depending on the
sign of the perturbation). In Fig. 9 we examine the evolu-
tion of two equal pulses shifted in phase by m /20
launched into the input ports of the directional coupler
for three different input powers: the input pulses corre-

2-—
(c)

CD
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0--
0 1 3 4 5
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FIG. 9. Collision of SIT solitons. Plot of the pulse energies
N vs distance g of a pair of 2~ pulses injected into the two arms
of the directional coupler, one for each waveguide; the energy
evolution corresponding to the dashed line refers to the ~/20
phase-shifted input field: The normalized coupling constant is
EC =2, the coupling length is d =2, and the coupler position is

=2.5. In (a) the input areas are set at 1.8n (A =0.45,
w'=2); the coupler behaves linearly. In (b) the areas are set at
1.9m. ( A =0.475, ~'=2); both channels transmit energy and the
one that previously was lossy now is favored. In (c) the input
areas are set equal to 2~ ( A =0.5, ~'=2); the outport inversion
with respect to the case (a) is evident.
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tioned at g =2.5. The choice of the above parameters
for the two SIT solitons was dictated by the fact that if
they traveled by themselves without interacting, they
would not switch [as illustrated in cases (a) and (b) of
Figs. 1 and 2]; in the present configuration, instead, the
faster pulse (labeled 1) switches completely to the oppo-
site channel, adding energy to the slower pulse which
after a sudden reshaping acquires speed and keeps travel-
ing at a velocity close to that of the faster one. The col-
lision of two different SIT solitons constitutes another
way to control light with light and most likely is more
convenient because it does not require a strict control of
the phases of the incoming pulses.

VII. CONCLUSION

A type of nonlinear directional coupler has been
presented. In analogy with the Kerr soliton directional
coupler, this shows a power-dependent transmission; on
the contrary, the basic mechanisms of the two switches
differ in the sense that the Kerr one works on a change of
phase velocity, the coherent one on a change of the pulse
group velocity. When the pulse carrier frequency is reso-
nant with the transition of the two-level system, the equa-
tions for coherent propagation show that the fundamen-
tal 2~ SIT soliton travels unperturbed along the input
channel of the directional coupler and therefore linear
coupling is inhibited, while the second-order 4~ soliton
switches into crossed channel. The transition from inhi-
bition to exchange is well defined and occurs for an in-

jected pulse area corresponding to the second instability
point of the area theorem diagram, i.e., around 3m.. The
higher-order injected solitons, during propagation
through the coupling region, split up in integer multiples
of the fundamental one and occupy both channels of the
device. This indicates that the overall transmission of the
device is digital. This means that a single SIT soliton
never shares its area or energy between the two channels,

but maintains at least its fundamental unit in one chan-
nel. The study has also been extended to the off-
resonance case. In this configuration small detunings still
allow the velocity-group-based mechanism of switching
while large detunings transform the interaction in the
Kerr type (phase-velocity dependence on power) and, in
this case, a much higher input power would be required
to obtain switching [5]. The damping terms as longitudi-
nal and transverse relaxation rates were taken into con-
sideration too. The effect of those may dramatically
reduce the nonlinear eSciency of the device. Therefore
very short pulses are required, that is, in the direction of
ultra high-bit-rate-based telecommunication networks.
In this area of interest it may be useful to govern the
switching process through a mechanism of control. In
this sense we observed that when two fundamental SIT's
travel separately along the two arms of the directional de-
vice and are weakly shifted in phase one from the other,
there is an area threshold which allows even in this case
the choice of the output port. In analogy to this case, the
mechanism of nonlinear-phase-based switching applies
when two 2m solitons different in amplitude and duration
are injected in the two arms of the directional coupler,
giving rise again to an outport switching controlled by an
external pulse. In conclusion, since the SIT nonlinear
directional coupler operates on the principle of self-
induced transparency, the maximum nonlinearity attain-
able from a two-level system is used and at the same time
the contribution of the absorption losses is largely re-
duced.

ACKNOWLEDGMENTS

M.R. is pleased to acknowledge financial support from
the ICFES-BID program. F.S.L., M.R., and S.W. carried
out this work in the framework of the agreement between
Fondazione U. Bordoni and the Istituto Superiore delle
Poste e Telecomunicazioni and with partial financial sup-
port from Italian National Research Council (CNR).

[1]S. M. Jensen, IEEE J. Quantum Electron. QE-18, 1580
(1982); B. Daino, G. Gregori, and S. Wabnitz, J. Appl.
Phys. 58, 4512 (1985); H. G. Winful, Appl. Phys. Lett. 47,
213 (1985); S. Trillo, S. Wabnitz, N. Finlayson, W. C.
Banyai, C. T. Seaton, G. I. Stegeman, and R. H. Stolen,
ibid. 53, 837 (1988); S. R. Friberg, A. M. Weiner, Y. Sil-
berberg, B. G. Sfez, and P. W. Smith, Opt. Lett. 13, 904
(1988).

[2] A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142
(1973).

[3] K. J. Blow, N. J. Doran, and B. K. Nayar, Opt. Lett. 14,
754 (1989); M. N. Islam, E. R. Sunderman, R. H. Stolen,
W. Pleibel, and J. R. Simpson, ibid. 14, 811 (1989)~

[4] S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman,
Opt. Lett. 13, 672 (1988).

[5] G. I. Stegeman, C. Seaton, A. C. Walker, and C. N. Iron-
side, Opt. Commun. 61, 277 (1987); R. Jin, C. L. Chuang,
H. M. Gibbs, S. W. Koch, J. N. Polky, and G. A. Pubanz,
Appl. Phys. Lett. 53, 1791 (1981);R. Jin, C. L. Chuang, H.
M. Gibbs, S. W. Koch, J. N. Polky, and G. A. Pubanz,
Appl. Phys. Lett. 53, 1791 (1988); D. Hulin, A.
Mysyrowicz, A. Antonetti, A. Migus, W. T. Masselink, H.

Morkoc, H. M. Gibbs, and N. Peyghambarian, Appl.
Phys. Lett. 49, 749 (1986).

[6] S. L. McCall and E. L. Hahn, Phys. Rev. Lett. 18, 908
(1967);Phys. Rev. 183, 457 (1969).

[7] A. Guzman, M. Romagnoli, and S. Wabnitz, Appl. Phys.
Lett. 56, 614 (1990).

[8] C. K. Rhode and A. Szoke, Phys. Rev. 184, 25 (1969); F.
M. Mattar and M. C. Newstein, J. Quantum Electron.
QE-13, 507 (1977).

[9]V. M. Agranovich, V. Y. Chernyak, and V. I. Rupasov,
Opt. Commun. 37, 363 (1981).

[10]M. Romagnoli, S. Wabnitz, and L. Zoccolotti, Opt. Lett.
16, 1249 (1991)~

[11]K. Watanabe, H. Nukono, A. Honold, and Y. Yamamoto,
Phys. Rev. Lett. 62, 2257 (1989).

[12) See, for example, A. Yariv, Quantum Electronics, 3rd ed.
(Wiley, New York, 1989).

[13]U. Langbein, F. Lederer, and H. E. Ponath, Opt. Quantum
Electron. 16, 251 (1984).

[14] H. M. Gibbs and R. E. Slusher, Phys. Rev. A 6, 2326
(1972).


